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Abstract. Among various cryptographic schemes, CBC-based MACs
belong to the few ones most widely used in practice. Such MACs iterate
a blockcipher EK in the so called Cipher-Block-Chaining way, i.e. Ci =
EK(Mi⊕Ci−1) , offering high efficiency in practical applications. In the
paper, we propose a new deterministic variant of CBC-based MACs that
is provably secure beyond the birthday bound. The new MAC 3kf9 is
obtained by combining f9 (3GPP-MAC) and EMAC sharing the same
internal structure, and so it is almost as efficient as the original CBC

MAC. 3kf9 offers O( l
3q3

22n
+ lq

2n
) PRF-security when its underlying n-bit

blockcipher is pseudorandom with three independent keys. This makes
it more secure than traditional CBC-based MACs, especially when they
are applied with lightweight blockciphers. Therefore, 3kf9 is expected to
be a possible candidate MAC in resource-restricted environments.
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1 Introduction

1.1 Background

Birthday Bound. In cryptography, birthday attack is a generic attack that
exploits no specific properties within cryptographic schemes, but just takes the
advantage of birthday paradox in probability theory. This paradox says, approx-
imately 2n/2 independently random n-bit points will collide with a probability
close-to-1, where 2n/2 is called the birthday bound [28, 20]. The birthday attack
itself is not fatal to the practical security of cryptographic schemes, because
people can choose long-enough security parameters to defend, e.g. by restricting
the output length of hash functions to be no shorter than 224 bits [3], or by pre-
venting attackers from getting sufficient number of input-output pairs, to make
this attack infeasible in recent years.

However, being constrained by some particular software/hardware environ-
ments, there still exist many actual applications using short security parameters.
For example, the 64-bit blockcipher KASUMI is currently a standard algorithm
in mobile communication systems [7]. With the rapid developments of Internet
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of Things, several lightweight primitives have been proposed in recent years, e.g.
present and PHOTON [11, 14]. These algorithms take small-size internal states
and output values, usually are much easier to be realized in software and require
smaller area in hardware, offering better performance than normal-size ones.
Unfortunately, their small sizes imply vulnerability when they are used with
traditional modes of operation, most of which are only secure within the birth-
day bound [19, 2]. To ensure practical security in such cases, those modes have
to be combined with stateful or random values, or to limit the lengths of their
input messages, or to update secret keys frequently, resulting in inconveniences
and security risks if misused.

MAC. Message Authentication Code is a widely-used cryptographic scheme for
data integrity protection and data origin authentication. Practical applications
usually require them to be not only secure (outputting unpredictable tags for
new messages) but also efficient. A common way to design a MAC algorithm is
to iterate a blockcipher E : KE×{0, 1}n → {0, 1}n in the Cipher-Block-Chaining
(CBC) manner. That is, in each step, a new chaining value Ci is obtained by
encrypting the XOR result of the current message block Mi and the previous
chaining value Ci−1, i.e. Ci = EK(Mi ⊕ Ci−1). The CBC structure is so com-
mon in the design of many cryptographic schemes that it has been considerably
studied for many years [8, 27, 9, 16, 24].

Up to now, many excellent CBC-based MACs have been proposed, e.g.
EMAC, XCBC, OMAC, CMAC and GCBC [27, 9, 16, 4, 24]. Besides, PMAC
takes a fully parallelizable construction and can offer extremely high speed in
parallel environments [10]. All of the above MAC algorithms are deterministic
(needing no stateful or random values), and provably secure when their underly-
ing blockcipher is assumed to be a pseudorandom permutation (PRP). However,
their security bounds all fall within the birthday bound, and can not be further
improved because there exist birthday attacks on them, i.e. the birthday bound
is tight for them [19, 2].

There are also a few CBC-based MACs with provable security beyond the
birthday bound. For example, RMAC replaces the second key in EMAC by
XORing its first key and a random value [18, 2], and MAC-R1 and MAC-R2 inject
n-bit randomness into the internal states of CBC-based MACs [23]. Obviously,
their high security relies on not only the PRP security of blockciphers but also
the randomness of the injected values.

In fact, all the deterministic blockcipher-based MACs fall within the birthday
bound until Yasuda shows algorithm 6 in the ISO standard is an exception,
conditioned on some restrictions on messages [1, 30]. In the same paper, Yasuda
also introduces SUM-ECBC to reduce the key size in algorithm 6, by XORing
the results from two CBC-based MACs, providing half of the efficiency that
normal CBC-based MACs offer in serial implementations (rate 2 3). On the other
hand, Dodis and Steinberger build a MAC from unpredictable blockciphers, with

3 For each message of l blocks long, it has to call the underlying blockcipher roughly
2l times



3kf9: Enhancing 3GPP-MAC beyond the Birthday Bound 3

security beyond the birthday bound, but pay by very high efficiency cost [12].
Very recently, Yasuda proposes PMAC Plus that improves PMAC beyond the
birthday bound [31]. By pre-calculating sufficiently large number (as many as
the number of message blocks) of masks, this MAC would provide high efficiency
due to the fully parallelizable structure in PMAC and rate-1 design.

3GPP-MAC. To promote the global system for mobile communications, the
3rd Generation Partnership Project (3GPP) proposes f9 as its first MAC algo-
rithm, which is based on blockcipher KASUMI and produces 32-bit tags [6]. f9
inherits the structure of original CBC MAC, but in the end encrypts the sum
of all chaining values, other than the last chaining value, to obtain the tag. The
analysis for f9 tends to be tough due to this particular feature [17]. Knudsen
and Mitchell are the first to give birthday attacks on f9, which need 2(n+1)/2

known (Message, MAC) pairs and 2n/2+1 chosen (Message, MAC) pairs to make
a forgery against f9 without truncations [20]. Then, Iwata and Kohno proved
that when KASUMI is secure against a special kind of related-key attacks (RK-
PRP), a generalized version of f9 (named with f9′) is PRF-secure within the
birthday bound [15]. This implies the previous birthday attack is the best one
without knowledge of internal information.

Despite the fact that the birthday attacks on MACs need on-line invocations,
making it much more harder than those on hash functions (needing only off-
line computations), people still take several countermeasures for large enough
security margin. For example, in the practical applications of f9, it has been
demanded that each message should be prepended with a fresh value, the length
of messages should be no longer than 20000 bits, the secret key should be changed
after each invocation, and the outputs should be truncated [5, 6].

1.2 Our Work

In this paper, we attempt to design a rate-1 CBC-based MAC with provable
security beyond the birthday bound. A direct application of such a scheme is to
enforce the security level of current CBC-based MACs, especially in the situa-
tions where small-size (lightweight) blockciphers are used, e.g. 3GPP and smart
cards. Another application is to make it serve as a highly-secure pseudoran-
dom number generator for various protocols, which therefore would improve the
security level of the latter.

To do this, stateful or random values (e.g. counter, fresh) can help, but
we would not consider them for practical convenience. Another possible way is
to enlarge the size of internal states but still output normal-size tags. As for
CBC-based MACs, however, their internal states have the same size as their
underlying blockcipher, so one may want to use a large-size blockcipher in CBC-
based MACs and truncate their outputs. Unfortunately, the efficiency of such a
solution will not be satisfying, because a large-size blockcipher usually runs no
faster than a small-size one, not to mention many other costs, e.g. memory and
area requirements.
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Our starting point is f9, in favor of its double-blocksize internal states pro-
viding a possible chance to resist the birthday attacks. Inspired by the design of
SUM-ECBC and PMAC Plus, we append one more blockcipher invocation to the
end of the f9 structure, as illustrated in Fig. 1. The resulting MAC is named
with 3kf9, for it enhances f9 and needs three independent keys. From another
point of view, it is also an extension of EMAC [27], ignoring EK3 and the last
XOR operation.
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Fig. 1. Illustration of 3kf9

When authenticating messages, 3kf9 can start to work without stateful val-
ues or message length information (on-line), requires no pre-computation and
only two block-size memory for internal states, besides those for its underlying
blockcipher. Specially, it needs no multiplications, comparing with PMAC Plus.
Therefore, 3kf9 will provide high efficiency in serial implementations.

A more detailed comparison with related MACs is given in Table 1.

Table 1. Comparison among 3kf9 and its related deterministic MACs.

key size rate structure multi. upper bounds bBB. a Ref.

Alg. 6 in ISO std.b

SUM-ECBC
6k
4k

2 CBC none
O( l

4q3

22n
) or

restricted O( l
3q3

22n
)
conditional

[1]
[30]

PMAC Plus
3k 1

parallel 4l − 1
O( l

3q3

22n
+ lq

2n
) yes

[31]
3kf9 CBC none This Work

f9 k c

1 CBC none O( l
2q2

2n
) no

[15]
EMAC 2k [27]

a bBB stands for “beyond the Birthday Bound”.
b It has been removed from the latest version ISO/IEC 9797-1:2011.
c Its second key is obtained by K2 = K1 ⊕KM, where KM is a non-zero k-bit value.
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1.3 Organization.

The rest of this paper is organized as follows. Section 2 introduces necessary
symbols and 3kf9 specification. Section 3 gives our provable security analysis for
3kf9, including security definitions, the main result and its proof. The proof will
be completed in Section 4. In Section 5, we give some suggestions for practical
usages of 3kf9. Finally, we conclude this work in Section 6.

2 Symbols and Specification

{0, 1}n is the set of all n-bit strings and {0, 1}∗ is the set of all strings. For strings
a, b ∈ {0, 1}∗, a||b is a concatenation of a and b, and |a| is its length in bits. If
a, b have equal lengths then a ⊕ b is their bitwise XOR. Denote Perm(n) and
Rand(n, n) as the sets of all permutations and functions over {0, 1}n respectively.
Rand(∗, n) stands for the set of all functions whose range belongs to {0, 1}n. If
A is a set, then #A denotes the size of set A, and x

$←A means that x is chosen
from set A uniformly at random.

A message M can be alternatively seen as a bit string M ∈ {0, 1}∗. Then,
by M ← M ||10n−1−|M | mod n we mean we append a single bit “1” to the end
of M , followed by as many as n− 1− |M | mod n bit “0”s such that the length
of the padded string is a multiple of n. For any such string M (|M | = nL),
M1M2 · · ·ML ← Partition(M) means we break M into L successive n-bit
blocks such that M1||M2|| · · · ||ML = M .

MAC Algorithm 3kf9[E]

Input: K1,K2,K3
$←K, M ∈ {0, 1}∗

Output: T ∈ {0, 1}n

01. M ←M ||10n−1−|M| mod n

02. M1M2 · · ·ML ← Partition(M)
03. S ← 0n

04. Y0 ← 0n

05. for l← 1 to L do
06. Xl ← Yl−1 ⊕Ml

07. Yl ← EK1(Xl)
08. S ← S ⊕ Yl

09. end for
10. T ← EK2(YL)⊕ EK3(S)
11. return T

Fig. 2. Specification of 3kf9

For any message M ∈ {0, 1}∗, 3kf9 takes a blockcipher E : KE × {0, 1}n →
{0, 1}n as its underlying primitive, calling it iteratively as specified in Fig. 2 to
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deal with M , and finally outputs T ∈ {0, 1}n as a tag. If necessary, T can be
truncated to be of some particular length less than n.

3kf9 needs three keys K1, K2 and K3, each of which should be independently
selected from K = KE uniformly at random. We use 3kf9[EK1 , EK2 , EK3 ] to
stand for this MAC algorithm and we also write it as 3kf9[E] for short.

3 Security Proof

3.1 Security Definitions

W need to introduce PRP/PRF definitions here, which are frequently used in
the analysis of modes of operation for blockciphers [8, 27, 9, 16, 24].

These two definitions focus on the randomness of a keyed function fK , which
is selected from a function family f : Kf × {0, 1}∗ → {0, 1}n by selecting a
random key K. To measure its randomness, fK is compared with a random

function R
$←Rand(∗, n) (or a random permutation P

$←Perm(n) if f consists
of only permutations).

The comparison is done as, informally, allowing adversaries (without knowing
K) to query an oracle, which is either fK or R with equal probability. The oracle
will answer with the corresponding outputs. After some number of queries, the
adversaries are asked to tell what the oracle is. The precise definition is given byAdvprf

f (A) def= |Pr[K $←Kf : AfK(·) = 1]− Pr[R
$←Rand(∗, n) : AR(·) = 1]|,

Advprf
f (t, q, µ)

def
= max

A
{Advprf

f (A)},Advprp
f (A) def= |Pr[K $←Kf : AfK(·) = 1]− Pr[P

$←Perm(n) : AP (·) = 1]|,
Advprp

f (t, q, µ)
def
= max

A
{Advprp

f (A)},

and the maximum is over all adversaries taking time at most t, making oracle
queries at most q, whose total length is at most µ bits. If Advprf

f (t, q, µ) (or

Advprp
f (t, q, µ)) is sufficiently small, we say function family f is a pseudorandom

function (PRF) (or a pseudorandom permutation (PRP)).
It has been proved that a PRF is a secure MAC [8].

3.2 Main Results

Let 3kf9[P1, P2, P3] stand for 3kf9[EK1 , EK2 , EK3 ] when blockcipher E with three
independent keys are replaced by three independently random permutations P1,
P2 and P3, and we further write it as 3kf9[P ] for simplicity. Then, the following
theorem says that 3kf9[P ] is a PRF with an upper bound beyond the birthday
bound.

Theorem 1 (Main Theorem). For any computationally unbounded adversary
A, after querying the oracle q times, with each query no longer than lmax blocks,

its advantage to distinguish 3kf9[P ] from a random function R
$←Rand(∗, n) is

upper bounded by
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|Pr[A3kf9[P ] = 1]− Pr[AR = 1]| ≤ qlmax+q
2n−2 +

2q3l3max+q3l2max+2q3lmax+2q3

22n−1 .

We conclude this theorem by the “coefficient H technique” initially proposed
by Patarin [25, 26]. This method is a useful tool for proving pseudorandom
properties of blockcipher structures and modes of operation, and it has been
frequently used before [25, 13, 16, 24].

To simplify our proof, we also adopt the framework used in the proofs for
SUM-ECBC and PMAC Plus [30, 31], which separates the inputs to P2 and P3

into four cases. Taking advantage of some known results for CBC structure, f9
and sum of PRPs [9, 15, 22], the first three cases can be easily upper bounded.
For the last case, we prove it by Lemma 1 in the next section.

Proof. Since A is computationally unbounded, w.l.o.g. we assume A is a deter-
ministic algorithm, otherwise we can maximize A by running it over all pos-
sible cases and choose the most powerful one. Based on this, the i-th query
M i /∈ {M1,M2, · · · ,M i−1} A would make is fully determined by the previous
i− 1 input-output pairs (M1, T 1), (M2, T 2), · · · , (M i−1, T i−1). Then, if we fix

a q-tuple
−→
T = (T 1, T 2, · · · , T q), we know

- all A’s queries are uniquely determined,
- the number of queries q is uniquely determined, and
- the output of A (0 or 1) is uniquely determined.

Denote Tset1 = {(T 1, T 2, · · · , T q)} is the set that contains all q-tuple
−→
T =

(T 1, T 2, · · · , T q) such that A outputs 1, and N = #Tset1. Then we have

Evaluation for random function R.

Pr[AR = 1] =
∑

−→
T ∈Tset1

Pr[R(M i) = T i, i = 1, 2, · · · , q] = N
2qn .

Evaluation for 3kf9[P ].

Pr[A3kf9[P ] = 1]

=
∑

−→
T ∈Tset1

Pr[3kf9[P ](M i) = T i, i = 1, 2, · · · , q]

≥
∑

−→
T ∈Tset1

(Pr[3kf9[P ] outputs q random values]× (
1

2n
)q)

=
N

2qn
× Pr[3kf9[P ] outputs q random values]. (1)

Denote CBC[P1] as the internal structure of 3kf9[P ], i.e. (Q,S)← CBC[P1](M),
and 3kf9[P ](M) = P2(Q) ⊕ P3(S) = T , as in Fig. 1. In the following analy-
sis, we do step by step for each i = 1, 2, · · · , q. Suppose in the previous i − 1
queries, the i−1 outputs T 1, T 2, · · · , T i−1 are independently random values. Let
Domain[P2] = {Q1, Q2, · · · , Qi−1} and Domain[P3] = {S1, S2, · · · , Si−1}. Then,
for the i-th query M i, its corresponding (Qi, Si)← CBC[P1](M

i) will definitely
fall into one of the following four cases,
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Case A: Qi ∈ Domain[P2] and Si /∈ Domain[P3],

Case B: Qi /∈ Domain[P2] and Si ∈ Domain[P3],

Case C: Qi /∈ Domain[P2] and Si /∈ Domain[P3],

Case D: Qi ∈ Domain[P2] and Si ∈ Domain[P3].

For Case A, Black and Rogaway have shown that the probability for any two
messages to collide in CBC structure (with an independent ending blockcipher
invocation, e.g. EMAC, ECBC) is upper bounded by the birthday bound, i.e.

Pr[Qj = Qi] ≤ 4(lmax+1)2

2n (See Lemma 3 in [9]). In such a case, we still have
randomness for T i = P2(Q

i)⊕ P3(S
i) because Si /∈ Domain[P3] and we can do

lazy sampling P3(S
i). Since at this moment #Domain[P3] ≤ i−1, the advantage

to distinguish P3(S
i) from a random value r

$←{0, 1}n is no more than i−1
2n . Then,

the advantage to distinguish T i from r is upper bounded by
(
i−1
1

) 4(lmax+1)2

2n × i−1
2n .

For Case B, Iwata and Kohno have pointed out that the probability for
any two messages to collide in f9 (with an independent ending block cipher
invocation) is also upper bounded by the birthday bound, i.e. Pr[Sj = Si] ≤
(2lmax+2)2+22

2n+1 =
2l2max+4lmax+4

2n (See Lemma B.1 in [15], and note that we apply
σ ≤ 2lmax + 2 and q = 2 here). Then, by lazy sampling for P2(Q

i), we know the

advantage to distinguish T i from r is upper bounded by
(
i−1
1

) 2l2max+4lmax+4
2n × i−1

2n .

For Case C, Lucks has proved that the advantage to distinguish T i = P2(Q
i)⊕

P3(S
i) from r is upper bounded by (i−1)2

(2n−(i−1))2 ≤
4(i−1)2

22n (See the proof for The-

orem 5 in [22]).

As for Case D, we will show by Lemma 1 in the next section that Pr[∃i ∈
[1, q] : Case D occurs] ≤ qlmax+q

2n−2 +
q3l3max

22n−2 .

Denote [T i � r] as the event that T i is not an independently random value.
Then, based on the none occurrence of Case D, we get

Pr[T i � r]

= Pr[Case A]Pr[T i � r|Case A] + Pr[Case B]Pr[T i � r|Case B] +

Pr[Case C]Pr[T i � r|Case C]

≤
(
i− 1

1

)
4(lmax + 1)2

2n
× i− 1

2n
+

(
i− 1

1

)
2l2max + 4lmax + 4

2n
× i− 1

2n
+ 1× 4(i− 1)2

22n

=
(i− 1)2(3l2max + 5lmax + 6)

22n−1
.
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This allows us to have

Pr[3kf9[P ] doesn′t output q random values]

≤ Pr[Case D] +

q∑
i=1

Pr[T i � r]

≤ qlmax + q

2n−2
+

q3l3max

22n−2
+

q∑
i=1

(i− 1)2(3l2max + 5lmax + 6)

22n−1

≤ qlmax + q

2n−2
+

2q3l3max + q3l2max + 2q3lmax + 2q3

22n−1

= ϵ,

which implies Pr[A3kf9[P ] = 1] ≥ N
2qn × (1− ϵ) by applying it to inequality (1).

Comparison.

By the above analysis, we can get

Pr[AR = 1]− Pr[A3kf9[P ] = 1] ≤ N

2qn
− N

2qn
× (1− ϵ) ≤ N

2qn
× ϵ ≤ ϵ.

On the other side, if we define Tset0 and by similar analysis we can get

Pr[AR = 0]− Pr[A3kf9[P ] = 0] ≤ ϵ,

which implies (1 − Pr[AR = 1]) − (1 − Pr[A3kf9[P ] = 1]) ≤ ϵ. Thus we get
Pr[A3kf9[P ] = 1]− Pr[AR = 1] ≤ ϵ.

Finally, we conclude

|Pr[A3kf9[P ] = 1]− Pr[AR = 1]| ≤ qlmax + q

2n−2
+

2q3l3max + q3l2max + 2q3lmax + 2q3

22n−1
.

⊓⊔

Based on the main theorem, we can say that 3kf9[E] is a PRF if blockcipher
E is secure. More precisely, we have

Theorem 2. If blockcipher E : KE × {0, 1}n → {0, 1}n is a PRP, then 3kf9[E]
is a PRF for all adversaries, who make at most q queries, each of which is no
longer than lmax blocks. That is,

Advprf3kf9[E](t, q, µ) ≤
qlmax+q
2n−2 +

2q3l3max+q3l2max+2q3lmax+2q3

22n−1 + 3AdvprpE (t′, q′, µ′),

where t′ = t+O(t), q′ ≤ q(lmax + 1), and µ′ ≤ µ+ qn.
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4 Key Lemma

The none occurrence of Case D implies the q pairs (Qi, Si) (i = 1, 2, · · · , q) are
free. By “free”, we mean for each i ∈ [1, q], either Qi is unique in its corre-
sponding sequence Q1, Q2, · · · , Qq or Si is unique in its corresponding sequence
S1, S2, · · · , Sq. This property is closely related to the newly appeared Cover Free
notion [12], which says the q outputs (N i

1, N
i
2, · · · , N i

w) (1 ≤ i ≤ q) from a cover-
free function should satisfy the following property. For each i, there exists at least
one j ∈ [1, w] such that N i

j is unique in its own subsequence N1
j , N

2
j , · · · , N

q
j .

Unfortunately, the internal structure CBC[P1] can not satisfy the cover free prop-
erty, when its outputs are made public. However, if adversaries can not get its
internal states, CBC[P1] holds a similar property, as the following lemma says.

Lemma 1. If P1, P2 and P3 are independently random permutations from Perm(n),
then for all computationally unbounded adversaries, who querying 3kf9[P ] no
more than q times, with each query no longer than lmax blocks, the probability
for internal states (Qi, Si) (i = 1, 2, · · · , q) to satisfy Case D is upper bounded
by

Pr[∃i ∈ [1, q] : Case D occurs] ≤ qlmax+q
2n−2 +

q3l3max

22n−2 .

In the following proof, we will prove an even stronger result. That is, all
the pairs (Y i

l , S
i
l ) for l = 1, 2, · · · , Li and i = 1, 2, · · · , q are free with this

probability, excluding the trivial case that (Y i
l , S

i
l ) = (Y j

l , S
j
l ) with l ≤ d

for two different messages M i and M j , which after being padded are writ-
ten as M i

1||M i
2|| · · · ||M i

Li and M j
1 ||M

j
2 || · · · ||M

j
Lj and having common prefix

M i
1||M i

2|| · · · ||M i
d = M j

1 ||M
j
2 || · · · ||M

j
d for some d ≤ min{Li, Lj}. To do this,

we check the process detail of CBC[P1] in dealing with the querying messages
M1, M2, · · · , Mq step by step, and record every Y i

l and Si
l for l = 1, 2, · · · , Li

and i = 1, 2, · · · , q with two sets YRange and SRange. By lazy sampling for P1,
we upper bound the probability for the events Y i

l ∈ YRange and Si
l ∈ SRange

to occur at the same time, and in the end we sum up all these probabilities to
get the final result.

Proof. For any q pairwise distinct queries M1,M2, · · · ,Mq, we use a program
to show the process of CBC[P1] in dealing with them, as in Fig. 3. To better
analyze the target probability, we do lazy sampling for P1. Furthermore, we
denote three flags Zero, Cover and Bad. Zero is used to identify whether there
exists Y i

l = 0n, which may be easily used to undermine the freeness consistence
of (Y i

l , S
i
l ) for l = 1, 2, · · · , Li and i = 1, 2, · · · , q. Cover is used directly to

identify the freeness of (Y i
l , S

i
l ). Either [Zero = True] or [Cover = True] implies

[Bad = True], so Pr[∃i ∈ [1, q] : Case D occurs] = Pr[Bad = True] ≤ Pr[Zero =
True] + Pr[Cover = True].

Then, it is easy to get that Pr[Zero = True] ≤
∑q(lmax+1)

j=1
1

2n−(j−1) ≤
q(lmax+1)

2n−1 , because for the q messages whose length is no more than lmax + 1
blocks after being padded, we do no more than q(lmax+1) lazy sampling for P1,
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00. Domain[P1],Range[P1],YRange, SRange← ϕ; Zero, Cover, Bad← False;
for A’s i-th query M i ∈ {0, 1}∗, do
01. M i ←M i||10n−1−|Mi| mod n; M i

1M
i
2 · · ·M i

Li ← Partition(M i);
02. Si

0 ← 0n; Y i
0 ← 0n;

03. for l← 1 to Li do
04. Xi

l ← Y i
l−1 ⊕M i

l ;
05. if Xi

l ∈ Domain[P1] then Y i
l ← P1(X

i
l );

06. else Y i
l

$←{0, 1}n \ Range[P1];
07. if Y i

l = 0n then Zero← True; Bad← True; end if
08. Range[P1]← Range[P1] ∪ {Y i

l };
09. Domain[P1]← Domain[P1] ∪ {Xi

l };
10. end if
11. Si

l ← Si
l−1 ⊕ Y i

l ;
12. if Y i

l ∈ YRange and Si
l ∈ SRange and

13. @j < i s.t. M i
1||M i

2|| · · · ||M i
l = M j

1 ||M
j
2 || · · · ||M

j
l

14. then Cover← True; Bad← True;
15. else YRange← YRange ∪ {Y i

l }; SRange← SRange ∪ {Si
l};

16. end if
17. end for

Fig. 3. A program showing the process of CBC[P1]

and in the j-th sampling for a new output Y , Pr[Y = 0n] ≤ 1
2n−(j−1) . Here we

use q(lmax + 1) < 2n−1 to get the final bound.
To upper bound Pr[Cover = True] for all (Y i

l , S
i
l ), we will upper bound

the probability for each lazy sampling that may result in the occurrence of
[Y i

l ∈ YRange∧Si
l ∈ SRange] with l = 1, 2, · · · , Li and i = 1, 2, · · · , q, and then

sum up them. For better understanding the following analysis, we work on a
simple case first (see Fig. 4 for an illustration), and then generalize it step by
step.

. . .

. . . -Si
l−1⊕?

P1

Xi
l

Y i
l

?

-⊕?

M i
l

Si
l

�
�
�
�
�
��

-⊕?

P1

Xi
l+1

Y i
l+1

?

-⊕?

M i
l+1

Si
l+1

�
�
�
�
�
��

-⊕?

P1

Xi
l+2

Y i
l+2

?

-⊕?

M i
l+2

Si
l+2

�
�
�
�
�
��

-

- . . .

. . .

Fig. 4. An insight view on the internal structure of CBC[P1]
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4.1 The Most Common Case.

For a new inputXi
l /∈ Domain[P1], we will choose a value Y

i
l

$←{0, 1}n\Range[P1]
by lazy sampling. Since Y i

l is a new output, it is definite that (Y i
l , S

i
l ) is consistent

with the previous pairs for freeness. However, if it happens that Xi
l+1 = Y i

l ⊕
M i

l+1 ∈ Domain[P1], then event [Y i
l+1 ∈ YRange] would occur, and the freeness

consistence of pairs will rely only on the none occurrence of the event [Si
l+1 ∈

SRange]. Consider the following two subcases:

1. Xi
l+1 = Xi

l . This implies Y i
l+1 = Y i

l and Si
l+1 = Si

l−1, and thus undermining
the freeness consistence. The probability for this event to occur is no more
than Pr[Xi

l+1 = Xi
l ] = Pr[Y i

l = Xi
l ⊕M i

l+1] ≤ 1
2n−#Range[P1]

≤ 1
2n−1 , where

we assume #Range[P1] < 2n−1.
2. Xi

l+1 ∈ Domain[P1] \ {Xi
l }. This implies Y i

l ⊕M i
l+1 ∈ Domain[P1] \ {Xi

l },
and so Y i

l has no more than #Domain[P1] \ {Xi
l } choices. Choose any one

such choice and fix Y i
l , then Y i

l+1 = P1(X
i
l+1) = P1(Y

i
l ⊕M i

l+1) would be

fixed, so is Si
l+1 =

∑l+1
c=1 Y

i
c . On the other hand, the elements in SRange

are
∑d

c=1 Y
j
c (1 ≤ d ≤ Lj , 1 ≤ j ≤ i − 1) and

∑d
c=1 Y

i
c (1 ≤ d ≤ l).

Then, event [Si
l+1 ∈ SRange] implies no more than #SRange equations,

all of which can be written as linear combination of Y a
b equals to linear

combination of message blocks (i.e. M i
l+1 ⊕Ma

b+1 or 0n) with 0 ≤ b ≤ La,
1 ≤ a ≤ i − 1 or 0 ≤ b ≤ l − 1, a = i. Specially, note that Y i

l is not
included here because Xi

l+1 ∈ Domain[P1] \ {Xi
l } implies Y i

l can be written

as M i
l+1 ⊕Xi

l+1 = M i
l+1 ⊕ Y ⊕M , where Y and M appear in the previous

(Y, S) pairs and queries respectively (Y may be 0n if b = 0). Furthermore,
notice that we have upper bounded Pr[Y = 0n] by analyzing [Zero = True],
so we can assume all Y a

b (b ≥ 1) are non-zero values. Then, excluding the
trivial case that two different messages would collide in their common prefix
part, the possibility for each of these equations to hold is no more than
1/2n−1, because all Y a

b (b ≥ 1) are chosen by the previous lazy samplings,
from a space with roughly 2n − #Domain[P1] − #Range[P1] − 1 ≤ 2n−1

size. 2n − #Range[P1] is naturally understood, “1” is respect to 0n, and
“#Domain[P1]” is respect to the number of bad points that may result in
Y a
b ⊕Ma

b+1 ∈ Domain[P1]. So the linear combinations of Y a
b has at least 2n−1

possible values, and their real values are hidden in the internal structure
CBC[P1], not known by adversaries. So, in this subcase,

Pr[Y i
l+1 ∈ Range[P1] \ {Y i

l } ∧ Si
l+1 ∈ SRange]

= Pr[Xi
l+1 ∈ Domain[P1] \ {Xi

l } ∧ Si
l+1 ∈ SRange]

= Pr[Y i
l ⊕M i

l+1 ∈ Domain[P1] \ {Xi
l } ∧ Si

l+1 ∈ SRange] (2)

≤ Pr[Y i
l ⊕M i

l+1 ∈ Domain[P1] \ {Xi
l }]× Pr[Si

l+1 ∈ SRange] (3)

≤ #Domain[P1] \ {Xi
l }

2n −#Range[P1]
× #SRange

2n−1

≤ (#Domain[P1])
2

22n−2
,
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Where we apply #Range[P1] < 2n−1. Notice that P1[X
i
l ] = Y i

l

$←{0, 1}n \
Range[P1] is a new lazy sampling, and Si

l+1 ∈ SRange is only related with
previous lazy samplings (Xi

l+1 ∈ Domain[P1] \ {Xi
l } implying Y i

l = M i
l+1 ⊕

Y ⊕M can be calculated by the previous pairs and queries), so the probability
in (2) can be separated, thus we obtain inequality (3).

In this most common case, the probability for lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n\
Range[P1] to undermine the freeness consistence is at most 1

2n−1 +
(#Domain[P1])

2

22n−2 .

4.2 Generalized Case 1.

The above lazy sampling may further induce the occurrence of event [Xi
l+2 ∈

Domain[P1]], so the previous analysis is not complete, and here we generalize it
in this direction.

Suppose P1[X
i
l ] = Y i

l

$←{0, 1}n \Range[P1] induces series of occurrences, i.e.
[Xi

l+1 ∈ Domain[P1]], [X
i
l+2 ∈ Domain[P1]], · · · , [Xi

l+u−1 ∈ Domain[P1]], with
u ≤ Li − l + 1, let us consider the probability to undermine the freeness con-
sistence. First, we have Pr[Xi

l+1 = Xi
l ] ≤ 1

2n−1 as before. Then, conditioned
on Xi

l+1 ̸= Xi
l , those u − 1 events imply Y i

l ⊕ M i
l+1 ∈ Domain[P1] \ {Xi

l+1}
and Y i

l+a ⊕M i
l+a+1 ∈ Domain[P1] for 1 ≤ a ≤ u − 2, and so Y i

l has at most
#Domain[P1]\{Xi

l+1} choices. Choose any one such choice and fix Y i
l , then Si

l+a

(0 ≤ a ≤ u − 1) are also fixed. To keep freeness consistence, none of the events
[Sl+1+a ∈ SRange ∪ {Si

l , S
i
l+1, · · · , Si

l+a}] (0 ≤ a ≤ u − 2) should occur. These

events imply no more than (u−1)#SRange+ (u−1)(u−2)
2 equations, and each has

a probability of 1/2n−1 to occur, with similar reasons given in the most com-
mon case. So, here the probability for this lazy sampling to keep freeness consis-

tence is upper bounded by 1
2n−1 +

#Domain[P1]\{Xi
l+1}

2n−#Range[P1]
× (u−1)#SRange+

(u−1)(u−2)
2

2n−1 ≤∑u
a=1(

1
2n−1 +

(#Domain[P1]+a−1)2

22n−2 ). Notice that u is the number of invocations to

P1 related to lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1].

4.3 Generalized Case 2.

Since we assume adversaries can make any q pairwise distinct queries M1, M2,
· · · , Mq, it is possible that some queries share a common prefix. Here we gen-

eralize the probability for lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1] to
undermine the freeness consistence in this direction.

Without loss of generality, we assume M i, M i+1, · · · , M i+v−1 share a com-
mon prefix (This can be reached by sorting the queries), and M i

l is the last
block in their prefix. If Xi+b

l+1 = Y i+b
l ⊕M i+b

l+1 /∈ Domain[P1] for all b ∈ [0, v − 1],

then Y i+b
l+1 can keep freeness consistence. However, if ∃b ∈ [0, v − 1] s.t. Xi+b

l+1 =

Y i+b
l ⊕M i+b

l+1 = Xi+b
l = Xi

l , then the events [Y i+b
l+1 = Y i+b

l ] and [Si+b
l+1 = Si+b

l−1] will
occur, and thus undermine the freeness consistence. This probability is no more
than Pr[∃b ∈ [0, v − 1], Xi+b

l+1 = Xi+b
l ] ≤ v

2n−1 . Based on its none occurrence, we



14 Liting Zhang, Wenling Wu, Han Sui, and Peng Wang

focus on the probability of [∃b ∈ [0, v−1], Xi+b
l+1 ∈ Domain[P1]\{Xi

l }]. Note that

some particular choices of Y i
l may result in several [Xi+b

l+1 ∈ Domain[P1] \ {Xi
l }]

to occur at the same time, and the number of Y i
l that induces v′ such events is

no more than #Domain[P1]v/v
′. W.l.o.g. we assume Xi

l+1, X
i+1
l+1 , · · · , X

i+v′−1
l+1 ∈

Domain[P1] \ {Xi
l } for some v′ ∈ [1, v]. Choose any one such Y i

l and fix it,

then Y i
l+1, Y

i+1
l+1 , · · · , Y

i+v′−1
l+1 would be fixed, so are Si

l+1, S
i+1
l+1 , · · · , S

i+v′−1
l+1 . The

events [Si+j
l+1 ∈ SRange ∪ {Si

l+1, S
i+1
l+1 , · · · , S

i+j−1
l+1 }] (0 ≤ j ≤ v′ − 1) imply

no more than v′#SRange + v′(v′−1)
2 equations, with probability 1/2n−1 to oc-

cur each. Then it is not hard to get the probability to keep freeness consis-

tence in this case is no more than v
2n−1 + #Domain[P1]v/v

′

2n−#Range[P1]
× v′#SRange+

v′(v′−1)
2

2n−1 ≤∑v
b=1(

1
2n−1 + (#Domain[P1]+b−1)2

22n−2 ). Notice that v is the number of invocations to

P1 related to lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1].

4.4 The Most General Case.

Based on the above, we generalize the most common case in two directions, as
in Generalized case 1 and 2.

The analysis here is the same as that in Generalized case 2, until Y i
l is fixed.

and w.l.o.g. we assume Xi
l+1, X

i+1
l+1 , · · · , X

i+v′−1
l+1 ∈ Domain[P1] \ {Xi

l } for some
v′ ∈ [1, v] occurs. Then we take Generalized case 1 into account.

Suppose for Xi+b
l+1 (0 ≤ b ≤ v′ − 1), its following calls to P1 Xi+b

l+2 , X
i+b
l+3 , · · · ,

Xi+b
l+u[b]−1 ∈ Domain[P1], with u[b] ≤ Li+b− l+1. Then Si+b

l , Si+b
l+1 , · · · , S

i+b
l+u[b]−1

can be fixed by Y i
l . The events [Si+b

l+a+1 ∈ SRange∪{Si+b
l , Si+b

l+1 , · · · , S
i+b
l+a}] with

0 ≤ a ≤ u[b]−2 and 0 ≤ b ≤ v′−1 imply no more than
∑s

w=1(#SRange+w−1)

equations (s =
∑v′−1

b=0 u[b]), with probability 1/2n−1 to occur each. Then we can

get the probability for lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n\Range[P1] to under-

mine the freeness consistence is at most v
2n−1+

#Domain[P1]v/v
′

2n−#Range[P1]
×

∑s
w=1(#SRange+w−1)

2n−1 ≤∑s
w=1(

1
2n−1 + (#Domain[P1]+w−1)2

22n−2 ). Notice that s =
∑v′−1

b=0 u[b] is the number of

invocations to P1 related to lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1].

4.5 Summing Up.

From the most common case to the most general case, we have observed that for

every lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \Range[P1], its probability to under-

mine the freeness consistence is no more than
∑s

w=1(
1

2n−1 +
(#Domain[P1]+w−1)2

22n−2 ),
where s is the number of invocations to P1 related to this lazy sampling. Suppose
in dealing with M1,M2, · · · ,Mq, we do z times lazy sampling in total, and the
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invocations to P1 related to them are s1, s2, · · · , sz respectively. Thus,

Pr[Cover = True] ≤
z∑

j=1

Pr[Cover = True in lazy sampling j]

≤
z∑

j=1

sj∑
w=1

(
1

2n−1
+

(#Domain[P1] + w − 1)2

22n−2
)

≤ q(lmax + 1)

2n−1
+

q(lmax+1)∑
w=1

(w − 1)2

22n−2

≤ qlmax + q

2n−1
+

q3l3max

22n−2
,

where we apply
∑z

j=1 sj ≤ q(lmax +1) and note that #Domain[P1] is a variable
growing from 0 to some value no larger than q(lmax + 1), with lazy samplings.

At last, we get Pr[∃i ∈ [1, q] : Case D occurs] = Pr[Bad = True] ≤ Pr[Zero =

True] + Pr[Cover = True] ≤ q(lmax+1)
2n−1 + qlmax+q

2n−1 +
q3l3max

22n−2 = qlmax+q
2n−2 +

q3l3max

22n−2 . ⊓⊔

5 Some Suggestions

The key size in 3kf9 is three times of that for its underlying blockcipher, and this
may be too large to be stored securely in some resource-restricted environments.
For such cases, we give the following solutions:

1. Derive a master key K
$←− {0, 1}k, and generate Ki = EK(Csti) (i = 1, 2, 3)

with three different constants Csti. Then we need only to store the master
key K securely. The security of the resulting scheme is still guaranteed by
the PRP assumption on blockcipher E.

2. DeriveK1
$←− {0, 1}k, and generateKi = K1⊕Csti for i = 2, 3, with two non-

zero constants Cst2,Cst3. Then we need only to store K1 securely. However,
this solution requires blockcipher E should be a RK-PRP (pseudorandom
against a kind of related-key attacks) [15].
We warn that generating K2 = EK1(Cst2) and K3 = EK1(Cst3) may result
in security flaws in 3kf9, because EK(K⊕·) may not reach pseudorandomness
given E is a PRP [29].

3. Adopt a beyond-birthday-bound tweakable blockcipher TBC as the under-
lying primitive in 3kf9. Then, we can replace EK1 , EK2 and EK3 by TBCT1

K ,

TBCT2

K and TBCT3

K , where T1, T2, T3 are three public tweaks. Such a TBC
has recently been introduced by Landecker, Shrimpton and Terashima [21],
but the current TBC scheme still needs key size reducing.

Since CMAC has been widely used in practical applications [4], someone may
want to use CMACK1(·)⊕CMACK2(·) to get a highly secure MAC. We note that
the precise security of this proposal is still unclear [30], and it is rate-2, implying
more power consumption and lower efficiency in serial implementations.
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6 Conclusion

We propose a rate-1 CBC-based MAC 3kf9 with provable security beyond the
birthday bound in this paper. 3kf9 is efficient for its rate-1 design, and highly-

secure for its O( l
3q3

22n + lq
2n ) PRF bound. Moreover, 3kf9 is light in the sense

that it needs only XOR operations besides blockcipher invocations, and thus
it immediately turns into a lightweight MAC when equipped with a lightwight
blockcipher. However, its key size seems to be too large in some particular envi-
ronments, requiring further improvements therefore.

Acknowledgments. The authors would like to thank the anonymous referees
at both FSE 2012 and Asiacrypt 2012 and the attendees at ASK 2011 for their
valuable comments. Special thanks to Lei Wang for pointing out a flaw in an
earlier proof, to Tetsu Iwata for some technical comments, and to Yuefei Sui
for some editorial comments. Furthermore, this work is supported by the Na-
tional Natural Science Foundation of China (No. 61272476, 91118006, 60903219
and 61202422), and the National Grand Fundamental Research 973 Program of
China .

References

1. ISO/IEC 9797-1:1999. Information technology – Security Techniques – Message
Authentication Codes (MACs) – Part 1: Mechanisms Using a Block Cipher. Re-
vised by ISO/IEC 9797-1:2011.

2. Public Commnets. Available at: http://csrc.nist.gov/groups/ST/toolkit/

BCM/comments.html

3. Requirements for SHA-3 by NIST, Federal Register Vol. 72, No. 212. Available at:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

4. Special Publication 800-38B. Recommendation for Block Cipher Modes of Op-
eration: The CMAC Mode for Authentication. National Institute of Standards
and Technology. Available at: http://csrc.nist.gov/groups/ST/toolkit/BCM/
current_modes.html

5. TS 33.105. 3G Security: Cryptographic Algorithm Requirements. Available at:
http://www.3gpp.org/ftp/Specs/html-info/33-series.htm

6. TS 35.201. 3G Security: Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 1: f8 and f9 Specifications. Available at: http://www.3gpp.
org/ftp/Specs/html-info/35-series.htm

7. TS 35.202. 3G Security: Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: Kasumi Specification. Available at: http://www.3gpp.
org/ftp/Specs/html-info/35-series.htm

8. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 839, pp.
341–358. Springer (1994)

9. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-
Key Constructions. In: Bellare, M. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 1880, pp. 197–215. Springer (2000)



3kf9: Enhancing 3GPP-MAC beyond the Birthday Bound 17

10. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT. Lecture Notes in
Computer Science, vol. 2332, pp. 384–397. Springer (2002)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES. Lecture Notes in Computer Science,
vol. 4727, pp. 450–466. Springer (2007)

12. Dodis, Y., Steinberger, J.P.: Domain Extension for MACs Beyond the Birthday
Barrier. In: Paterson, K.G. (ed.) EUROCRYPT. Lecture Notes in Computer Sci-
ence, vol. 6632, pp. 323–342. Springer (2011)

13. Gilbert, H., Minier, M.: New Results on the Pseudorandomness of Some Blockci-
pher Constructions. In: Matsui, M. (ed.) FSE. Lecture Notes in Computer Science,
vol. 2355, pp. 248–266. Springer (2001)

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 6841, pp. 222–239. Springer (2011)

15. Iwata, T., Kohno, T.: New Security Proofs for the 3GPP Confidentiality and In-
tegrity Algorithms. In: Roy, B.K., Meier, W. (eds.) FSE. Lecture Notes in Com-
puter Science, vol. 3017, pp. 427–445. Springer (2004)

16. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE. Lecture Notes in Computer Science, vol. 2887, pp. 129–153. Springer (2003)

17. Iwata, T., Kurosawa, K.: On the Correctness of Security Proofs for the 3GPP
Confidentiality and Integrity Algorithms. In: Paterson, K.G. (ed.) IMA Int. Conf.
Lecture Notes in Computer Science, vol. 2898, pp. 306–318. Springer (2003)
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