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Abstract. In this paper, we present the first inner-product encryption
(IPE) schemes that are unbounded in the sense that the public parame-
ters do not impose additional limitations on the predicates and attributes
used for encryption and decryption keys. All previous IPE schemes were
bounded, or have a bound on the size of predicates and attributes given
public parameters fixed at setup. The proposed unbounded IPE schemes
are fully (adaptively) secure and fully attribute-hiding in the standard
model under a standard assumption, the decisional linear (DLIN) as-
sumption. In our unbounded IPE schemes, the inner-product relation
is generalized, where the two vectors of inner-product can be different
sizes and it provides a great improvement of efficiency in many appli-
cations. We also present the first fully secure unbounded attribute-based
encryption (ABE) schemes, and the security is proven under the DLIN
assumption in the standard model. To achieve these results, we develop
novel techniques, indexing and consistent randomness amplification, on
the (extended) dual system encryption technique and the dual pairing
vector spaces (DPVS).

1 Introduction

1.1 Background

IPE and ABE The notions of inner-product encryption (IPE) and attribute-
based encryption (ABE) introduced by Katz, Sahai and Waters [6] and Sahai and
Waters [18] constitute an advanced class of encryption, functional encryption
(FE), and provide more flexible and fine-grained functionalities in sharing and
distributing sensitive data than traditional symmetric and public-key encryption
as well as identity-based encryption (IBE).

In FE, there is a relation R(v, x), that determines whether a secret key as-
sociated with a parameter v can decrypt a ciphertext encrypted under another
parameter x. The parameters for IPE are expressed as vectors x⃗ (for encryption)
and v⃗ (for a secret key), where R(v⃗, x⃗) holds, i.e., a secret key with v⃗ can decrypt
a ciphertext with x⃗, iff v⃗ · x⃗ = 0. (Here, v⃗ · x⃗ denotes the standard inner-product.)
In ABE systems, either one of the parameters for encryption and secret key is



a set of attributes, and the other is an access policy (structure) or (monotone)
span program over a universe of attributes, e.g., a secret key for a user is associ-
ated with an access policy and a ciphertext is associated with a set of attributes,
where a secret key can decrypt a ciphertext, iff the attribute set satisfies the pol-
icy. If the access policy is for a secret key, it is called key-policy ABE (KP-ABE),
and if the access policy is for encryption, it is ciphertext-policy ABE (CP-ABE).

For some applications, the parameters for encryption are required to be hid-
den from ciphertexts. To capture the security requirement, Katz, Sahai and
Waters [6] introduced attribute-hiding (based on the same notion for hidden vec-
tor encryption (HVE) by Boneh and Waters [4]), a security notion for FE that
is stronger than the basic security requirement, payload-hiding. Roughly speak-
ing, attribute-hiding requires that a ciphertext conceal the associated parameter
as well as the plaintext, while payload-hiding only requires that a ciphertext
conceal the plaintext. A weaker notion of attribute-hiding than the original one
[6] was given by [7]. The weaker notion is called weakly attribute-hiding, and
the original one is fully attribute-hiding. Informally, in the fully attribute-hiding,
the secrecy of attribute x is ensured even against an adversary having a secret
key with v such that R(v, x) holds (i.e., no information is released on x except
R(v, x) holds), while it is ensured only when R(v, x) does not hold in the weakly
attribute-hiding (see Definition 4 for the definition of the fully attribute-hiding).

To the best of our knowledge, the widest class of attribute-hiding FE is
IPE [6, 7, 12, 14] (KSW08, LOS+10, OT10 and OT12 schemes). Inner-products
for IPE represent a fairly wide class of relations including equality tests as the
simplest case (i.e., anonymous IBE and HVE are very special classes of attribute-
hiding IPE), disjunctions or conjunctions of equality tests, and, more generally,
CNF or DNF formulas. We note, however, that inner-product relations are less
expressive than a class of relations (on span programs) for ABE, while existing
ABE schemes for such a wider class of relations are not attribute-hiding but only
payload-hiding.

Among the existing IPE schemes, only the OT12 IPE scheme [14] achieves
the full (adaptive) security and fully attribute-hiding simultaneously, whereas
other attribute-hiding IPE schemes [6, 11, 7, 12] are selectively secure or weakly
attribute-hiding, and some IPE schemes [1, 13] only achieve payload-hiding. As
for ABE, Lewko et.al. and Okamoto-Takashima ABE schemes [7, 12] are fully
secure in the standard model, while ABE schemes [18, 5, 16, 20] before [7, 12]
were selectively secure.

Unbounded IPE and ABE All previous constructions of IPE and ABE ex-
cept the Lewko-Waters ABE scheme [9] have restriction, or are bounded, in the
choice of the parameters for secret key and encryption once the public parame-
ters have been set. The only unbounded ABE scheme [9], however, is selectively
secure, while they presented an unbounded hierarchical identity-based encryption
(HIBE) that is fully secure in the standard model. No unbounded IPE scheme
has been presented. Therefore, no fully secure and unbounded scheme for an
advanced class of encryption like IPE or ABE has been presented.
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In practice, it is highly desirable that the parameters for secret key and
encryption should be flexible or unbounded by the public parameters fixed at
setup, since if we set the public parameters for a possible maximum size (e.g.,
the maximum dimension of predicate and attribute vectors for IPE), the size of
the public parameters should be huge.

Removing the restrictions for fully secure IPE and ABE, however, is quite
challenging. As mentioned above, no fully secure and unbounded scheme for an
advanced class of encryption like IPE or ABE has been presented. The difficulty
resides in the existing techniques for proving the full (or adaptive) security of
such an advanced class of encryption.

The only known technique to prove the full security of an (attribute-hiding)
IPE or ABE system is the dual system encryption by Waters [19] and its exten-
sion [14]. In the techniques, information theoretical arguments (e.g., conceptual
change due to the same distribution and the independent randomness of two
distributions etc.) over some (hidden) parts of a secret-key and challenge cipher-
text play a key role in the security proof, provided that the adversary follows
the secret-key-query condition in the security games. To execute a security proof
based on the information theoretical arguments, an appropriate distribution of
randomness consistent with the key-query condition should be supplied in the
proof games transformed from the original proof game.

As for bounded IPE and ABE schemes, the public parameters can supply
immanent randomness enough for the arguments, since the size of parameters
for secret-keys and encryption is bounded by the public parameters. For example,
when the dimension of vectors for IPE is required to be n, the public parameters
whose size is O(n) with respect to n should be given in bounded IPE, and the size
of secret randomness to generate the public parameter is O(n2). Such an amount
of randomness can be enough for the arguments over n-dimensional vectors.

In contrast, for unbounded IPE and ABE schemes, some (unbounded amount
of) randomness whose distribution is consistent with the key-query condition
should be supplied in addition to the randomness provided by the public param-
eters. For example, even when the dimension of vectors for IPE is required to
be n, the size of the public parameters is O(1) in unbounded IPE, i.e., the size of
secret randomness to generate the public parameters is O(1). Clearly, such a size
of randomness is not sufficient for the information theoretical arguments over
n-dimensional vectors. Therefore, any additional source of randomness should
be provided, and the distribution of the randomness should be specific (i.e.,
consistent with the key-query condition). For the unbounded HIBE scheme [9],
where the equality (un-)matching is the key-query condition, a simple compres-
sion technique works well to create such randomness since equality can be sim-
ply compressed with preserving the property. The key-query condition for IPE
and ABE, however, is in general much more complicated than just the equality
matching for (H)IBE, and no technique was known to create randomness consis-
tent with such a complicated condition in some security proofs. This is a reason
why [9] succeeds in realizing a fully secure unbounded HIBE but not for ABE
(and not for IPE).

3



Restriction on IPE The existing IPE schemes have another restriction on the
parameters (i.e., vectors) for secret key and encryption that the dimensions of x⃗
(for encryption) and v⃗ (for a secret key) should be equivalent. Such a restriction
may be considered to be inevitable for the inner-product relation on v⃗ · x⃗, but
it is required to be relaxed in various applications to improve the efficiency,
especially in unbounded IPE systems where the setup (public) parameters give
no restriction on the dimensions of vectors.

Let us consider an example on a genetic profile data of an individual. It
is desirable that such a sensitive data be treated as encrypted data even for
data processing and retrievals. Although a genetic profile may include a large
amount of information, only a part of the profile is examined in many applica-
tions. For example, let X1, . . . , X100 be variables of 100 genetic properties and
x1, . . . , x100 be Alice’s values of these variables. To evaluate if f(x1, . . . , x100) = 0
for any examination (multivariate) polynomial f with degree 3, or the truth
value of the corresponding predicate ϕf (x1, . . . , x100), the attribute vector x⃗
of Alice should be a monomial vector of Alice’s values with degree 3, x⃗ :=
(1, x1, . . . , x100, x

2
1, x1x2, . . . , x

2
100, x

3
1, x

2
1x2, . . . , x

3
100), whose dimension is around

106. A predicate vector v⃗ for a secret key can be associated with predicate ϕf .
To ensure the private data processing of x⃗, it should be encrypted (say c

for a ciphertext of x⃗) by a fully attribute-hiding IPE scheme, since whether
ϕf (x1, . . . , x100) holds can be examined with releasing no other information by
checking whether c can be decrypted by a secret key with v⃗ (i.e., R(v⃗, x⃗) holds).
Here, if c is encrypted by fully attribute-hiding IPE, it releases no information on
x⃗ except that R(v⃗, x⃗) holds, or ϕf (x1, . . . , x100) holds, however, if it is encrypted
by weakly attribute-hiding IPE, such desirable security cannot be ensured.

Let a predicate for v⃗ be ((X5 = a) ∨ (X16 = b)) ∧ (X57 = c), which focuses
only three factors, X5, X16, X57, among the 100 genetic properties. It can be rep-
resented by a polynomial equation, r1(X5−a)(X16−b)+r2(X57−c) = 0 (where
r1, r2

U← Fq), i.e., (r1ab−r2c)−r1bX5−r1aX16 +r2X57 +r1X5X16 = 0. In order
that r1(x5−a)(x16− b)+r2(x57− c) = 0 iff v⃗ · x⃗ = 0, vector v⃗ should be ((r1ab−
r2c), 0, . . . , 0,−r1b, 0, . . . , 0,−r1a, 0, . . . , 0, r2, 0, . . . , 0, r1, 0, . . . , 0), whose dimen-
sion is equivalent to that of x⃗, i.e., around 106, although the effective dimension
of v⃗ is just 5. This is due to the above-mentioned restriction on the inner-product
relation of the existing IPE schemes. The size of secret key for v⃗ then should be
in proportion to the dimension of v⃗ (and x⃗), around 106. This example shows
us a strong practical motivation, especially for unbounded IPE schemes, to relax
this restriction on the inner-product relation and to shorten the length of the
secret key to that in proportion to the effective dimension, e.g., 5, instead of
around 106.

1.2 Our Results

1. This paper introduces a new concept of IPE, generalized IPE, which relaxes
the above-mentioned restriction of IPE and consists of three types of IPE,
Types 0, 1 and 2. Here the notion of Types 1 and 2 is introduced in this
paper, and Type 0 is the traditional one (see Remark below).
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Table 1. Comparison of attribute-hiding IPE schemes, where |G| and |GT | represent
size of an element of G and that of GT , respectively. AH, IP, PK, SK, CT, GSD and
eDDH stand for attribute-hiding, inner-product, master public key (public parameters),
secret key, ciphertext, general subgroup decision [3] and extended decisional Diffie-
Hellman [7], respectively.

KSW08 [6] LOS+10 [7] OT10 [12] OT12 [14] Proposed IPE

(basic) (variant)
(type 1 or 2)

Section 4.1

(type 0)

Section 4.2

Bounded or

Unbounded
bounded bounded bounded bounded bounded unbounded unbounded

Restriction on

IP relation
restricted∗ restricted restricted restricted restricted relaxed restricted

Security
selective &

fully-AH

adaptive &

weakly-AH

adaptive &

weakly-AH

adaptive &

fully-AH

adaptive &

fully-AH

adaptive &

fully-AH

adaptive &

fully-AH

Order

of G
composite prime prime prime prime prime prime

Assump.
2 variants

of GSD
n-eDDH DLIN DLIN DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G| O(1)|G| O(1)|G|
SK size (2n + 1)|G| (2n + 3)|G| (3n + 2)|G| (4n + 2)|G| 11|G| (15n + 5)|G| (21n + 9)|G|

CT size
(2n + 1)|G|

+ |GT |
(2n + 3)|G|

+ |GT |
(3n + 2)|G|

+ |GT |
(4n + 2)|G|

+ |GT |
(5n + 1)|G|

+ |GT |
(15n′ + 5)|G|

+ |GT |
(21n′ + 9)|G|

+ |GT |

* It can be easily relaxed.

Remark: We now roughly explain the three types of inner-product rela-
tions. To relax the above-mentioned restriction on the inner-product relation,
we introduce a new type of inner-product (generalized inner-product) for v⃗
and x⃗, where their dimensions can be different (say n and n′ for the dimen-
sions of v⃗ and x⃗). In this notion, vector v⃗ and x⃗ are expressed by {(t, vt) |
t ∈ Iv⃗, ♯Iv⃗ = n} and {(t, xt) | t ∈ Ix⃗, ♯Ix⃗ = n′}, respectively, where t ∈ N
is an index for vectors, whose semantics is given by each application. Here
note that we abuse the same vector notation, v⃗, for the new expression as
well as for the conventional one, (v1, . . . , vn). In the above-mentioned exam-
ple, x⃗ := {(1, 1), (2, x1), . . . , (101, x100), (102, x2

1), (103, x1x2), . . . , (n′, x3
100)}

where Ix⃗ := {1, 2, . . . , n′}, and v⃗ := {(1, r1ab−r2c), (6,−r1b), (17,−r1a), (58,
r2), (517, r1)} where Iv⃗ := {1, 6, 17, 58, 517}. The generalized inner-product
of v⃗ over x⃗ is defined by

∑
t∈Iv⃗

vtxt if Iv⃗ ⊆ Ix⃗. Otherwise, it is undefined.
By using the generalized inner-product notion, the secret key size can be in
proportion to the effective dimension (e.g., 5 instead of around 106).

We then introduce three types of IPE schemes. For Type 1, relation R(v⃗, x⃗)
holds iff the generalized inner-product of v⃗ over x⃗ is 0, while for Type 2
it holds iff the generalized inner-product of x⃗ over v⃗ is 0. We call Type 0
for the conventional inner-products, i.e., relation R(v⃗, x⃗) is defined by the
standard inner-product of v⃗ and x⃗, where v⃗ and x⃗ have the same dimension
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Table 2. Comparison of KP-ABE Schemes, where |G| represents the size of an element
of G, and PK, SK, CT and GSD stand for master public key (public parameters), secret
key, ciphertext and general subgroup decision [3], respectively. And, d, n, nmax, ℓ and
kmax are the number of sub-universes of attributes, the number of attributes for a CT,
the maximum number of attributes for a CT, the row size of an access policy matrix
for a SK and the maximum value of the degree of access policies, respectively.

LW11 [9] LOS+10 [7] OT10 [12] Proposed KP-ABE

(basic) (modified) (basic) (modified)
(basic)

Section 5

(modified)

in full ver.

Bounded or

Unbounded
unbounded bounded bounded bounded bounded unbounded unbounded

Security selective full full full full full full

Order of G composite composite composite prime prime prime prime

Assump. GSD GSD GSD DLIN DLIN DLIN DLIN

Degree of

access policies
arbitrary 1 arbitrary 1 arbitrary 1 arbitrary

PK size O(1)|G| O(nmax)|G| O(nmax)|G| O(d)|G| O(d)|G| O(1)|G| O(1)|G|

SK size O(ℓ)|G| O(ℓ)|G| O(ℓ)|G| O(ℓ)|G| O(ℓ)|G| O(ℓ)|G| O(ℓ)|G|

CT size O(n)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G|

(in other words, the inner-product for Type 0 is defined iff these dimensions
are equivalent.)

2. We present the first unbounded inner-product encryption (IPE) schemes. The
proposed unbounded IPE schemes are fully (adaptively) secure and fully
attribute-hiding in the standard model under a standard assumption, the
decisional linear (DLIN) assumption. The proposed unbounded IPE schemes
consist of the above-mentioned types of generalized IPE, Types 0, 1 and 2,
For comparison of attribute-hiding IPE schemes, see Table 1.

3. We present the first unbounded KP- and CP-ABE schemes that are fully
secure (adaptively payload-hiding) in the standard model. The proposed
unbounded ABE schemes are fully secure under the DLIN assumption, and
are for a wide class of relations, non-monotone access structures (see the full
version for the proposed CP-ABE scheme). See Table 2 for comparison of
KP-ABE schemes.

Remark: Similarly to the existing fully secure ABE schemes in the stan-
dard model [7, 12, 8] except [10], our basic ABE scheme (Section 5) has a
restriction that the degree of access policies is 1 3. A modified KP-ABE
scheme is shown in the full version of this paper to relax the restriction or
to achieve an arbitrary degree k of access policies with preserving the fully

3 Informally, the degree may imply the number of appearance of a variable in a formula,
e.g., formula ((x = a)∨(x = b))∧(y = c) has degree 2 for variable x. For the definition
of the degree of access policies in our schemes, see the full version. The degree should
be a bit differently defined in [18, 5, 16, 20, 7, 8], where degree 1 is called one-use.
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secure and unbounded property. It, however, shares a shortcoming of the ex-
isting fully secure (modified) ABE schemes [7, 12, 8] that the ciphertext size
grows linearly with k. Here, a (maximum) value of k can be determined in
each application of our ABE scheme, while the public parameters are fixed
and commonly shared by all applications and users.

1.3 Key Techniques

As mentioned above, the difficulty of realizing a fully secure unbounded IPE
or ABE scheme arises from the hardness of supplying an unbounded amount of
randomness consistent with the complicated key-query condition for the (dual
system encryption) security arguments on IPE or ABE. To overcome this dif-
ficulty, we develop novel techniques, indexing and consistent randomness am-
plification, on the dual system encryption and the dual pairing vector spaces
(DPVS). Roughly speaking, the indexing technique is for supplying a source of
unbounded amount of randomness and the consistent randomness amplification
technique is for amplifying the randomness of the source through a computa-
tional assumption (e.g., the DLIN assumption in our case) and the randomness
of hidden bases as well as for adjusting the distribution of the amplified ran-
domness to be consistent with a condition. This methodology could provide a
general framework for proving the security in unbounded situations.

In DPVS, a pair of dual (or orthonormal) bases for N -dimensional linear
spaces, B := (b1, . . . , bN ) and B∗ := (b∗1, . . . , b

∗
N ), are randomly generated using

a secret random linear transformation X (random N × N matrix) (see Section
2). In a typical application of DPVS to cryptography, a part of B (say B̂) is used
as a public key (public parameters), and B∗ as a secret key, where X is the top
level secret key and the source of randomness.

In a typical construction of bounded IPE schemes [7, 12, 14] which are based
on DPVS, once a basis of DPVS, a part of the basis of a N -dimensional space
is published as public parameters, the dimension n of predicate and attribute
vectors for secret key and encryption is bounded or fixed, e.g., n ≤ N/4 (i.e.,
N = O(n)). The full security is proven through the information theoretical
arguments, and the randomness of secret matrix X (e.g., the amount of the
randomness is O(n2)) supplies enough randomness for the arguments.

In contrast, the dimension, n, of the predicate and attribute vectors is not
bounded by the public parameters in unbounded IPE. For example, in one of
the proposed IPE schemes (Section 4), the public parameters consist of a con-
stant number of elements, 9 elements of bases (or 105 pairing group elements),
B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b14, b15), where random matrices of

constant sizes, X0
U← F5×5

q and X1
U← F15×15

q , are employed to generate the
public parameters. The randomness of the public parameters, just a constant
amount with respect to n, is clearly insufficient for the (dual system encryption)
arguments on the proof of full security.

To supply additional randomness for the purpose, in our IPE schemes, we
introduce a technique called indexing, where two-dimensional index vectors,
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σt(1, t) and µt(t,−1) are embedded into ciphertext ct and secret key k∗
t , re-

spectively, where σt and µt are freshly random for each t. In our IPE scheme
(Section 4) where n = n′ for simplicity, for example, secret key (k∗

1, . . . , k
∗
n) for

v⃗ := (v1, . . . , vn) can be expressed by a coefficient vector, (µt(t,−1), δvt, . . .),
for t = 1, . . . , n, over basis B∗, i.e., k∗

t := (µt(t,−1), δvt, . . .)B∗ and ciphertext
(c1, . . . , cn) for x⃗ := (x1, . . . , xn) can be expressed by ct := (σt(1, t), ωxt, . . .)B
for t = 1, . . . , n, where δ, ω are randomly selected. While the size of the public
parameters or its randomness is constant in n, an unbounded amount of ran-
domness, {µt}t=1,...,n, {σt}t=1,...,n, can be supplied to secret key and ciphertext.
This is a key idea of the indexing technique.

Although the technique supplies an unbounded amount of randomness, i.e.,
O(n)-size of randomness, it is not enough for our purpose. We need more and a
specific distribution of randomness. This is because: in the proof of full security
on dual system encryption and the extension, such a real randomness provided
by the indexing technique should be expanded into a hidden part in spaces over
bases B and B∗, and the distribution should be also adjusted to (or consistent
with) the key-query condition for IPE or ABE. For this purpose, i.e., in order
to amplify the randomness to a hidden subspace and to adjust it to a specific
distribution, we develop another technique, consistent randomness amplification.

For a bit more detailed explanation of the consistent randomness amplifi-
cation technique, we will briefly review a hidden part (subspace) of DPVS. As
mentioned above, in a typical application of DPVS to cryptography, a part of B
(say B̂) is used as a public key (public parameters). Therefore, the basis, B− B̂,
is information theoretically concealed against an adversary, i.e., even an infi-
nite power adversary has no idea on which basis is selected as B − B̂ when B̂
is published. The underlying dual vector spaces, span⟨B⟩ and span⟨B∗⟩, are 15-
dimensional for our IPE scheme (Type 1 or 2) and 14-dimensional for our ABE
scheme. The subspaces employed for public parameters are just 6-dimensional
and other 2 dimensional basis can be public. Hence, the basis for the remaining
7 or 6-dimensional subspace is information theoretically concealed (uncertain).
The consistent randomness amplification technique is executed over these 7 or
6-dimensional hidden subspaces. For example, as mentioned above, a real secret
key {k∗

t } and ciphertext {ct} are expressed by k∗
t := (µt(t,−1), δvt, st, 07 , . . .)B∗

and ct := (σt(1, t), ωxt, ω̃, 07 , . . .)B. This technique provides a transforma-
tion (for the dual system encryption technique and the extension) to the fol-
lowing forms: k∗

t := (µt(t,−1), δvt, st, 04, (πvt, at) · Ut, 0 , . . .)B∗ and ct :=

(σt(1, t), ωxt, ω̃, . . . , (τxt, τ̃) · Zt, 0 , . . .)B, where Zt is an independently ran-

dom 2 × 2 matrix for each t and Ut := (ZT
t )−1, and other new variables are

random. Here, the box-framed parts are the information theoretically hidden
subspaces, the randomness of the hidden parts is amplified and the distribution
of (πvt, at) · Ut and (τxt, τ̃) · Zt is consistent with the key-query condition.

The consistent randomness amplification technique is composed of several
computational and conceptual (information theoretical) transformations. One
of the key tricks of the transformations is to amplify a source of randomness to
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a hidden part by applying a computational assumption, the DLIN assumption.
Another computational trick is to swap two vectors in different positions under
DLIN. Information theoretical key tricks are inter-subspace and intra-subspace
types of conceptual transformations (see the full version for more details).

The security proofs of our IPE and ABE schemes are hierarchically con-
structed in a modular manner. The very top level of the security proof is based
on the dual system encryption and its extension. Several problems in the mid-
dle level support the top level arguments. Our key techniques, the indexing and
consistent randomness amplification techniques, which are also constructed in a
hierarchical manner, are employed in the lowest level to reduce the hardness of
the middle level problems to the DLIN assumption.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. We denote the finite field of order q by Fq, Fq \ {0} by F×

q ,
and the set of positive integers by N. The vector 0⃗ is abused as the zero vector
in F n

q for any n. XT denotes the transpose of matrix X. A bold face letter
denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span⟨b1, . . . , bn⟩ ⊆ V (resp. span⟨x⃗1, . . . , x⃗n⟩) denotes the subspace generated by
b1, . . . , bn (resp. x⃗1, . . . , x⃗n). For bases B := (b1, . . . , bN ) and B∗ := (b∗

1, . . . , b
∗
N ),

(x1, . . . , xN )B :=
∑N

i=1 xibi and (y1, . . . , yN )B∗ :=
∑N

i=1 yib
∗
i . e⃗1 and e⃗2 denote

the canonical basis vectors in F2
q, i.e., e⃗1 := (1, 0) and e⃗2 := (0, 1). GL(n, Fq)

denotes the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q, G, GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G ̸= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) ̸= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q, G, GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q, V, GT , A, e) by a direct
product of symmetric pairing groups (q, G, GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . , aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V → GT . The pairing is defined by e(x, y) :=
∏N

i=1 e(Gi,Hi) ∈ GT
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where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . ,HN ) ∈ V. This is nondegen-
erate bilinear i.e., e(sx, ty) = e(x, y)st and if e(x, y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0
otherwise, and e(G,G) ̸= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input
1λ (λ ∈ N) and N ∈ N, and outputs a description of paramV := (q, V, GT , A, e)
with security parameter λ and N -dimensional V. It can be constructed by using
Gbpg.

For the asymmetric version of DPVS, see Appendix A.2 in [12]. We describe
random dual orthonormal basis generator Gob, which is used as a subroutine in
our IPE and ABE schemes.

Gob(1λ, (Nt)t=0,1) : paramG := (q, G, GT , G, e) R← Gbpg(1λ), ψ
U← F×

q ,

for t = 0, 1, paramVt
:= (q, Vt, GT , At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j=1,...,Nt

U← GL(Nt, Fq),

X∗
t := (ϑt,i,j)i,j=1,...,Nt := ψ · (XT

t )−1, hereafter, χ⃗t,i and ϑ⃗t,i

denote the i-th rows of Xt and X∗
t for i = 1, . . . , Nt, respectively,

bt,i := (χ⃗t,i)At =
∑Nt

j=1 χt,i,jat,j for i = 1, ..., Nt, Bt := (bt,1, ..., bt,Nt),

b∗
t,i := (ϑ⃗t,i)At

=
∑Nt

j=1 ϑt,i,jat,j for i = 1, ..., Nt, B∗
t := (b∗t,1, ..., b

∗
t,Nt

),

gT := e(G,G)ψ, param := ({paramVt
}t=0,1, gT ), return (param, B, B∗).

We note that gT = e(bt,i, b
∗
t,i) for t = 0, 1; i = 1, . . . , Nt. Hereafter, for

simplicity, we denote N := N1, V := V1, A := A1, B := B1 and B∗ := B∗
1 for

variables with t = 1.

3 Definitions of Generalized Inner-Product Encryption
(IPE) and Attribute-Based Encryption (ABE)

3.1 Generalized Inner-Product Encryption

This section defines generalized inner product encryption (IPE) and its security.
The parameters of generalized inner-product predicates are expressed as a

vector x⃗ := {(t, xt) | t ∈ Ix⃗, xt ∈ Fq} \ {⃗0} with finite index set Ix⃗ ⊂ N for
encryption and a vector v⃗ := {(t, vt) | t ∈ Iv⃗, vt ∈ Fq} \ {⃗0} with finite index set
Iv⃗ ⊂ N for a secret key, respectively. Here there are three types of unbounded
IPE with respect to the decryption condition. For Type 1, R(v⃗, x⃗) = 1 iff Iv⃗ ⊆ Ix⃗

and
∑

t∈Iv⃗
vtxt = 0. For Type 2, R(v⃗, x⃗) = 1 iff Iv⃗ ⊇ Ix⃗ and

∑
t∈Ix⃗

vtxt = 0.
We will consider Type 0 inner-product predicate only for conventional prefix

type vectors v⃗ := (v1, . . . , vn) and x⃗ := (x1, . . . , xn′). For Type 0, R(v⃗, x⃗) = 1 iff
n = n′ and v⃗ · x⃗ :=

∑n
t=1 vtxt = 0.

Definition 3. An inner product encryption scheme (for generalized inner-product
relation R(v⃗, x⃗)) consists of probabilistic polynomial-time algorithms Setup, KeyGen,
Enc and Dec. They are given as follows:

10



Setup takes as input security parameter 1λ. It outputs public parameters pk and
(master) secret key sk.

KeyGen takes as input public parameters pk, secret key sk, and vector v⃗. It
outputs a corresponding secret key skv⃗.

Enc takes as input public parameters pk, message m in some associated message
space, msg, and vector x⃗. It returns ciphertext ctx⃗.

Dec takes as input the master public key pk, secret key skv⃗ and ciphertext ctx⃗.
It outputs either m′ ∈ msg or the distinguished symbol ⊥.

A generalized IPE scheme should have the following correctness property: for
all (pk, sk) R← Setup(1λ), all vectors v⃗ and x⃗, all secret keys skv⃗

R← KeyGen(pk, sk,

v⃗), all messages m, all ciphertext ctx⃗
R← Enc(pk,m, x⃗), it holds that m =

Dec(pk, skv⃗, ctx⃗) if R(v⃗, x⃗) = 1. Otherwise, it holds with negligible probability.

Definition 4. The model for defining the adaptively fully-attribute-hiding secu-
rity of IPE against adversary A (under chosen plaintext attacks) is given by the
following game:

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives
public parameters pk to A.

Phase 1 A may adaptively make a polynomial number of key queries for vectors,
v⃗, to the challenger. In response, the challenger gives the corresponding key
skv⃗

R← KeyGen(pk, sk, v⃗) to A.
Challenge A submits challenge vectors (x⃗(0), x⃗(1)) with the same index set

Ix⃗(0) = Ix⃗(1) (or n′(0) = n′(1) for Type 0) and challenge messages (m(0),m(1)),
subject to the following restrictions:
– Any key query v⃗ in Phase 1 satisfies R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)) = 0, or
– Two challenge messages are equal, i.e., m(0) = m(1), and any key query

v⃗ in Phase 1 satisfies R(v⃗, x⃗(0)) = R(v⃗, x⃗(1)).
The challenger flips a coin b

U← {0, 1}, and gives ctx⃗(b)
R← Enc(pk, m(b), x⃗(b))

to A.
Phase 2 Phase 1 is repeated with the above restriction for key query v⃗ and

challenge, (x⃗(0), x⃗(1)) and (m(0),m(1)).
Guess A outputs a bit b′, and wins if b′ = b.

The advantage of A in the above game is defined as AdvIPE,AH
A (λ) := Pr[A wins ]−

1/2 for any security parameter λ. An IPE scheme is adaptively fully-attribute-
hiding (AH) against chosen plaintext attacks if all probabilistic polynomial-time
adversaries A have at most negligible advantage in the above game. For each
run of the game, the variable s is defined as s := 0 if m(0) ̸= m(1) for challenge
messages m(0) and m(1), and s := 1 otherwise.

3.2 Attribute-Based Encryption with Non-Monotone Access
Structures

Span Programs and Non-Monotone Access Structures
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Definition 5 (Span Programs [2]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) where M is a (ℓ×r) matrix
over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , ℓ} → {p1, . . . , pn,¬p1,
. . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of
those rows whose labels are set to 1 by the input δ, i.e., either rows labeled by
some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e.,
γ : {1, . . . , ℓ} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if 1⃗ ∈ span⟨Mδ⟩, i.e., some linear
combination of the rows of Mδ gives the all one vector 1⃗. (The row vector has
the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the posi-
tive literals {p1, . . . , pn}. Monotone span programs compute monotone functions.
(So, a span program in general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , ℓ) of the matrix M is 0⃗. We now intro-
duce a non-monotone access structure with evaluating map γ that is employed
in the proposed attribute-based encryption schemes.

Definition 6 (Access Structures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a
sub-universe, a set of attributes, each of which is expressed by a pair of sub-
universe id and value of attribute, i.e., (t, v), where t ∈ {1, . . . , d} and v ∈ Fq.

We now define such an attribute to be a variable p of a span program M̂ :=
(M,ρ), i.e., p := (t, v). An access structure S is span program M̂ := (M,ρ)
along with variables p := (t, v), p′ := (t′, v′), . . ., i.e., S := (M,ρ) such that
ρ : {1, . . . , ℓ} → {(t, v), (t′, v′), . . . ,¬(t, v),¬(t′, v′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}, where
1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}.

When Γ is given to access structure S, map γ : {1, . . . , ℓ} → {0, 1} for
span program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , ℓ, set γ(i) = 1 if
[ρ(i) = (t, vi)]∧[(t, xt) ∈ Γ ]∧[vi = xt] or [ρ(i) = ¬(t, vi)]∧[(t, xt) ∈ Γ ]∧[vi ̸= xt].
Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff 1⃗ ∈ span⟨(Mi)γ(i)=1⟩.

We now construct a secret-sharing scheme for a non-monotone access struc-
ture or span program.

Definition 7. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be ℓ × r matrix. Let column vector f⃗T := (f1, . . . , fr)T
U← F r

q . Then,
s0 := 1⃗ · f⃗T =

∑r
k=1 fk is the secret to be shared, and s⃗T := (s1, . . . , sℓ)T :=

M · f⃗T is the vector of ℓ shares of the secret s0 and the share si belongs to
ρ(i).
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2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts
Γ , i.e., 1⃗ ∈ span⟨(Mi)γ(i)=1⟩ with γ : {1, . . . , ℓ} → {0, 1}, then there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , ℓ} | γ(i) = 1} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time
polynomial in the size of matrix M .

Key-Policy Attribute-Based Encryption In key-policy attribute-based en-
cryption (KP-ABE), encryption (resp. a secret key) is associated with attributes
Γ (resp. access structure S). Relation R for KP-ABE is defined as R(S, Γ ) = 1
iff access structure S accepts Γ .

Definition 8 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup, KeyGen, Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ. It outputs public parameters pk and
master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, Γ := {(t, xt)|xt ∈ Fq, 1 ≤ t ≤ d}. It
outputs a ciphertext ctΓ .

Dec takes as input public parameters pk, secret key skS for access structure S,
and ciphertext ctΓ that was encrypted under a set of attributes Γ . It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all
(pk, sk) R← Setup(1λ), all access structures S, all secret keys skS

R← KeyGen(pk,

sk, S), all messages m, all attribute sets Γ , all ciphertexts ctΓ
R← Enc(pk, m, Γ ),

it holds that m = Dec(pk, skS, ctΓ ) if S accepts Γ . Otherwise, it holds with
negligible probability.

Definition 9. The model for defining the adaptively payload-hiding security of
KP-ABE under chosen plaintext attack is given by the following game:

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives
public parameters pk to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of
key queries, S, to the challenger. The challenger gives skS

R← KeyGen(pk, sk, S)
to the adversary.

Challenge The adversary submits two messages m(0),m(1) and a set of at-
tributes, Γ , provided that no S queried to the challenger in Phase 1 ac-
cepts Γ . The challenger flips a coin b

U← {0, 1}, and computes ct
(b)
Γ

R←
Enc(pk,m(b), Γ ). It gives ct

(b)
Γ to the adversary.

Phase 2 Phase 1 is repeated with the restriction that no queried S accepts chal-
lenge Γ .
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Guess The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the above game is defined as AdvKP-ABE,PH
A (λ) :=

Pr[A wins ]−1/2 for any security parameter λ. A KP-ABE scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the above game.

4 Proposed IPE Schemes

4.1 Type 1 IPE Scheme

Construction Idea for Our Type 1 and 2 IPE Schemes In the existing
constructions [11, 7, 12–15] of IPE on DPVS, around cn (c ≥ 1) dimensional
vector spaces are used for n-dimensional attribute and predicate vectors. Here,
the vectors are encoded in an n-dimensional subspace. Although this is a typ-
ical strategy of constructing IPE on DPVS, we cannot employ this idea in the
unbounded setting, where we can use only constant dimensional spaces. In our
construction, each component xt of x⃗ (resp. vt of v⃗) is encoded in a constant
dimensional space. In order to meet the decryption condition, we employ the
indexing technique and n-out-of-n secret sharing trick. For example, in Type 1
construction, 4-dimensional vector (µt(t,−1), δvt, st) is encoded in key k∗

t , and
(σt(1, t), ωxt, ω̃) is encoded in ciphertext ct. The first 2-dimension is used for
indexes, and st in the fourth component of k∗

t is for the secret sharing. Infor-
mally, a ciphertext can be decrypted if all n pieces of shares st are recovered. A
Type 2 IPE scheme can be constructed from our Type 1 scheme by setting the
secret-sharing mechanism in the ciphertext side instead of the secret key side.

Construction of Type 1 IPE

Setup(1λ) : (param, (B0, B∗
0), (B, B∗)) R← Gob(1λ, (N0 := 5, N := 15)),

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂∗ := (b∗

1, .., b
∗
4, b

∗
12, b

∗
13),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂∗).

KeyGen(pk, sk, v⃗ := {(t, vt) | t ∈ Iv⃗}) : st, δ, η0
U← Fq for t ∈ Iv⃗,

s0 :=
∑

(t,vt)∈v⃗ st, k∗
0 := ( −s0, 0, 1, η0, 0 )B∗

0
,

for t ∈ Iv⃗, µt, ηt,1, ηt,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
k∗

t := ( µt(t, −1), δvt, st 07, ηt,1, ηt,2, 02 )B∗ ,

return skv⃗ := (Iv⃗, k∗
0, {k∗

t }t∈Iv⃗
).

Enc(pk, m, x⃗ := {(t, xt) | t ∈ Ix⃗}) : ω, ω̃, ζ, φ0
U← Fq,

c0 := ( ω̃, 0, ζ, 0, φ0 )B0 , cT := gζ
T ,
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for t ∈ Ix⃗, σt, φt,1, φt,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ct := ( σt(1, t), ωxt, ω̃ 07, 02, φt,1, φt,2 )B,

return ctx⃗ := (Ix⃗, c0, {ct}t∈Ix⃗
, cT ).

Dec(pk, skv⃗ := (Iv⃗, k∗
0, {k∗

t }t∈Iv⃗
), ctx⃗ := (Ix⃗, c0, {ct}t∈Ix⃗

, cT )) :
if Iv⃗ ⊆ Ix⃗, K := e(c0, k

∗
0) ·

∏
t∈Iv⃗

e(ct, k
∗
t ), return m′ := cT /K,

else return ⊥.

[Correctness] If Iv⃗ ⊆ Ix⃗ and
∑

t∈Iv⃗
vtxt = 0, e(c0, k

∗
0) ·

∏
t∈Iv⃗

e(ct, k
∗
t ) =

g−eωs0+ζ
T ·

∏
t∈Iv⃗

gδωvtxt+eωst

T = g−eωs0+ζ
T ·g

δω(
P

t∈Iv⃗
vtxt)+eω(

P

t∈Iv⃗
st)

T = g−eωs0+ζ+eωs0
T

= gζ
T .

Theorem 1. The proposed Type 1 IPE scheme is adaptively fully-attribute-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 1 is given in the full version of this paper.

4.2 Type 0 IPE Scheme

Construction Idea for Our Type 0 IPE Scheme In Type 1 construction,
4-dimensional vector (µt(t,−1), δvt, st) is encoded in key k∗

t , and (σt(1, t), ωxt,
ω̃) is encoded in ciphertext ct. Here, secret-sharing system, st for t ∈ Iv⃗, in k∗

t are
used to assure one of the decryption conditions, Iv⃗ ⊆ Ix⃗. In Type 0 scheme, to
achieve its decryption condition Iv⃗ = Ix⃗ for v⃗ := (v1, . . . , vn), x⃗ := (x1, . . . , xn′)
i.e., that is equivalent to n = n′, we use the above mechanism also to ciphertext
side. Then, in our Type 0 scheme, we encode 5-dimensional (µt(t,−1), δvt, st, δ̃)
in the first part of k∗

t , and (σt(1, t), ωxt, ω̃, ft) in the first part of ct with random
µt, σt, ω, ω̃, δ, δ̃, st, ft

U← Fq.

Construction of Type 0 IPE

Setup(1λ) : (param, (B0, B∗
0), (B, B∗)) R← Gob(1λ, (N0 := 9, N := 21)),

B̂0 := (b0,1, b0,2, b0,5, b0,8, b0,9), B̂ := (b1, . . . , b5, b19, . . . , b21),

B̂∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,5, . . . , b

∗
0,7), B̂∗ := (b∗

1, . . . , b
∗
5, b

∗
16, . . . , b

∗
18),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂∗).

KeyGen(pk, sk, v⃗ := (v1, . . . , vn)) : st, δ, δ̃, η0,1, η0,2
U← Fq for t = 1, . . . , n,

s0 :=
∑n

t=1 st, k∗
0 := ( −s0, δ̃, 02, 1, η0,1, η0,2, 02 )B∗

0
,

for t = 1, . . . , n, µt, ηt,1, .., ηt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷ ︸︸ ︷ 3︷ ︸︸ ︷
k∗

t := ( µt(t, −1), δvt, st, δ̃, 010, ηt,1, .., ηt,3, 03 )B∗ ,

return skv⃗ := {k∗
t }t=0,...,n.
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Enc(pk, m, x⃗ := (x1, . . . , xn′)) : ft, ω, ω̃, ζ, φ0,1, φ0,2
U← Fq for t = 1, . . . , n′,

f0 :=
∑n′

t=1 ft, c0 := ( ω̃, −f0, 02, ζ, 02, φ0,1, φ0,2 )B0 , cT := gζ
T ,

for t = 1, . . . , n′, σt, φt,1, .., φt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷︸︸︷ 3︷ ︸︸ ︷
ct := ( σt(1, t), ωxt, ω̃, ft, 010, 03, φt,1, .., φt,3 )B,

return ctx⃗ := ({ct}t=0,...,n′ , cT ).
Dec(pk, skv⃗ := {k∗

t }t=0,...,n, ctx⃗ := ({ct}t=0,...,n′ , cT )) :
if n = n′, K :=

∏n
t=0 e(ct, k

∗
t ), return m′ := cT /K, else return ⊥.

Correctness of the scheme can be shown in a similar manner to that of our
Type 1 IPE scheme.

Theorem 2. The proposed Type 0 IPE scheme is adaptively fully-attribute-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 2 is given in the full version of this paper.

5 Proposed KP-ABE Scheme (Basic)

We define function ρ̃ : {1, .., ℓ} → {1, .., d} by ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) =
¬(t, v), where ρ is given in access structure S := (M,ρ). In the proposed scheme,
we assume that ρ̃ is injective for S := (M,ρ) in skS. For the modified scheme
without such a restriction, see the full version. Let d := poly(λ), where poly(·)
is a polynomial.

Setup(1λ) : (param, (B0, B∗
0), (B, B∗)) R← Gob(1λ, (N0 := 5, N := 14)),

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂∗ := (b∗

1, .., b
∗
4, b

∗
11, b

∗
12),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂∗).

KeyGen(pk, sk, S := (M,ρ)) : f⃗
U← F r

q , s0 := 1⃗ · f⃗T,

s⃗T := (s1, . . . , sℓ)T := M · f⃗T, η0
U← Fq, k∗

0 := (−s0, 0, 1, η0, 0)B∗
0
,

for i = 1, . . . , ℓ, µi, θi, ηi,1, ηi,2
U← Fq,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( µi(t, −1), si + θivi, −θi 06, ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( µi(t, −1), si(vi, −1), 06, ηi,1, ηi,2, 02 )B∗ ,

return skS := (S, {k∗
i }i=0,...,ℓ).
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Enc(pk, m, Γ := {(t, xt) | 1 ≤ t ≤ d}) : ω, ζ, φ0
U← Fq,

c0 := (ω, 0, ζ, 0, φ0)B0 , cd+1 := gζ
T m,

for (t, xt) ∈ Γ, σt, φt,1, φt,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ct := ( σt(1, t), ω(1, xt), 06, 02, φt,1, φt,2 )B,

return ctΓ := (Γ, c0, {ct}(t,xt)∈Γ , cd+1).
Dec(pk, skS := (S, {k∗

i }i=0,...,ℓ), ctΓ := (Γ, c0, {ct}(t,xt)∈Γ , cd+1)) :
If S := (M,ρ) accepts Γ := {(t, xt)}, then compute I and {αi}i∈I such that

1⃗ =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , ℓ} | [ρ(i) = (t, vi) ∧ (t, vi) ∈ Γ ]

∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi ̸= xt] },
K := e(c0, k

∗
0)

∏
i∈I ∧ ρ(i)=(t,vi)

e(ct,k
∗
i )αi

∏
i∈I ∧ ρ(i)=¬(t,vi)

e(ct,k
∗
i )αi/(vi−xt),

return m′ := cd+1/K, else return ⊥.

[Correctness] If S := (M,ρ) accepts Γ := {(t, xt)},
K = g−ωs0+ζ

T

∏
i∈I ∧ ρ(i)=(t,vi)

gωαisi

T

∏
i∈I ∧ ρ(i)=¬(t,vi)

g
ωαisi(vi−xt)/(vi−xt)
T =

g
ω(−s0+

P

i∈I αisi)+ζ

T = gζ
T .

Theorem 3. The proposed KP-ABE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 3 is given in the full version of this paper.
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