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Abstract. Zero-correlation cryptanalysis uses linear approximations hold-
ing with probability exactly 1/2. In this paper, we reveal fundamen-
tal links of zero-correlation distinguishers to integral distinguishers and
multidimensional linear distinguishers. We show that an integral implies
zero-correlation linear approximations and that a zero-correlation linear
distinguisher is actually a special case of multidimensional linear dis-
tinguishers. These observations provide new insight into zero-correlation
cryptanalysis which is illustrated by attacking a Skipjack variant and
round-reduced CAST-256 without weak key assumptions.
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1 Introduction

1.1 Zero-correlation

Zero-correlation cryptanalysis [7, 8] is a novel promising attack technique for
block ciphers. The distinguishing property used in zero-correlation cryptanalysis
is the existence of zero-correlation linear approximations over (a part of) the
cipher. Those are linear approximations that hold true with a probability p
of exactly 1/2, that is, strictly unbiased approximations having a correlation
c = 2p− 1 equal to 0.

The original work [7] provides a simple and efficient technique to find zero-
correlation approximation but the distignuisher was rather weak. Recently, the
work [8] proposed a more powerful distinguisher was proposed by exploiting the
fact that zero-correlation approximations are numerous in susceptible ciphers.
Though working fine in practice and being useful in cryptanalysis, the distin-
guisher of [8] has some constraints that we would like to overcome: (1) If there
are ` zero-correlation linear approximations for an n-bit block cipher, the dis-
tinguisher of [8] has to make O(2n/

√
`) queries. So the data complexity does

not go down as fast as ` grows. (2) The distinguisher of [8] relies on the as-
sumption that all linear approximations with correlation zero are independent.
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In most cases, including the attacks of [8] in fact, this assumption is formally
not met, since all classes of zero-correlation approximations known so far are
actually truncated, building linear spaces of dimension log2 `. That is, almost
all ` approximations used will be linearly dependent, formally jeopardizing the
assumption and another theory is needed to support the zero-correlation.

1.2 Our contributions

Zero-correlation and integrals. Integral distinguishers were originally pro-
posed by Knudsen as a dedicated attack against the Rijndael-predecessor Square
[12]. Integral distinguishers [21] are also known as square distinguishers for this
reason, especially when applied to Square-type ciphers such as AES. Variants
of integral distinguishers include saturation [23] and multiset distinguishers [5].
Integral distinguishers mainly make use of the observation that it is possible
to fix some parts of the plaintext such that specific parts of the ciphertext are
balanced, i.e. each possible partial value occurs the exact same number of times
in the output.

In this paper, we demonstrate that an integral implies zero-correlation lin-
ear approximations, see Fig. 1. In the other direction, a zero-correlation distin-
guisher implies an integral distinguisher only if input and output linear masks
in zero-correlation approximations are independent of each other. Note that the
condition for the input and output masks to be detached from each other im-
plies that, for instance, the 5-round zero-correlation property of balanced Feistel
ciphers of [7] is not directly described by an integral.

In this sense, the fact the integrals imply zero-correlation distinguishers is
especially intriguing as not only the ways the distinguishers are constructed are
different but also the ways the resulting attacks work seem inherently different.
In particular, this link allows using ` input masks and one output mask with
correlation zero in a distinguisher with a data complexity of 2n/`. Thus, in these
settings the above outlined link allows to reduce the data complexity of zero-
correlation distinguishers by a factor of

√
` (at the price of transforming the

attack into a chosen-plaintext attack) compared to previous works.

Zero-correlation and multidimensional linear distinguishers. The basic
idea of multidimensional cryptanalysis [1, 4, 13, 15, 17, 18] is that, given corre-
lations of all linear approximations with non-zero correlation on a linear space
formed by some cipher data, the probability distribution of the cipher data can
be determined. Then, instead of the statistical behavior of a large set of mu-
tually dependent linear approximations, one can examine the data distribution.
Indeed, statistical behavior of multiple linear approximations has been analyzed
only under the assumption of statistical independence [4]. The main advantage
of the multidimensional approach is that it allows rigorous statistical analysis
of linear approximations without the independence assumption. In traditional
linear cryptanalysis, the focus is on linear approximations with correlations of
large magnitude. The larger are the magnitudes of correlations, the more non-
uniform is the distribution of the cipher data under consideration. The linear
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distinguisher is then based on distinguishing the nonuniform cipher data distri-
bution from an uniform distribution. For a more comprehensive recent survey
on multidimensional linear distinguishers, the reader is referred to e.g. [16].

In this paper, we consider linear spaces of cipher data where correlations of
all linear approximations are equal to zero. Our starting observation here is that
in fact, being truncated, zero-correlation approximations constitute a special case
of multidimensional linear approximations. However, unlike traditional multidi-
mensional linear distinguishers where the cipher data behaves non-uniformly,
the cipher data for zero-correlation is uniformly distributed. This requires the
development of a statistical theory to distinguish a sample of such cipher data
from a sample of random data drawn from an uniform distribution.

In contrast to [8], the new distinguisher does not need the assumption of
the statistical independence for multiple zero-correlation linear approximations.
While still requiring about O(2n/

√
`) cipher queries, it allows taking full advan-

tage of all zero-correlation linear approximations available, independent or not.
The distribution of the cipher data is accurately modeled as sampling from a
multivariate hypergeometric distribution, while the random data is drawn from
a multinomial distribution. This establishes an inherent link of zero-correlation
to multidimensional linear distinguishers. In their essence, zero-correlation dis-
tinguishers constitute a special case of multidimensional linear-correlation dis-
tinguishers, see Fig. 1. We expect this technique to be useful in the cryptanalysis
of many ciphers.

Fig. 1: Relations among distinguishers: zero-correlation, integral, statistical sat-
uration, and multidimensional linear

Applications: Attacks on Skipjack variant and CAST-256. To emphasize
the practical meaningfulness of our findings, we apply the new distinguishers to
mount key recovery attacks on block ciphers.

Skipjack is the only block cipher known to be designed by NSA. It is a 32-
round 4-line unbalanced Feistel-type network based on interleaving two types
of round functions – Rule A and Rule B. The best known cryptanalytic result
for Skipjack is the impossible differential cryptanalysis for 31 rounds given by
Biham et al. [2] based on a 24-round impossible differential. We change the
order of Rules A and B in Skipjack such that the longest impossible differential
identified is over 21 rounds and show that it has a 30-round zero-correlation
property. We can recover its key for 31 rounds with practical complexity using
an integral zero-correlation attack.
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CAST-256 was proposed as an AES candidate. It has 48 rounds. The best
cryptanalysis so far in the classical single-key model without the weak-key as-
sumption has been a linear attack on 24 rounds. We find 24-round zero-correlation
linear approximations for CAST-256 and attack 28 rounds of CAST-256 using
multidimensional zero-correlation cryptanalysis. At the same time, the longest
impossible differential we are aware of is over 18 rounds (though there is an un-
specified impossible differential for 20 rounds mentioned in the literature). Our
multidimensional zero-correlation attack is the first attack on more than half of
the full-round AES-candidate CAST-256 without the weak key assumption.

The remainder of the paper is organized as follows. In Section 2, we in-
troduce some basic concepts and notions which will be useful throughout the
paper. Section 3 establishes a strong link between the properties of integrals
and zero-correlation approximations. Using an integral zero-correlation distin-
guisher, Section 4 cryptanalyzes a Skipjack variant resistant to impossible dif-
ferential attack. Section 5 describes a link of zero-correlation approximations to
multidimensional linear approximations and introduces a novel zero-correlation
multidimensional linear distinguisher. Section 6 uses it to recover the key of 28
rounds of CAST-256. We conclude in Section 7.

2 Preliminaries

2.1 Linear approximations and balanced functions

F2 denotes the binary field of two elements and Fn2 is its extension of dimension
n. Let x and a ∈ Fn2 . Then 〈a, x〉 denotes their cannonical inner product on Fn2 .

Given a function H : Fn2 → Fk2 the correlation c of the linear approximation

〈b,H(x)〉+ 〈a, x〉

for a k-bit output mask b and an n-bit input mask a is defined by

Pr(〈b,H(x)〉+ 〈a, x〉 = 0) =
1 + c

2

where the probability is taken over all choices of inputs x. A related measure for
this correlation is the Walsh- or Fourier-transformation, defined as

Ĥ(a, b) =
∑
x

(−1)〈b,H(x)〉+〈a,x〉.

The fundamental relation between the Fourier transformation of H and the
correlation of the linear approximation is given by

c =
Ĥ(a, b)

2n

and, thus, studying the correlation and studying the Fourier transformation are,
up to scaling, equivalent.
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We say a function F : Fn2 → Fk2 is balanced if all preimages have identical
size, i.e. if the size of the set

F−1(y) := {x ∈ Fn2 | F (x) = y}

is independent of y. Note that F being balanced implies k ≤ n. We recall the
following well-known characterization of balanced functions, see for example [10,
Proposition 2]: A function F : Fn2 → Fk2 is balanced if and only if all its com-
ponent functions are balanced, that is, if and only if for any non-zero b ∈ Fk2 it

holds that F̂ (0, b) = 0.

2.2 Decomposition of the target cipher

Assume that H : Fn2 → Fn2 is a (part of) cipher. To simplify notation and without
loss of generality we split the inputs and outputs into two parts each.

H : Fr2×Fs2 → Ft2×Fu2 , H(x, y) =

(
H1(x, y)
H2(x, y)

)
Furthermore, the function Tλ defined by

Tλ : Fs2 → Ft2, Tλ(y) = H1(λ, y)

will play a key role. The function Tλ is the function H when the first r bits of its
input are fixed to λ and only the first t bits of the output are taken into account.

Table 1: Defining properties of some important distinguishers

Distinguisher Defining property

multidimensional linear
∑
a1,b1

Ĥ(a, b)2 non-random

statistical saturation ∀λ :
∑
b1
T̂λ(0, b1)2 non-random

integral ∀λ, b1 : T̂λ(0, b1) = 0

zero-correlation ∀a1, b1 : Ĥ(a, b) = 0

2.3 Distinguishers and relations

Here we briefly outline the concepts behind four types of relevant distinguishers
that we will be dealing with in this paper, which are also summarized in Table 1:
Zero-correlation distinguisher uses the property that, for all input and output
masks a = (a1, 0) and b = (b1, 0), the Fourier transformation of the cipher yields

zero, Ĥ(a, b) = 0. Integral distinguisher is based on the property that, for all
partial input fixations λ, the partial function of the cipher with this fixation
is balanced in parts of its output. Multidimensional linear distinguisher relies
upon the property that multiple Fourier coefficients of the cipher behave in a
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non-random way, i.e.
∑
a1,b1

Ĥ(a, b)2 is non-random. Statistical saturation dis-
tinguisher builds upon the property that, for all partial input fixations λ, the
partial function of the cipher with this fixation is non-random under Fourier
transformation, i.e.

∑
b1
T̂λ(0, b1)2 is non-random. While statistical saturation

and multidimensional linear distinguishers concentrate on the cumulative prop-
erties holding for the partial Fourier spectra, integral and zero-correlation dis-
tinguishers deal with a set of individual properties of Fourier coefficients.

3 Zero-correlation and integral distinguishers

3.1 Conditional equivalence result

We start by stating the main result of this section, which is summarized in the
following statement:

Proposition 1. If the input and output linear masks a and b are independent,
the approximation 〈b,H(x)〉+ 〈a, x〉 has correlation zero for any a = (a1, 0) and
any b = (b1, 0) 6= 0 (zero-correlation) if and only if the function Tλ is balanced
for any λ (integral).

This basically means that, at least in terms of their defining properties, integral
distinguishers imply zero-correlation distinguishers. The proof of Proposition 1
follows directly from the two lemmata below whose proofs are provided in the
full version of this paper [6]. The tools used in the proofs mainly originate from
results in the area of Boolean functions [22]. For instance, Lemma 2 is stated in
different notation e.g. in [11, Proposition 9]).

The main technical tool is the next lemma linking the correlation of Tλ to
the correlation of H.

Lemma 1. With the notation from above, the following holds for any λ, b1:

2sT̂λ(0, b1) =
∑
a1

(−1)〈a1,λ〉Ĥ((a1, 0), (b1, 0)) (1)

Lemma 1 already proves one direction of Proposition 1, namely, that zero-
correlation approximations imply an integral under the condition that b1 re-
mains the same with the change of a1. Lemma 1 is also especially useful for
defining an integral distinguisher that is based on zero-correlation properties:
Given a number of zero-correlation linear approximations (on the right-hand
side of (1)), one checks if the corresponding partial function of the cipher is bal-
anced (the left-hand side of (1)). This can be done for each partial input fixation
λ separately.

The following direct corollary of Lemma 1 is even more telling and is the key
in exhibiting the close link between zero-correlation distinguishers and integral
distinguishers:

Lemma 2. The following holds for any b1:

2s
∑
λ

T̂λ(0, b1)2 =
∑
a1

Ĥ1((a1, 0), b1)2
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This lemma proves both directions of Proposition 1, including the fact that an
integral implies zero-correlation distinguishers. In the sequel, we provide a more
detailed description of the link and an example.

3.2 From zero-correlation to integral distinguishers (conditional)...

First, assume that H : Fn2 → Fn2 is a (part of) cipher vulnerable to zero-
correlation attacks. More precisely, assume that for any a = (a1, 0) and any
b = (b1, 0) 6= 0 the relation 〈b,H(x)〉 + 〈a, x〉 has correlation zero. We’d like
to highlight two points here. The restriction to masks of the form a = (a1, 0)
and b = (b1, 0), that is, to the masks where the last bits are fixed to zero, is
solely for the simplicity of notations. However, the zero-correlation distinguish-
ers considered here are of a special case: We assume not only that the used input
and output masks form subspaces but also that this space of input and output
masks is actually the direct product of the space of input masks and the space of
output masks. Informally, the masks must not be coupled as they are for exam-
ple in the attack on CAST-256 described in Section 6. We call such uncoupled
input-output masks, for our equivalence result applies, detached masks.

Under those conditions, it follows from Lemma 2 above that T̂λ(0, b1) equals
zero for all b1 6= 0 and all λ. This yields that, for any λ the function Tλ mapping
s bits to t bits is balanced. In other words, H exhibits the following integral
distinguisher: Fixing the first s bits of H arbitrarily and encrypting all remaining
2r possible plaintext, each possible t bits string occurs equally often in the first
t bits of the output of H. In the particular case of s = t, the function Tλ is a
permutation and, thus, each possible t-bit string should occur exactly once.

3.3 ...And back again (unconditional)

On the other hand, let us consider the case of a cipher that is vulnerable to an in-
tegral distinguisher in the following sense. Assume that, by fixing some (without
loss of generality, the first s) bits in the input and encrypting all possible remain-
ing plaintexts, one can identify a subset of t bits (again without loss of generality,
the first t bits), each possible t-bit string occurs equally often. Then H is also

vulnerable to a zero-correlation attack. More precisely, Ĥ((a1, 0), (b1, 0)) = 0 for
all a1 ∈ Fs2 and b1 ∈ Ft2. Again, this follows directly from Lemma 2. In fact, an
integral unconditionally implies zero-correlation.

3.4 Discussion of the link

As pointed out, this relation is intriguing as zero-correlation distinguishers and
integral distinguishers are constructed quite differently. Moreover, not only the
ways the distinguishers are constructed are different but also the ways the re-
sulting attacks work seem inherently different.

The first difference is that zero-correlation attacks are usually known plain-
text attacks (or using known distinct plaintexts, while integral attacks are usu-
ally chosen plaintext attacks. Moreover, for zero-correlation attacks, appending
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rounds before the distinguisher normally does not increase the data complexity.
On the other hand, appending rounds before an integral distinguisher often re-
sults in an increased data complexity as, for each (partial) key guess, one has
to ensure that some values are fixed according to the distinguisher. Finally, in-
tegral distinguishers have the advantage that it is often possible to extend the
distinguisher by relaxing the balanced property to a zero-sum property (or equiv-
alently to the fact that a certain subfunction does not have maximal algebraic
degree). For zero correlation attacks, such an extension is not known so far.

Thus, besides being interesting from a theoretical perspective, the above
mentioned link clearly calls for further work on combining the specific advantages
offered by both attacks.

Before discussing an application of this relation to mount an integral attack
on a variant of Skipjack, we’d like to illustrate the above with AES as an example.

3.5 Example with AES

Fig.2 depicts the well-known 3-round integral distinguisher for AES. Starting
with one active byte and fixing all other bytes results in all bytes being active
after ShiftRows in the third round. In terms of zero-correlation distinguisher,
the above discussion implies that for any non-zero input mask with (at least)
one zero byte and any non-zero output mask which is zero in all but one byte
the corresponding linear approximation is unbiased.
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Fig. 2: The integral distinguisher on 3
rounds of AES. The X denotes an active
byte.
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Fig. 3: Zero correlation distinguisher on
4 rounds of AES. The N denotes a non-
zero byte in the mask.

Reciprocally, Fig.3 shows the 4 round zero-correlation distinguisher from [7].
For any non-zero mask which is zero in all-but-one bytes and any output mask
with the same condition, the corresponding linear approximation is unbiased.
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Now, again using the above discussion, this implies the following integral dis-
tinguisher on 4 rounds of AES. Fix any byte in the plaintext and encrypt all
remaining 2120 possible plaintexts. Check if the output restricted to any byte
results is a balanced function, that is, of each out of the possible 256 values is
obtained exactly 2112 times. Note that this distinguisher was implicitly used for
example in [14].

4 Integral zero-correlation for a Skipjack variant

4.1 Skipjack-BABABABA vs the original Skipjack-AABBAABB

Skipjack [25] is the only block cipher known to be designed by NSA. Skipjack is
a 64-bit block cipher with an 80-bit key. It is an unbalanced Feistel network with
32 rounds of two types, called Rule A and Rule B. Each round is described in the
form of a linear feedback shift register with additional non-linear keyed G per-
mutation. Rule B is basically the inverse of Rule A with minor positioning differ-
ences. Skipjack applies eight rounds of Rule A, followed by eight rounds of Rule
B, followed by another eight rounds of Rule A, followed by another eight rounds
of Rule B. We refer to this original Skipjack algorithm as Skipjack-AABBAABB
– A denoting four rounds of Rule A and B standing for four rounds of Rule B.
The best known cryptanalytic result for the original Skipjack-AABBAABB is
the impossible differential cryptanalysis for 31 rounds given by Biham et.al. [2]
based on a 24-round impossible differential.

In Skipjack-BABABABA, four rounds of Rule B are applied first, followed
by four rounds of Rule A, followed by another four rounds of Rule B, followed by
another four rounds of Rule A. The rest of the cipher is exactly as in Skipjack-
AABBAABB, amounting to 32 rounds in total. See the Fig.4a. Skipjack variants
involving the change of order of Rules A and B were studied in [19,20]. Though
it was suggested that putting Rule B before Rule A might facilitate truncated
differentials as a matter of principle, no attacks have been reported on Skipjack-
BABABABA.

For Skipjack-BABABABA, the longest impossible differential we can find is
over 21 rounds and covers less rounds than the 24-round impossible differential
for the original Skipjack. However, in the following, we derive 30-round zero-
correlation linear approximations for Skipjack-BABABABA.

4.2 Zero-correlation linear approximations for 30 rounds of
Skipjack-BABABABA

Let the input masks for the first round be (L1, L1, 0, 0) and the output mask for
the last round be (L2, L2, 0, 0) for any non-zero L1 and L2. Fig.4b depicts the evo-
lution of both masks from the top and from the bottom towards the middle of the
cipher. In the figure, Mi denotes an undetermined non-zero mask and Ri denotes
an undetermined mask (zero or non-zero). From the input mask (L1, L1, 0, 0) at
the first round, the output mask of the 19-th round is (M4, R2, R1,M5). From
the output mask (L2, L2, 0, 0) at the 30-th round, the input mask of the 20-th
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Fig. 4: Integral zero-correlation cryptanalysis of 31-round Skipjack-BABABABA
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round is (M7, 0, 0, 0). Here we conclude that (M4, R2, R1,M5) 6= (M7, 0, 0, 0) as
equality would imply that M5 = 0 contradicting that M5 6= 0. Therefore, the
linear hull of the 30-round linear approximation (L1, L1, 0, 0) → (L2, L2, 0, 0)
does not contain linear trails of non-zero correlation contribution and, thus, has
correlation zero.

Property 1. In Skipjack-BABABABA, each linear approximation of the form
(L1, L1, 0, 0)→ (L2, L2, 0, 0) for non-zero L1 and L2 over the 30 rounds B3ABABABA3

has zero correlation. Here B3ABABABA3 means that the 30 rounds start from
three consecutive rounds of Rule B, followed by ABABAB and by three consec-
utive rounds of Rule A.

4.3 Zero-correlation integral attack on 31-round Skipjack-
BABABABA

Here we describe how to use Proposition 1 to attack 31 rounds of Skipjack-
B3ABABABA using an integral distinguisher. Combining Proposition 1 with
Property 1 leads to the following distinguisher.

Corollary 1. With the notation of Fig.4c, for the 30-round Skipjack-B3ABABABA3,
encrypting all 248 plaintexts of the form (P1|P2|P3|P1) each of the 216 possible
values of v2 ⊕ v3 occurs exactly 232 times.

With the notation of Fig.4c, this distinguisher can now be used directly to mount
a key-recovery attack on the 31 rounds of Skipjack-B3ABABABA as follows.

– Initialize 232 counters V1[C2|C3] to zero.
– Encrypt each of all 248 plaintexts of the form (P1|P2|P3|P1), and increase
V1[C2|C3] by one.

– For each guess of the 232 possible values for k:
• Initialize 216 counters V2[v] to zero.
• Decrypt all 216 values of C2 to get v2|v3 and increase V2[v2 ⊕ v3] by
V1[C2|C3].

• If one of the counters V2[v] 6= 216, discard k as a wrong key-guess.

With high probability only the correct guess for k will not be discarded. As the
key size for Skipjack is 80 bits, the remaining key bits can be brute-forced with
a complexity of 248. The time complexity of this attack is roughly 249 Skipjack
encryptions and we have to store roughly 232 counters. The data complexity is
248 chosen plaintexts. Thus, this attack has practical complexities.

5 Zero-correlation and multidimensional linear
distinguishers

5.1 Multidimensional linear setting

Given m linear approximations

〈ui, x〉+ 〈wi, y〉, i = 1, . . . ,m,

11



where x ∈ Fn2 is plaintext and y ∈ Ft2 is some part of data in the encryption pro-
cess, one obtains an m-tuple of bits by evaluating those for a plaintext-ciphertext
pair. Instead of considering each such bit and its distribution independently as
x varies, multidimensional linear cryptanalysis focuses on the analysis of the
distribution of the m-tuples

z = (z1, . . . , zm), zi = 〈ui, x〉+ 〈wi, y〉.

Then we have the following relationship between the probability distribution of
z and the correlations cγ of all linear approximations γ ∈ Fm2 :

Pr[z] = 2−m
∑
γ∈Fm

2

(−1)〈γ,z〉cγ . (2)

Note that this is actually the key in proving that for a balanced function all
component functions have zero-correlation.

We denote by U and W the m× n and m× t matrices with rows ui and wi,
respectively. Then we have z = Ux+Wy and can write

〈γ, z〉 = 〈γ, Ux+Wy〉 = 〈UT γ, x〉+ 〈WT γ, y〉, (3)

where UT γ and WT γ are linear combinations of the linear masks ui and wi,
i = 0, . . . ,m, respectively.

5.2 How to make zero-correlation multidimensional

Now we are ready to formulate the zero-correlation distinguishing property as a
special case of the multidimensional distinguishing property.

Zero-correlation distinguisher assumes that the correlations of all linear ap-
proximations 〈ui, x〉+〈wi, y〉, i = 1, . . . ,m, and their nonzero linear combinations
are equal to zero. (Note that this means, in particular, that these m linear ap-
proximations are statistically independent.) By (3), it follows that cγ = 0, for
all γ 6= 0. When substituting this information in the formula of Pr[z] in (2), we
obtain that z has a uniform distribution in Fm2 .

Let the adversary be given N distinct plaintexts for an n-bit block cipher
and m linear approximations such that all their nonzero linear combinations
have correlation zero. Then he can construct, as shown above, a function from
Fn2 to Fm2 whose outputs z computed for all plaintexts are uniformly distributed
m-tuples of bits in Fm2 .

Such a completely uniform distribution is very unlikely to have been obtained
from selecting the values at random in Fm2 , even if the probability of each value
is equal, spanning a linear space of ` = 2m zero-correlation approximations of
dimension m. But as we will see, it is possible to distinguish the non-random
behavior of the cipher data already with much less data than the full codebook.
The distribution of the cipher data follows multivariate hypergeometric distribu-
tion, while the data drawn at random from a uniform distribution on Fm2 follows
multinomial distribution. These distributions have essentially different param-
eters for large sample sizes N and can be distinguished from each other. The
distinguisher can be obtained as follows.
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5.3 Multidimensional distinguisher for correlation zero

For each of the 2m data values z ∈ Fm2 , the attacker initializes a counter V [z], z =
0, 1, 2, . . . , 2m − 1, to zero value. Then, for each distinct plaintext, the attacker
computes the corresponding data value in Fm2 (by evaluating the m basis linear
approximations) and increments the counter V [z] of this data value by one. Then
the attacker computes the statistic T for this distribution as

T =

2m−1∑
i=0

(V [z]−N2−m)2

N2−m(1− 2−m)
. (4)

The statistic T will have two distinct distributions for the cipher exhibiting
zero-correlation and a randomly drawn permutation which is our wrong-key
hypothesis assumption:

Proposition 2. For sufficiently large sample size N and number ` of zero-
correlation linear approximations given for the cipher, the statistic T follows
a χ2-distribution for the cipher approximately with mean and variance

µ0 = Exp(Tcipher) = (`−1)
2n −N
2n − 1

and σ2
0 = Var(Tcipher) = 2(`−1)

(
2n −N
2n − 1

)2

and for a randomly drawn permutation with mean and variance

µ1 = Exp(Trandom) = `− 1 and σ2
1 = Var(Trandom) = 2(`− 1).

The proof of this proposition is available in the full version of this paper [6].

5.4 Distinguishing complexity

Applying the standard normal approximation of χ2 to the two different distri-
butions of the statistic T in Proposition 2, one can compute data complexities
N of the distinguisher, given error probabilities. As a rule of thumb, we can
conclude that it is sufficient to have N ≈ 2n+2−m

2 distinct plaintexts and their
corresponding ciphertexts to distinguish the cipher distribution from randomly
drawn permutation. A more precise distinguishing complexity is given by the
following statement.

Corollary 2. Under the assumptions of Proposition 2, for type-I error probabil-
ity α0 (the probability to wrongfully discard the cipher), type-II error probability
α1 (the probability to wrongfully accept a randomly chosen permutation as the
cipher), for an n-bit block cipher exhibiting ` zero-correlation linear approxima-
tions forming an log2 `-dimensional linear space, the distinguishing complexity
N can be approximated as

N =
2n(q1−α0 + q1−α1)√

`/2− q1−α1

,

where q1−α0
and q1−α1

are the respective quantiles of the standard normal dis-
tribution.
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Note that this statistical test is based on the decision threshold of τ = µ0 +
σ0q1−α0

= µ1 − σ1q1−α1
: If the statistic T ≤ τ , the test outputs ’cipher’. Other-

wise, if the statistic T > τ , the test returns ’random’.

6 Multidimensional zero-correlation for 28-round
CAST-256

6.1 Description of CAST-256

As a first-round AES candidate, CAST-256 is designed based on CAST-128. The
block size is 128 bits, and the key size can be 128, 192 or 256 bits. CAST-256
has 48 rounds for all key sizes. The design of CAST-256 is a generalized Feistel
network with 4 lines as illustrated in Fig.5a.

We denote the 128-bit block of CAST-256 as β = (A|B|C|D), where A, B,
C and D are 32 bits each. Two types of round function, the forward quad-round
Q(·) and the reverse quad-round Q̄(·) are used in CAST-256.

The forward quad-round β := Qi(β) is defined as consecutive application of
4 rounds as follows:

C = C ⊕ F1(D,KR1

(i),KM1

(i)), B = B ⊕ F2(C,KR2

(i),KM2

(i)),

A = A⊕ F3(B,KR3

(i),KM3

(i)), D = D ⊕ F1(A,KR4

(i),KM4

(i)).

Similarly, the reverse quad-round β := Q̄i(β) is defined as:

D = D ⊕ F1(A,KR4

(i),KM4

(i)), A = A⊕ F3(B,KR3

(i),KM3

(i)),

B = B ⊕ F2(C,KR2

(i),KM2

(i)), C = C ⊕ F1(D,KR1

(i),KM1

(i)),

where KR
(i) = {KR1

(i),KR2

(i),KR3

(i),KR4

(i)} is the set of rotation keys for

the i-th quad-round, and KM
(i) = {KM1

(i),KM2

(i),KM3

(i),KM4

(i)} is the set of
masking keys for the i-th quad-round.

The encryption procedure for CAST-256 consists of 6 forward quad-rounds
followed by 6 reverse quad-rounds, counting 48 rounds in total. Decryption is
identical to encryption except that the sets of quad-round keys KR

(i) and KM
(i)

are applied in the reverse order. The keys are obtained from an up to 256-bit
master key by encrypting it with a CAST-256-type cipher (acting on on eight
32-bit words) with known constants as subkeys.

The functions F1, F2 and F3 are exactly those of CAST-128. They use four
8x32-bit S-boxes based on bent functions, modular addition, modular subtrac-
tion, XOR and key-dependent rotation. See Fig. 5a.

6.2 24-Round zero-correlation linear approximations for CAST-256

Property 2. For 24-round CAST-256 (3 forward quad-rounds followed by 3 re-
verse quad-rounds, or rounds 13-36), if the input mask is (0|0|0|L1) and the
output mask is (0|0|0|L2), the correlation of the linear approximation for the
24-round CAST-256 is zero, where L1 6= L2, L1 6= 0, and L2 6= 0.
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The proof of this property is available in the full version of this paper [6].
As compared to this 24-round property, the longest impossible differential for

CAST-256 we are aware of covers 18 rounds [28]. The work [3] claims unspecified
20-round impossible differentials. Thus, the zero-correlation property for CAST-
256 is at least 4 rounds longer than the one of impossible differential.
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Fig. 5: Multidimensional zero-correlation cryptanalysis of 28-round CAST-256

6.3 Key recovery for 28-round CAST-256

We use the 24-round zero-correlation linear approximations of Property 2 to
attack 28 rounds of CAST-256. Fig. 5c illustrates the recovery of the subkey
values from the first round to the fourth round. The attack works as follows.

For each possible 148-bit subkey value κ = KR
(1)|KM

(1):

1. Allocate a 64-bit global counter V [z] for each of 264 possible values of the 64-
bit vector z and set it to 0. V [z] will contain the number of times the vector
value z occurs for the current key guess κ. The vector z is the concatenation
of evaluations of 64 basis zero-correlation masks.
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2. For each of N distinct plaintext-ciphertext pairs:

(a) Partially encrypt 4 rounds and get 64-bit value for X|C4.

(b) Evaluate all 64 basis zero-correlation masks on X|C4 and put the eval-
uations to the vector z.

(c) Increment V [z].

3. Compute the χ2 statistic T = N264
∑264−1
z=0

(
V [z]
N − 1

264

)2
.

4. If T < τ , then the subkey guess κ is a possible subkey candidate and all
master keys it is compatible with are tested exhaustively against a maximum
of 3 plaintext-ciphertext pairs.

Table 2: Summary of attacks on CAST-256: KP = Known Plaintexts, CP =
Chosen Plaintexts.

Rounds Key size Attack Data Time Memory Ratio of Ref.
(bytes) weak keys

16 128, 192, 256 boomerang 249.3CP − − 1 [26]
24 192 or 256 linear 2124.1KP 2156.52 − 1 [27]
36 256 differential 2123CP 2182 − 2−35 [24]

28 256 multidim. ZC 298.8KP 2246.9 268 1 Here

In this attack, using Corollary 2, we set the type-I error probability (the
probability to miss the right key) to α0 = 2−2.7 and the type-II error probability
(the probability to accept a wrong key) to α1 = 2−14. Thus, we get q1−α0

= 1
and q1−α1 = 3.84. Here, τ = σ1 · qα1 + µ1 ≈ 264.

Corollary 2 suggests that the data complexity is N = 298.8 distinct plaintext-
ciphertexts with those parameters. The success probability of the entire attack
is 1− α0 ≈ 0.846.

The time complexity is 2246.8 times of one-round encryption and 2246.8 mem-
ory accesses to a memory of size 264. Under the assumption that one memory
access with size 264 is equivalent to one 28-round CAST-256 encryption, the
total time complexity would be about 2246.9 28-round CAST-256 encryptions.
Due to α1 = 2−14 and the total number of recovered bits is 148, the number of
the remaining subkey values is 2−14 · 2148 = 2134. Then we exhaustively search
other 256− 148 = 108 subkey bits, the time complexity will be 2134+108 = 2242

times of 28-round encryptions.

The memory requirements are 264 128-bit words needed for V [z], or 268 bytes.

In all, the data complexity is about 298.8 known plaintexts, the time com-
plexity is about 2246.9 28-round CAST-256 encryptions and the memory require-
ments are 264 blocks. This is the first attack on more than half of the full-round
AES-candidate CAST-256 without the weak key assumption. See Table 2 for a
summary and a comparison of attacks.
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7 Conclusions

In this paper, we establish fundamental links between zero-correlation distin-
guishers on the one hand and integral and multidimensional linear distinguish-
ers on the other. In particular, an integral implies a zero-correlation property
and zero-correlation distinguishers can be seen as a special case of multidimen-
sional linear distinguishers. These findings result in two novel distinguishers for
zero-correlation based on integral and multidimensional linear distinguishers. To
obtain the latter, we refine the theory of multidimensional linear distinguishers.
We illustrate these new distinguishers by mounting attacks on a Skipjack variant
and CAST-256.
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