
Differential Attacks Against Stream Cipher ZUC

Hongjun Wu, Tao Huang, Phuong Ha Nguyen, Huaxiong Wang, and San Ling

Division of Mathematical Sciences⋆,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

{wuhj,huangtao,ng007ha,hxwang,lingsan}@ntu.edu.sg

Abstract. Stream cipher ZUC is the core component in the 3GPP con-
fidentiality and integrity algorithms 128-EEA3 and 128-EIA3. In this
paper, we present the details of our differential attacks against ZUC 1.4.
The vulnerability in ZUC 1.4 is due to the non-injective property in the
initialization, which results in the difference in the initialization vector
being cancelled. In the first attack, difference is injected into the first
byte of the initialization vector, and one out of 215.4 random keys re-
sult in two identical keystreams after testing 213.3 IV pairs for each key.
The identical keystreams pose a serious threat to the use of ZUC 1.4 in
applications since it is similar to reusing a key in one-time pad. Once
identical keystreams are detected, the key can be recovered with aver-
age complexity 299.4. In the second attack, difference is injected into the
second byte of the initialization vector, and every key can result in two
identical keystreams with about 254 IVs. Once identical keystreams are
detected, the key can be recovered with complexity 267. We have pre-
sented a method to fix the flaw by updating the LFSR in an injective way
in the initialization. Our suggested method is used in the later versions
of ZUC. The latest ZUC 1.6 is secure against our attacks.

1 Introduction

Comparing to block ciphers, dedicated stream ciphers normally require less com-
putation for achieving the same security level. Stream ciphers are widely used
in applications. For example, RC4 [10] is used in SSL and WEP, and A5/1 [8] is
used in GSM (the Global System for Mobile Communications). But the use of
RC4 in WEP is insecure [7], and A5/1 is very weak [4]. ECRYPT (2004–2008)
has organised the eSTREAM competition, which stimulated the study on stream
ciphers, and a number of new stream ciphers were proposed [1–3, 5, 6, 9, 15].

The 3rd Generation Partnership Project (3GPP) was set up for making glob-
ally applicable 3G mobile phone system specifications based on the GSM speci-
fications. Stream cipher ZUC was designed by the Data Assurance and Commu-
nication Security Research Center of the Chinese Academy of Sciences. It is the

⋆ This research is supported by the National Research Foundation Singapore under
its Competitive Research Programme (CRP Award No. NRF-CRP2-2007-03) and
Nanyang Technological University NAP startup grant (M4080529.110).

2 H. Wu et al.

core component of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3
& 128-EIA3 which were proposed for inclusion in the “4G” mobile standard LTE
(Long Term Evolution). In July 2010, the ZUC 1.4 [11] was made public for
evaluation. We developed two key recovery attacks against ZUC 1.4 [16], and
our attacks directly led to the tweak of ZUC 1.4 into ZUC 1.5 [12] in Jan 2011.
(Note that it was reported independently in [14] that the non-injective initial-
ization of ZUC 1.4 may result in identical keystreams.) The latest version, ZUC
1.6 [13], was released in June 2011 (ZUC 1.6 and ZUC 1.5 have almost the same
specifications).

In this paper, we present the details of our differential attacks against ZUC
1.4. Our attacks against ZUC is similar to the differential attacks against Py,
Py6 and Pypy [17], in which different IVs result in identical keystreams. In the
first attack against ZUC 1.4, the difference is at the first byte of the IV, and
one in 215.4 keys results in identical keystreams after testing 213.3 IV pairs for
each key. Once identical keystreams are detected, the key can be recovered with
complexity 299.4. In the second attack against ZUC 1.4, the difference is at the
second byte of the IV, and identical keystreams can be obtained after testing
254 IVs. The key can be recovered with complexity 267.

This paper is organized as follows. The notations and the description of ZUC
1.4 are give in Sect. 2. The overview of the attack is is given in Sect. 3. In Section
4 and 5, we present the key recovery attack with difference at the first byte and
the second byte of IV, respectively. We suggest the tweak to fix the flaw in Sect.
6. Section 7 concludes the paper.

2 Preliminaries

2.1 The Notations

In this paper, we follow the notations used in the ZUC specifications [11].

+ The addition of two integers

⊕ The bit-wise exclusive-or operation of integers

� The modulo 232 addition

ab The product of integers a and b

a||b The concatenation of a and b

a <<< k The k-bit cyclic shift of a to the left

a >>> k The k-bit cyclic shift of a to the right

a >> k The k-bit right shift of integer a

aH The most significant 16 bits of integer a

aL The least significant 16 bits of integer a

(a1, a2, . . . , an) → (b1, b2, . . . , bn) It assigns the values of ai to bi in parallel

Differential Attacks Against Stream Cipher ZUC 3

0n The sequence of n bits 0

1n The sequence of n bits 1

ȳ The bitwise complement of y

An integer a can be written in different formats. For example,

a = 25 decimal representation

= 0x19 hexadecimal representation

= 000110012 binary representation

We number the least significant bit with 1 and use A[i] to denote the ith bit
of a A. And use B[i..j] to denote the bit i to bit j of B.

2.2 The general structure of ZUC 1.4

ZUC is a word-oriented stream cipher with 128-bit secret key and a 128-bit initial
vector. It consists of three main components: the linear feedback shift register
(LFSR), the bit-reorganization (BR) and a nonlinear function F . The general
structure of the algorithm is illustrated in Fig. 1.

Fig. 1. General structure of ZUC

Linear feedback shift register(LFSR). It consists of sixteen 31-bit registers
s0, s1, . . ., s15, and each register is an integer in the range {1, 2, . . . , 231 − 1}.
During the keystream generation stage, the LFSR is updated as follows:

LFSRUpdate():

4 H. Wu et al.

1. s16 = (215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0)mod(231 − 1);
2. If s16 = 0 then set s16 = 231 − 1;
3. (s1, s2, . . . , s15, s16) → (s0, s1, . . . , s14, s15).

Bit-reorganization function. It extracts 128 bits from the state of the LFSR
and forms four 32-bit words X0, X1 X2 and X3 as follows:

Bitreorganization():

1. X0 = s15H ||s14L;
2. X1 = s11L||s9H ;
3. X2 = s7L||s5H ;
4. X3 = s2L||s0H ;

Nonlinear function F . It contains two 32-bit memory words R1 and R2. The
description of F is given below. In function F , S is the Sbox layer and L1 and
L2 are linear transformations as defined in [11]. The output of function F is a
32-bit word W . The keystream word Z is given as Z = W ⊕X3 .

F (X0, X1, X2):

1. W = (X0 ⊕R1)�R2;
2. W1 = R1 �X1;
3. W2 = R2 ⊕X2;
4. R1 = S(L1(W1L||W2H));
5. R2 = S(L2(W2L||W1H));

2.3 The initialization of ZUC 1.4

The initialization of ZUC 1.4 consists of two steps: loading the key and IV into
the register, and running the cipher for 32 steps with the keystream word being
used to update the state.

Key and IV loading. Denote the 16 key bytes as ki (0 ≤ i ≤ 15), the 16
IV bytes as ivi (0 ≤ i ≤ 15). We load the key and IV into the register as:
si = (ki||di||ivi). The values of the constants di are given in [11]. The two
memory words R1 and R2 in function F are set as 0.

Running the cipher for 32 steps. At the initialization stage, the keystream
word Z is used to update the LFSR as follows:

LFSRWithInitialisationMode(u):

1. v = (215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0)mod(231 − 1);
2. If v = 0 then set v = 231 − 1;

Differential Attacks Against Stream Cipher ZUC 5

3. s16 = v ⊕ u;
4. If s16 = 0 then set s16 = 231 − 1;
5. (s1, s2, . . . , s15, s16) → (s0, s1, . . . , s14, s15).

The cipher runs for 32 steps at the initialization stage as follows:

InitializationStage():
for i = 0 to 31 {

1. Bitreorganization();
2. Z = F (X0, X1, X2)⊕X3 ;
3. LFSRWithInitialisationMode(Z >> 1) .

}

3 Overview of the Attacks

We notice that the LFSR in ZUC is defined over GF (231−1), with the element
0 being replaced with 231−1. To the best of our knowledge, it is the first time
that GF (231−1) is used in the design of stream cipher. In the initialization of
ZUC 1.4, we notice that XOR is involved in the update of LFSR (s16 = v ⊕ u).
When XOR is applied to the elements in GF (231−1) , we obtain the following
undesirable property:

Property 1. Suppose that a and a′ are two elements in GF (231−1), a ̸= a′,
and ā = a′. If b = a or b = ā, then a⊕ b mod (231−1) = a′⊕ b mod (231−1) = 0.

The above property shows that the difference between a and a′ can get elimi-
nated with an XOR operation! In the rest of this paper, we exploit this property
to attack ZUC 1.4 by eliminating the difference in the state.

In our attacks, we try to eliminate the difference in the state without the
difference in the state being injected into the nonlinear function F . The reason
is that if a difference is injected into F , then Sboxes would be involved, and the
difference would remain in F until additional difference being injected into F ,
thus the probability that the difference in the state being eliminated would get
significantly reduced.

We now investigate what are the IV differences that would result in the dif-
ference in the state being eliminated with high probability. The IV differences
are classified into the following three types:

Type 1. ∆ivi ̸= 0 for at least one value of i (7 ≤ i ≤ 15).
After loading this type of IVs into LFSR, the difference would appear at the
least significant byte of at least one of the LFSR elements s7, s8, · · · , s15. Note
that the least significant byte of s7 is part of X2 in the Bit-reorganization func-
tion since X2 = s7L||s5H , and X2 is an input to function F . Due to the shift

6 H. Wu et al.

of LFSR, the difference at the least significant byte of s7, s8, · · · , s15 would be
injected into F . Thus we would not use this type of IV difference in our attacks.

Type 2. ∆ivi = 0 for 7 ≤ i ≤ 15, ∆ivi ̸= 0 for at least one value of i (2 ≤ i ≤ 6).
After loading this type of IVs into LFSR, the difference would appear at the least
significant byte of at least one of the LFSR elements s2, s3, · · · , s6 . Note that
the least significant byte of s2 is part of X3 in the Bit-reorganization function
since X3 = s2L||s0H , X3 is XORed with the output of F to generate keystream
word Z, and Z is used to update the LFSR. Two steps later, the difference in iv2
would appear in the feedback function to update LFSR. It means that if there is
difference in iv2, the difference in s2 would be used to update the LFSR twice,
and the probability that the difference would be eliminated is very small. Due to
the shift of LFSR, the difference at s2, s3, · · · , s7 would be eliminated with very
small probability. Thus we did not use this type of IV difference in our attacks.

Type 3. ∆ivi = 0 for 2 ≤ i ≤ 15, ∆iv0 ̸= 0 or ∆iv1 ̸= 0.
The focus of our attacks is on this type of IV differences. In order to increase
the chance of success, we consider the difference at only one byte of the IV. We
discuss below how the difference in the state can be eliminated when there is
difference in s0 (the analysis for the difference in s1 is similar). At the first step
in the initialization,

s0 = (k0||d0||iv0) , (1)

v = 215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0 mod (231 − 1) , (2)

s16 = v ⊕ u . (3)

Suppose that the difference is only at iv0, and iv0 − iv′0 = ∆iv0 > 0. From (1)
and (2) we know that

v − v′ = (1 + 28)(iv0 − iv′0) mod (231 − 1)

= ∆iv0 ∥ ∆iv0 . (4)

If we need to eliminate the difference in s16, from Property 1 and (3), the fol-
lowing condition should be satisfied:

v ⊕ v′ = 131 (5)

u = v or u = v′ (6)

According to (5), v and v′ have XOR difference in the left-most 15 bits (i.e.v[17..31]
and v′[17..31]), while according to (4), the subtraction difference of those bits are
0. The only possible reason is that the 15 bits, v[17..31], are all affected by the
carries from the addition of ∆iv0 to v′. After testing all the one-byte differences,
we found that v must be in one of the following four forms (the values of v and

Differential Attacks Against Stream Cipher ZUC 7

v′ can be swapped):

v = 11111111111111112 ∥ y ∥ 12 ∥ y

or v = 01111111111111112 ∥ y ∥ 02 ∥ y

or v = 00000000000000002 ∥ ȳ ∥ 02 ∥ ȳ

or v = 10000000000000002 ∥ ȳ ∥ 12 ∥ ȳ

(y is a 7-bit integer.)

(7)

There are 510 possible values of v (v = 131 and v = 031 are excluded since
one of v and v̄ cannot be 0). All the (v, v′) pairs and their differences are given in
Table 1 in Appendix A. Notice that we ignored the order of v and v′ as they are
exchangeable. We have obtained all the possible values of v and u for generating
identical keystreams.

We highlight the following property in the table: the difference between v
and v′ uniquely determines the value of pair (v, v′) in the table. As a result, if
we know the difference of IVs that results in the collision of the state, we can
determine the value of (v, v′) immediately.

By eliminating the difference in the state as illustrated above, we developed
two attacks against ZUC 1.4. The first attack is to exploit the difference at iv0,
and the second attack is to exploit the difference at iv1. The details are given in
the following two sections.

4 Attack ZUC 1.4 with Difference at iv0

In this section, we present our first differential attack on the initialization by
using IV difference at iv0 and generating identical keystream. The keys that
generate the same keystream are called weak keys in this attack. We will show
that a weak key exists with probability 2−15.4, and a weak key can be detected
with about 213.3 chosen IVs. Once a weak key is detected, its effective key size
is reduced from 128 bits to around 100 bits.

4.1 The weak keys for ∆iv0

We will show that when there is difference at iv0, about one in 215.4 keys would
result in identical keystream. For a random key, we will check whether there
exists a pair of IVs such that (5), (6) and (7) can be satisfied.

We start with analyzing how keys and IVs are involved in the expression of
u and v in the first step of initialization. From the specifications of the initial-
ization, we have

u =Z >> 1 = (X0 ⊕X3) >> 1 = ((s15H ||s14L)⊕ (s2L||s0H)) >> 1

=((k15 ∥ iv2 ∥ k0 ∥ iv14)⊕ 0x6b8f9a89) >> 1
(8)

In (2) and (8), there are 5 bytes of key, {k0, k4, k10, k13, k15}, and 7 bytes of
IV, {iv0, iv2, iv4, iv10, iv13, iv14, iv15} being involved in the computation of u and

8 H. Wu et al.

v. The complexity would be very high if we directly try all possible combinations
of the keys and IVs. However, with analysis on the expressions of u and v, we
can reduce the search space from 296 to around 226.3.

Solve (5), (6), (7) and (8), we obtain the following four groups of solutions:

Group 1.

u = v = 11111111111111112 ∥ y ∥ 12 ∥ y

k15 = 0x94

iv2 = 0x70

k0 = 0x9a⊕ (y ∥ 12)

iv14 >> 1 = 0x44⊕ y

(9)

Group 2.

u = v = 01111111111111112 ∥ y ∥ 02 ∥ y

k15 = 0x14

iv2 = 0x70

k0 = 0x9a⊕ (y ∥ 02)

iv14 >> 1 = 0x44⊕ y

(10)

Group 3.

u = v = 00000000000000002 ∥ ȳ ∥ 02 ∥ ȳ

k15 = 0x6b

iv2 = 0x8f

k0 = 0x9a⊕ (ȳ ∥ 02)

iv14 >> 1 = 0xbb⊕ ȳ

(11)

Group 4.

u = v = 10000000000000002 ∥ ȳ ∥ 12 ∥ ȳ

k15 = 0xeb

iv2 = 0x8f

k0 = 0x9a⊕ (ȳ ∥ 12)

iv14 >> 1 = 0xbb⊕ ȳ

(12)

Furthermore, from (2) we compute v as follows (note that the property 2ksi
mod (231 − 1) = si <<< k):

v = (1 + 223)k0 + 27k15 + 29(k13 + 23k4 + 24k10) + (1 + 28)iv0

+ 215(iv15 + 22iv13 + 25iv4 + 26iv10) + 0x451bfe1b mod (231 − 1)
(13)

Let sum1 = k13 + 23k4 + 24k10, sum2 = iv15 + 22iv13 + 25iv4 + 26iv10. The
value of sum1 ranges from 0 to 6375, and the value of sum2 ranges from 0 to
25755. We developed Algorithm 1 to search for weak keys.

Differential Attacks Against Stream Cipher ZUC 9

Algorithm 1 Find weak keys for ∆iv0
for (k15, iv2) in each of the 4 groups of solutions (9), (10), (11), (12) do

for y = 0 to 127 do
determine iv14 >> 1 and k0
for sum1 = 0 to 6375 do

for iv0 = 0 to 255 do
keySum← 27k15 + (223 + 1)k0 + 29sum1 mod (231 − 1)
sum2 ← (u− keySum− (1 + 28)iv0 − 0x451bfe1b)/215 mod (231 − 1)
if sum2 is less than 25756 then

v = u; v′ = u⊕ 132;
if (v − v′) mod (231 − 1) is a multiple of 1 + 28 then

∆iv0 = (v − v′) mod (231 − 1)/(1 + 28);
iv′0 = iv0 −∆iv0;

else
∆iv0 = (v′ − v) mod (231 − 1)/(1 + 28);
iv′0 = iv0 +∆iv0;

end if
output u, k0, k15, sum1, iv0, iv

′
0, iv2, iv14 >> 1, sum2

end if
end for

end for
end for

end for

Each output from Algorithm 1 gives the value of (k15, k0, sum1, iv0, iv
′
0,

iv2, iv14, sum2) that results in identical keystreams. Running Algorithm 1, we
found 9934 = 213.28 different outputs. We note that on average, each sum1 from
the output of the algorithm represents 224/6376 = 211.36 possible choices of
(k4, k10, k13). Thus there are 2

13.3×211.4 = 224.7 weak values of (k0, k4, k10, k13, k15).
Hence, there are 224.7 weak keys out of 240 possible values of the 5 key bytes.
The probability that a random key is weak for IV difference at iv0 is 2−15.4. The
complexity of Algorithm 1 is 4× 128× 6376× 256 = 226.3.

Identical keystreams.We give below a weak key and an IV pair with difference
at iv0 that result in identical keystreams.

key = 87,4,95,13,161,32,199,61,20,147,56,84,126,205,165,148

IV = 166,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

IV ′ = 116,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

For both IV and IV ′, the identical keystreams are: 0xbfe800d5 0360a22b 6c4554c8
67f00672 2ce94f3f f94d12ba 11c382b3 cbaf4b31. . ..

4.2 Detecting weak keys for ∆iv0

We have shown above that a random key is weak with probability 2−15.4. In the
attack against ZUC, we will first detect a weak key, then recover it. To detect

10 H. Wu et al.

a weak key, our approach is to use the IV pairs generated from Algorithm 1 to
test whether identical keystreams are generated. Note that for a particular value
of sum2, we can always find a combination of (iv4, iv10, iv13, iv15} that satisfies
sum2 = iv15 + 22iv13 + 25iv4 + 26iv10. Thus a pair of IVs (iv0, iv2, iv4, iv10,
iv13, iv14, iv15) and (iv′0, iv2, iv4, iv10, iv13, iv14, iv15) can be determined by each
output of Algorithm 1. Using this result, we developed Algorithm 2 to detect
weak keys for ∆iv0.

Algorithm 2 Detecting weak keys for ∆iv0

1. Choose one of the 213.28 outputs of Algorithm 1.
2. Find the pair of IVs determined by this output (if ivj does not appear in the first

initialization step, set it as some fixed constant).
3. Use the IV pair to generate two key steams.
4. If the keystreams are identical, output the IVs and conclude the key is weak.
5. If all outputs of Algorithm 1 have been checked, and there are no identical

keystreams, we conclude that the key is not weak.

In Algorithm 2, we need to test at most 213.3 pairs of IVs to determine if a key
is weak for difference at iv0.

4.3 Recovering weak keys for ∆iv0

After detecting a weak key, we proceed to recover the weak key. Once a key is
detected as weak (as given from Algorithm 2), from the IV pair being used to
generate identical keystreams, we immediately know the value of k0, k15 and
sum1. Note that sum1 = (k13 + 23k4 + 24k10). In the best situations, the sum
is 0 or 25755, then we can uniquely determine k4, k10 and k13. In the worst
situation, there are 212 possible choices for k4, k10 and k13, and therefore, we
need 212 tests to determine the correct values for k4, k10 and k13. On average,
for each value of sum1, we need to test 211.4 combinations of (k4, k10, k13).

Since there are only five key bytes being recovered in our attack, the re-
maining 11 key bytes should be recovered with exhaustive search. Hence, the
complexity to recover all key bits is 288× 211.4 = 299.4. From the analysis above,
we also know that the best complexity is 288 and the worst complexity is 2100.

5 Attack ZUC 1.4 with Difference at iv1

In this section, we present the differential attack on ZUC 1.4 for IV difference at
iv1. Different from the attack in Section 4, we need to consider the computation
of u and v in the second step of the initialization. For this type of IV difference,
for every key, there are some IV pairs that result in identical keystreams since
more IV bytes are involved. Once we found such an IV pair, we can recover the
key with complexity around 267.

Differential Attacks Against Stream Cipher ZUC 11

5.1 Identical keystreams for ∆iv1

The computation of u and v in the second initialization step involves more key
and IV bytes. The v in the second initialization step is computed as:

v = (215s16 + 217s14 + 221s11 + 220s5 + (1 + 28)s1) mod (231 − 1),

s16 = ((215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0) mod (231 − 1))

⊕ (((k15 ∥ iv2 ∥ k0 ∥ iv14)⊕ 0x6b8f9a89) >> 1)

(14)

And u is given as:

u = (((X0 ⊕R1) +R2)⊕X3) >> 1

X0 = (s16H ||101011002||iv15)
X3 = (010111102||iv3||k1||010011012)
R1 = S(L1(s9H ||s7L)) = f1(iv7, k9)

R2 = S(L2(s5H ||s11L)) = f2(iv11, k5)

(15)

where f1 and f2 are some deterministic non-linear functions.

There are 10 IV bytes involved in the expression of v, i.e. (iv0, iv1, iv2, iv4,
iv5, iv10, iv11, iv13, iv14, iv15) and 8 IV bytes involved in the expression of
u, i.e. (iv0, iv3, iv4, iv7, iv10, iv11, iv13, iv15). In total, there are 12 IV bytes
being involved in the computation of u and v, and every bit of u and v can be
affected by IV. We conjecture that for every key, the conditions (5) and (6) can
be satisfied, and identical keystreams can be generated. To verify it, we tested
1000 random keys. Our experimental results show that there is always an IV
pair for each key that results in identical keystreams.

In the attack, a random key and a random iv pair with difference at iv1, the
probability that v and u satisfy the conditions (5) and (6) is 2−31 × 2−31 × 2 =
2−61. Choosing 28 ivs with difference at iv1, we have around 215 pairs. The iden-
tical keystream pair appears with probability 2−61+15 = 2−46 with 28 IVs. We
thus need about 246 × 28 = 254 IVs to obtain identical keystreams.

Identical keystreams. We give below a key and an IV pair with difference at
iv1 that result in identical keystreams. The algorithm being used to find the IV
pair is given in Appendix B. The algorithm is a bit complicated since a number
of optimization tricks are involved. The explanation of the optimization details
is omitted here since our focus is to develop a key recovery attack.

key = 123,149,193,87,42,150,117,4,209,101,85,57,46,117,49,243

IV = 92,80,241,10,0,217,47,224,48,203,0,45,204,0,0,17

IV ′ = 92,182,241,10,0,217,47,224,48,203,0,45,204,0,0,17

The identical keystreams are: 0xf09cc17d 41f12d3f 453ac0c3 cadcef9f f98fb964
ca6e576e b48b813 6c43da22

12 H. Wu et al.

5.2 Key recovery for ∆iv1

After identical keystreams are generated from an IV pair with difference at iv1,
we proceed to recover the secret key. From Table 1 in Appendix A, we know the
value of (v, v′) since we know the difference at iv1 of the chosen IV pair, and we
also know the value of u since u = v or u = v′. In the following, we illustrate a
key recovery attack after identical keystreams have been detected.

1. In the expression of u in (15), (k1, k5, k9, s16H) is involved. Note that there
are only two possible values of the 31-bit u. We try all the possible values
of (k1, k5, k9, s16H), then there would be 28×3+16 × 2−31 × 2 = 210 possible
values of (k1, k5, k9, s16H) that generate the two possible values of u. The
complexity of this step is 240.

2. Next we use the expression of s16 in (14). For each of the 210 possible values
of (k1, k5, k9, s16H), we try all the possible values of (k0, k4, k10, k13, k15)
and check whether the values of s16H is computed correctly or not. There
would be 28×5 × 2−16 = 224 possible values of (k0, k4, k10, k13, k15) left.
Considering that there are 210 possible values of (k1, k5, k9, s16H), about
210 × 224 = 234 possible values of (k0, k1, k4, k5, k9, k10, k13, k15, s16H)
remain. The complexity of this step is 28×5 × 210 = 250.

3. Then we use the expression of v in (14). For each of the 234 possible values
of (k0, k1, k4, k5, k9, k10, k13, k15, s16H), we try all the possible values of
(k11, k14) and check whether the value of v is correct or not. A random
value of (k11, k14) would pass the test with probability 28×2 × 2−31 = 2−15

Considering that there are 234 possible values of (k0, k1, k4, k5, k9, k10, k13,
k15, s16H), about 234 × 2−15 = 219 possible values of (k0, k1, k4, k5, k9, k10,
k11, k13, k14, k15) remain. The complexity of this step is 28×2 × 234 = 250.

4. For each of the 219 possible values of (k0, k1, k4, k5, k9, k10, k11, k13, k14,
k15), we recover the remaining 6 key bytes (k2,k3,k6,k7,k8,k12) by exhaustive
search. The complexity of this step is 219 × 28×6 = 267.

The overall computational complexity to recover a key is 240+250+250+267 ≈
267. And we need about 254 IVs in the attack. Note that the complexity in the
first, second and third steps can be significantly reduced with optimization since
we are dealing with simple functions. For example, meet-in-the-middle attack
can be used in the first step, and the sum of a few key bytes can be considered
in the second and third steps. However, the complexity of those three steps has
little effect on the overall complexity of the attack, so we do not present the
details of the optimization here.

6 Improving ZUC 1.4

From the analysis in Sect. 3, the weakness of the initialization comes from the
non-injective update of the LFSR. To fix the flaw, we proposed the tweak in
the rump session of Asiacrypt 2010. Instead of using the XOR operation, it is
better to use addition modulo operation over GF (231 − 1). More specifically,

Differential Attacks Against Stream Cipher ZUC 13

the operation s16 = v ⊕ u is changed to s16 = v + u mod (231 − 1). With this
tweak, the difference in v would always result in the difference in s16 if there
is no difference in u, and the attack against ZUC 1.4 can no longer be applied.
In the later versions ZUC 1.5 and 1.6 (ZUC 1.5 and 1.6 have almost the same
specifications), the computation of s16 is modified using our suggested method.

7 Conclusion

In this paper, we developed two chosen IV attacks against the initialization of
ZUC 1.4. In our attacks, identical keystreams are generated from different IVs,
then key recovery attacks are applied. Our attacks are independent of the number
of steps in initialization. The lesson from this paper is that when non-injective
functions are used in cipher design, we should pay special attention to ensure
that the difference cannot be eliminated with high probability.

References

1. S. Babbage and M. Dodd. The MICKEY stream ciphers. New Stream Cipher
Designs, pages 191–209, 2008.

2. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and Sibert H. Sosemanuk, a
fast software-oriented stream cipher. New Stream Cipher Designs, pages 98–118,
2008.

3. D. Bernstein. The Salsa20 family of stream ciphers. New Stream Cipher Designs,
pages 84–97, 2008.

4. A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis of A5/1 on a
PC. In Fast Software Encryption, pages 37–44. Springer, 2001.

5. M. Boesgaard, M. Vesterager, and E. Zenner. The Rabbit stream cipher. New
Stream Cipher Designs, pages 69–83, 2008.

6. C. De Canniere and B. Preneel. Trivium. New Stream Cipher Designs, pages
244–266, 2008.

7. S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm
of RC4. In Selected areas in cryptography, pages 1–24. Springer, 2001.

8. J.D. Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Advances in Cryp-
tology – Eurocrypt’97, pages 239–255. Springer, 1997.

9. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain family of stream
ciphers. New Stream Cipher Designs, pages 179–190, 2008.

10. R.L. Rivest. The RC4 Encryption Algorithm. RSA Data Security, Inc., March
1992.

11. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.4;
30th July 2010.

12. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.5;
4th January 2011.

13. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.6;
28th June 2011.

14 H. Wu et al.

14. B. Sun, X. Tang, and C. Li. Preliminary Cryptanalysis Results of ZUC. In First
International Workshop on ZUC Algorithm, volume 12, 2010.

15. H. Wu. The stream cipher HC-128. New Stream Cipher Designs, pages 39–47,
2008.

16. H. Wu, P.H. Nguyen, H. Wang, and S. Ling. Cryptanalysis of the Stream Cipher
ZUC in the 3GPP Confidentiality & Integrity Algorithms 128-EEA3 & 128-EIA3.
Rump Session of Asiacrypt 2010, 2008.

17. H. Wu and B. Preneel. Differential cryptanalysis of the stream ciphers py, py6 and
pypy. Advances in Cryptology-EUROCRYPT 2007, pages 276–290, 2007.

Differential Attacks Against Stream Cipher ZUC 15

A The List of Possible v and v′ for Collision

Table 1. The list of possible v, v′

Index v v′ ∆iv Index v v′ ∆iv Index v v′ ∆iv

1 0x3fff8000 0x40007fff 0xff 86 0x3fffd555 0x40002aaa 0x55 171 0x7fffaaaa 0x5555 0xaa

2 0x3fff8101 0x40007efe 0xfd 87 0x3fffd656 0x400029a9 0x53 172 0x7fffabab 0x5454 0xa8

3 0x3fff8202 0x40007dfd 0xfb 88 0x3fffd757 0x400028a8 0x51 173 0x7fffacac 0x5353 0xa6

4 0x3fff8303 0x40007cfc 0xf9 89 0x3fffd858 0x400027a7 0x4f 174 0x7fffadad 0x5252 0xa4

5 0x3fff8404 0x40007bfb 0xf7 90 0x3fffd959 0x400026a6 0x4d 175 0x7fffaeae 0x5151 0xa2

6 0x3fff8505 0x40007afa 0xf5 91 0x3fffda5a 0x400025a5 0x4b 176 0x7fffafaf 0x5050 0xa0

7 0x3fff8606 0x400079f9 0xf3 92 0x3fffdb5b 0x400024a4 0x49 177 0x7fffb0b0 0x4f4f 0x9e

8 0x3fff8707 0x400078f8 0xf1 93 0x3fffdc5c 0x400023a3 0x47 178 0x7fffb1b1 0x4e4e 0x9c

9 0x3fff8808 0x400077f7 0xef 94 0x3fffdd5d 0x400022a2 0x45 179 0x7fffb2b2 0x4d4d 0x9a

10 0x3fff8909 0x400076f6 0xed 95 0x3fffde5e 0x400021a1 0x43 180 0x7fffb3b3 0x4c4c 0x98

11 0x3fff8a0a 0x400075f5 0xeb 96 0x3fffdf5f 0x400020a0 0x41 181 0x7fffb4b4 0x4b4b 0x96

12 0x3fff8b0b 0x400074f4 0xe9 97 0x3fffe060 0x40001f9f 0x3f 182 0x7fffb5b5 0x4a4a 0x94

13 0x3fff8c0c 0x400073f3 0xe7 98 0x3fffe161 0x40001e9e 0x3d 183 0x7fffb6b6 0x4949 0x92

14 0x3fff8d0d 0x400072f2 0xe5 99 0x3fffe262 0x40001d9d 0x3b 184 0x7fffb7b7 0x4848 0x90

15 0x3fff8e0e 0x400071f1 0xe3 100 0x3fffe363 0x40001c9c 0x39 185 0x7fffb8b8 0x4747 0x8e

16 0x3fff8f0f 0x400070f0 0xe1 101 0x3fffe464 0x40001b9b 0x37 186 0x7fffb9b9 0x4646 0x8c

17 0x3fff9010 0x40006fef 0xdf 102 0x3fffe565 0x40001a9a 0x35 187 0x7fffbaba 0x4545 0x8a

18 0x3fff9111 0x40006eee 0xdd 103 0x3fffe666 0x40001999 0x33 188 0x7fffbbbb 0x4444 0x88

19 0x3fff9212 0x40006ded 0xdb 104 0x3fffe767 0x40001898 0x31 189 0x7fffbcbc 0x4343 0x86

20 0x3fff9313 0x40006cec 0xd9 105 0x3fffe868 0x40001797 0x2f 190 0x7fffbdbd 0x4242 0x84

21 0x3fff9414 0x40006beb 0xd7 106 0x3fffe969 0x40001696 0x2d 191 0x7fffbebe 0x4141 0x82

22 0x3fff9515 0x40006aea 0xd5 107 0x3fffea6a 0x40001595 0x2b 192 0x7fffbfbf 0x4040 0x80

23 0x3fff9616 0x400069e9 0xd3 108 0x3fffeb6b 0x40001494 0x29 193 0x7fffc0c0 0x3f3f 0x7e

24 0x3fff9717 0x400068e8 0xd1 109 0x3fffec6c 0x40001393 0x27 194 0x7fffc1c1 0x3e3e 0x7c

25 0x3fff9818 0x400067e7 0xcf 110 0x3fffed6d 0x40001292 0x25 195 0x7fffc2c2 0x3d3d 0x7a

26 0x3fff9919 0x400066e6 0xcd 111 0x3fffee6e 0x40001191 0x23 196 0x7fffc3c3 0x3c3c 0x78

27 0x3fff9a1a 0x400065e5 0xcb 112 0x3fffef6f 0x40001090 0x21 197 0x7fffc4c4 0x3b3b 0x76

28 0x3fff9b1b 0x400064e4 0xc9 113 0x3ffff070 0x40000f8f 0x1f 198 0x7fffc5c5 0x3a3a 0x74

29 0x3fff9c1c 0x400063e3 0xc7 114 0x3ffff171 0x40000e8e 0x1d 199 0x7fffc6c6 0x3939 0x72

30 0x3fff9d1d 0x400062e2 0xc5 115 0x3ffff272 0x40000d8d 0x1b 200 0x7fffc7c7 0x3838 0x70

31 0x3fff9e1e 0x400061e1 0xc3 116 0x3ffff373 0x40000c8c 0x19 201 0x7fffc8c8 0x3737 0x6e

32 0x3fff9f1f 0x400060e0 0xc1 117 0x3ffff474 0x40000b8b 0x17 202 0x7fffc9c9 0x3636 0x6c

33 0x3fffa020 0x40005fdf 0xbf 118 0x3ffff575 0x40000a8a 0x15 203 0x7fffcaca 0x3535 0x6a

34 0x3fffa121 0x40005ede 0xbd 119 0x3ffff676 0x40000989 0x13 204 0x7fffcbcb 0x3434 0x68

35 0x3fffa222 0x40005ddd 0xbb 120 0x3ffff777 0x40000888 0x11 205 0x7fffcccc 0x3333 0x66

36 0x3fffa323 0x40005cdc 0xb9 121 0x3ffff878 0x40000787 0xf 206 0x7fffcdcd 0x3232 0x64

37 0x3fffa424 0x40005bdb 0xb7 122 0x3ffff979 0x40000686 0xd 207 0x7fffcece 0x3131 0x62

38 0x3fffa525 0x40005ada 0xb5 123 0x3ffffa7a 0x40000585 0xb 208 0x7fffcfcf 0x3030 0x60

39 0x3fffa626 0x400059d9 0xb3 124 0x3ffffb7b 0x40000484 0x9 209 0x7fffd0d0 0x2f2f 0x5e

40 0x3fffa727 0x400058d8 0xb1 125 0x3ffffc7c 0x40000383 0x7 210 0x7fffd1d1 0x2e2e 0x5c

41 0x3fffa828 0x400057d7 0xaf 126 0x3ffffd7d 0x40000282 0x5 211 0x7fffd2d2 0x2d2d 0x5a

42 0x3fffa929 0x400056d6 0xad 127 0x3ffffe7e 0x40000181 0x3 212 0x7fffd3d3 0x2c2c 0x58

43 0x3fffaa2a 0x400055d5 0xab 128 0x3fffff7f 0x40000080 0x1 213 0x7fffd4d4 0x2b2b 0x56

44 0x3fffab2b 0x400054d4 0xa9 129 0x7fff8080 0x7f7f 0xfe 214 0x7fffd5d5 0x2a2a 0x54

45 0x3fffac2c 0x400053d3 0xa7 130 0x7fff8181 0x7e7e 0xfc 215 0x7fffd6d6 0x2929 0x52

46 0x3fffad2d 0x400052d2 0xa5 131 0x7fff8282 0x7d7d 0xfa 216 0x7fffd7d7 0x2828 0x50

47 0x3fffae2e 0x400051d1 0xa3 132 0x7fff8383 0x7c7c 0xf8 217 0x7fffd8d8 0x2727 0x4e

48 0x3fffaf2f 0x400050d0 0xa1 133 0x7fff8484 0x7b7b 0xf6 218 0x7fffd9d9 0x2626 0x4c

49 0x3fffb030 0x40004fcf 0x9f 134 0x7fff8585 0x7a7a 0xf4 219 0x7fffdada 0x2525 0x4a

50 0x3fffb131 0x40004ece 0x9d 135 0x7fff8686 0x7979 0xf2 220 0x7fffdbdb 0x2424 0x48

51 0x3fffb232 0x40004dcd 0x9b 136 0x7fff8787 0x7878 0xf0 221 0x7fffdcdc 0x2323 0x46

52 0x3fffb333 0x40004ccc 0x99 137 0x7fff8888 0x7777 0xee 222 0x7fffdddd 0x2222 0x44

53 0x3fffb434 0x40004bcb 0x97 138 0x7fff8989 0x7676 0xec 223 0x7fffdede 0x2121 0x42

54 0x3fffb535 0x40004aca 0x95 139 0x7fff8a8a 0x7575 0xea 224 0x7fffdfdf 0x2020 0x40

55 0x3fffb636 0x400049c9 0x93 140 0x7fff8b8b 0x7474 0xe8 225 0x7fffe0e0 0x1f1f 0x3e

56 0x3fffb737 0x400048c8 0x91 141 0x7fff8c8c 0x7373 0xe6 226 0x7fffe1e1 0x1e1e 0x3c

57 0x3fffb838 0x400047c7 0x8f 142 0x7fff8d8d 0x7272 0xe4 227 0x7fffe2e2 0x1d1d 0x3a

58 0x3fffb939 0x400046c6 0x8d 143 0x7fff8e8e 0x7171 0xe2 228 0x7fffe3e3 0x1c1c 0x38

59 0x3fffba3a 0x400045c5 0x8b 144 0x7fff8f8f 0x7070 0xe0 229 0x7fffe4e4 0x1b1b 0x36

60 0x3fffbb3b 0x400044c4 0x89 145 0x7fff9090 0x6f6f 0xde 230 0x7fffe5e5 0x1a1a 0x34

61 0x3fffbc3c 0x400043c3 0x87 146 0x7fff9191 0x6e6e 0xdc 231 0x7fffe6e6 0x1919 0x32

62 0x3fffbd3d 0x400042c2 0x85 147 0x7fff9292 0x6d6d 0xda 232 0x7fffe7e7 0x1818 0x30

63 0x3fffbe3e 0x400041c1 0x83 148 0x7fff9393 0x6c6c 0xd8 233 0x7fffe8e8 0x1717 0x2e

64 0x3fffbf3f 0x400040c0 0x81 149 0x7fff9494 0x6b6b 0xd6 234 0x7fffe9e9 0x1616 0x2c

65 0x3fffc040 0x40003fbf 0x7f 150 0x7fff9595 0x6a6a 0xd4 235 0x7fffeaea 0x1515 0x2a

66 0x3fffc141 0x40003ebe 0x7d 151 0x7fff9696 0x6969 0xd2 236 0x7fffebeb 0x1414 0x28

67 0x3fffc242 0x40003dbd 0x7b 152 0x7fff9797 0x6868 0xd0 237 0x7fffecec 0x1313 0x26

68 0x3fffc343 0x40003cbc 0x79 153 0x7fff9898 0x6767 0xce 238 0x7fffeded 0x1212 0x24

69 0x3fffc444 0x40003bbb 0x77 154 0x7fff9999 0x6666 0xcc 239 0x7fffeeee 0x1111 0x22

70 0x3fffc545 0x40003aba 0x75 155 0x7fff9a9a 0x6565 0xca 240 0x7fffefef 0x1010 0x20

71 0x3fffc646 0x400039b9 0x73 156 0x7fff9b9b 0x6464 0xc8 241 0x7ffff0f0 0xf0f 0x1e

72 0x3fffc747 0x400038b8 0x71 157 0x7fff9c9c 0x6363 0xc6 242 0x7ffff1f1 0xe0e 0x1c

73 0x3fffc848 0x400037b7 0x6f 158 0x7fff9d9d 0x6262 0xc4 243 0x7ffff2f2 0xd0d 0x1a

74 0x3fffc949 0x400036b6 0x6d 159 0x7fff9e9e 0x6161 0xc2 244 0x7ffff3f3 0xc0c 0x18

75 0x3fffca4a 0x400035b5 0x6b 160 0x7fff9f9f 0x6060 0xc0 245 0x7ffff4f4 0xb0b 0x16

76 0x3fffcb4b 0x400034b4 0x69 161 0x7fffa0a0 0x5f5f 0xbe 246 0x7ffff5f5 0xa0a 0x14

77 0x3fffcc4c 0x400033b3 0x67 162 0x7fffa1a1 0x5e5e 0xbc 247 0x7ffff6f6 0x909 0x12

78 0x3fffcd4d 0x400032b2 0x65 163 0x7fffa2a2 0x5d5d 0xba 248 0x7ffff7f7 0x808 0x10

79 0x3fffce4e 0x400031b1 0x63 164 0x7fffa3a3 0x5c5c 0xb8 249 0x7ffff8f8 0x707 0xe

80 0x3fffcf4f 0x400030b0 0x61 165 0x7fffa4a4 0x5b5b 0xb6 250 0x7ffff9f9 0x606 0xc

81 0x3fffd050 0x40002faf 0x5f 166 0x7fffa5a5 0x5a5a 0xb4 251 0x7ffffafa 0x505 0xa

82 0x3fffd151 0x40002eae 0x5d 167 0x7fffa6a6 0x5959 0xb2 252 0x7ffffbfb 0x404 0x8

83 0x3fffd252 0x40002dad 0x5b 168 0x7fffa7a7 0x5858 0xb0 253 0x7ffffcfc 0x303 0x6

84 0x3fffd353 0x40002cac 0x59 169 0x7fffa8a8 0x5757 0xae 254 0x7ffffdfd 0x202 0x4

85 0x3fffd454 0x40002bab 0x57 170 0x7fffa9a9 0x5656 0xac 255 0x7ffffefe 0x101 0x2

16 H. Wu et al.

B Generating Identical Keystreams for ∆iv1

Here we describe more details of an algorithm that is used to generate identical
keystreams for the IV difference at iv1:

1. Initialize iv0, iv1, . . . , iv15 with 0. Set iv13 = 64.
2. Denote (iv4 + 8iv13 + 16iv10) as sum1 and guess sum1 with 1 of the 6376

possible values.
3. Guess iv2[1, 2], and compute v, until the condition v[1..7]− (v >> 8)[1..7] ≤ 1

is satisfied. If not possible, go to (2) .
4. Guess iv7 and iv11, and compute u, until u[24..31] = 0xff is satisfied. We

store the intermediate state s16. If not possible, go to (3).
5. Guess iv15 and re-compute u, until u[1..7] = u[9..15] and u[8] = 0 are satis-

fied. If not possible, go to (4).
6. Now we compare the current s16 with stored s16 to capture the change. By

properly changing iv2 and iv13(this is the reason iv13 is initialized as 64), we
can always change the current s16 back to the saved value. Hence, u[24..31]
will remain.

7. Determine iv1 as follows:
– If v[8] ̸= v[16], then if u[1..16] < v[1..16] is satisfied, iv1 = 256+u[1..16]−

v[1..16] and update v, otherwise, go to (5).
– If v[8] = v[16], then if u[1..16] >= v[1..16] is satisfied, iv1 = u[1..16] −

v[1..16] and update v, otherwise, go to (5).
8. Guess iv0, iv5 and iv14, compute v, until v[16..31] = 0xffff. If not possible,

go to (5).
9. If (u⊕ v)[1] = 1, let iv2 = iv2 ⊕ 2. Choose iv3 properly to ensure u[16..23] =

0xff. Check if we indeed have v = u, then output iv0, iv1, . . . , iv15. Other-
wise, go to (8).

In this algorithm, we restrict the forms of v and u to those starting with
0x7fff to reduce the search space.

