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Abstract. In the auxiliary input model an adversary is allowed to see
a computationally hard-to-invert function of the secret key. The auxil-
iary input model weakens the bounded leakage assumption commonly
made in leakage resilient cryptography as the hard-to-invert function
may information-theoretically reveal the entire secret key. In this work,
we propose the first constructions of digital signature schemes that are
secure in the auxiliary input model. Our main contribution is a digi-
tal signature scheme that is secure against chosen message attacks when
given an exponentially hard-to-invert function of the secret key. As a sec-
ond contribution, we construct a signature scheme that achieves security
for random messages assuming that the adversary is given a polynomial-
time hard to invert function. Here, polynomial-hardness is required even
when given the entire public-key – so called weak auxiliary input secu-
rity. We show that such signature schemes readily give us auxiliary input
secure identification schemes.

1 Introduction

Modern cryptography analyzes the security of cryptographic algorithms in the
black-box model. An adversary may view the algorithm’s inputs and outputs, but
the secret key as well as all the internal computation remains perfectly hidden.
Unfortunately, the assumption of perfectly hidden keys does not reflect prac-
tice where keys frequently get compromised for various reasons. An important
example is side-channel attacks that exploit information leakage from the imple-
mentation of an algorithm. Side-channel attacks do not only allow the adversary
to gain partial knowledge of the secret key thereby making security proofs less
meaningful, but in many cases may result in complete security breaches.
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In the last years, significant progress has been made within the the-
ory community to incorporate information leakage into the black-box model
(cf. [1, 2, 8, 10, 11, 13, 20, 21] and many more). To this end, these works develop
new models to formally describe the information leakage, and design new schemes
that can be proven secure therein. The leakage is typically characterized by a
leakage function h that takes as input the secret key sk and reveals h(sk)—the
so-called leakage—to the adversary. Of course, we cannot allow h to be any
function as otherwise it may just reveal the complete secret key. Hence certain
restrictions on the class H of admissible leakage functions are necessary.

With very few exceptions (outlined in the next section) most works assume
some form of quantitative restriction on the amount of information leaked to an
adversary. More formally, in the bounded leakage model, it is assumed that H
is the set of all polynomial-time computable functions h : {0, 1}|sk| → {0, 1}λ
with λ ≪ |sk|. This restriction can be weakened in many cases. Namely, in-
stead of requiring a concrete bound λ on the amount of leakage, it often suffices
that given the leakage h(sk) the secret key still has a “sufficient” amount of
min-entropy left [9, 11, 21, 22]. This so-called noisy leakage models real-world
leakage functions more accurately as now the leakage can be arbitrarily large.
Indeed, real-world measurements of physical phenomenons are usually described
by several megabytes or even gigabytes of information rather than by a few bits.

While security against bounded or noisy leakage often provides a first good
indication for the security of a cryptographic implementation, in practice leakage
typically information theoretically determines the entire secret key [25]. The
only difficulty of a side-channel adversary lies in extracting the relevant key
information efficiently. Formally, this can be modeled by assuming that H is
the set of all polynomial-time computable functions such that given h(sk) it
is still computationally “hard” to compute sk. Such hard-to-invert leakage are
a very natural generalization of both the bounded leakage model and the noisy
leakage model, and is the focus of this work. More concretely, we will analyze the
security of digital signature schemes in the presence of hard-to-invert leakage.
We show somewhat surprisingly that simple variants of constructions for the
bounded leakage setting [4, 8, 9, 17, 19] also achieve security with respect to the
more general class of hard-to-invert leakage.

1.1 The Auxiliary Input Model

The auxiliary input model of Dodis, Kalai and Lovett [10] introduced the no-
tion of security of cryptographic schemes in the presence of computationally
hard-to-invert leakage. They propose constructions for secret key encryption
with IND-CPA and IND-CCA security against an adversary who obtains an
arbitrary polynomial-time computable hard-to-invert leakage h(sk). Security is
shown to hold under a non-standard LPN-related assumption with respect to
any exponentially hard-to-invert function. We say that h is an exponentially
hard-to-invert function of the secret key sk, if there exists a constant c > 0 such
that, for sufficiently large k = |sk|, any PPT adversary A has probability of at
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most 2−ck in inverting h(sk). Notice that the result gets stronger, and the class
of admissible leakage function gets larger, if c is smaller.

In a follow-up paper, and most relevant for our work, Dodis et al. [7] study
the setting of public key encryption. They show that the BHHO encryption
scheme [3] based on DDH and variants of the GPV encryption scheme [14] based
on LWE are secure with respect to auxiliary input leakage. All their schemes re-
main secure under sub-exponentially hard-to-invert leakage (for a weaker notion
that we discuss below [7] achieves security with respect to polynomial hard-to-
invert leakages). That is, a function h is sub-exponentially hard-to-invert if there
exists a constant 1 > c > 0 such that h(sk) can be inverted with probability at
most 2−k

c

.
In the public key setting, some important subtleties arise which are also

important for our work.

1. We shall allow the leakage to depend also on the corresponding public key
pk. One approach to model this is to let the adversary adaptively choose
the leakage function after seeing the public key pk [1]. An alternative that
is taken in the work of Dodis et al. [7] assumes admissible leakage functions
h : {0, 1}|sk|+|pk| → {0, 1}∗, where it is hard to compute sk given h(pk, sk).

2. The public key itself may leak information about the secret key. To illustrate
this, consider a contrived scheme, where the public key pk contains the first
k/2 bits of the secret key in clear. Suppose we want to prove security for
leakage functions h with the property that given h(pk, sk), it is at least
2−k/2 hard to compute the secret key sk. Given the public key pk and such
leakage that reveals the last k/2 bits of the secret key, the scheme from
above gets completely insecure. To handle this issue, Dodis et al. propose
a weaker notion of auxiliary input security, which assumes that a function
is an admissible leakage if it is hard to compute the secret key even when
given the public key.

For ease of presentation, we mainly consider in this work this weaker notion
of auxiliary input security. As shown in [7], when the public key is short this
notion implies security for functions h solely under the assumption that given
h(pk, sk) it is computationally hard to compute sk (i.e., without defining hardness
with respect to pk). The underlying idea is that the public key can be guessed
within the proof, which implies that the hardness assumption gets stronger when
applying this proof technique. Specifically, security is obtained in the presence of
exponentially hard-to-invert leakage functions. We further note that this weaker
notion already suffices for composition of different cryptographic schemes using
the same public key. For instance, consider an encryption and signature scheme
sharing the same public key. If the encryption scheme is weakly secure with
respect to any polynomially hard-to-invert leakage function,3 then the scheme
remains secure even if the adversary sees arbitrary signatures, as these signatures

3 A function h is polynomially hard-to-invert auxiliary information, if any probabilistic
polynomial-time adversary computes sk with negligible probability, given the leakage
h(sk, pk).
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can be viewed as hard-to-invert leakage. The opposite may not trivially hold for
signature schemes that are secure with respect to (sub) exponentially hard-to-
invert leakages.

Recently, Brakerski and Goldwasser [5] and Brakerski and Segev [6] proposed
further constructions of public key encryptions secure against auxiliary input
leakage. In the former, the authors show how to construct a public key encryption
scheme secure against sub-exponentially hard-to-invert leakage, based on the QR
and DCR hardness assumptions. In the latter, the concept of security against
auxiliary input has been introduced in the context of deterministic public key
encryption, and several secure constructions were proposed based on DDH and
subgroup indistinguishability assumptions.

1.2 Our Contributions

Despite significant progress on constructing encryption schemes in the auxiliary
input model, the question of whether digital signature schemes can be built
with security against hard-to-invert leakage has remained open so far. This is
somewhat surprising as a large number of constructions for the bounded and
noisy leakage setting are known [2,4,8,9,17,19]. In this paper, we close this gap
and propose the first constructions for digital signature schemes with security in
the auxiliary input model. As a first contribution of our work, we propose new
security notions that are attainable in the presence of hard-to-invert leakage.
We then show that constructions that have been proven to be secure when the
amount of leakage is bounded, also achieve security in the presence of hard-to-
invert leakage. In a nutshell, our results can be summarized as follows:

1. As shown below, existential unforgeability is unattainable in the presence of
polynomially hard-to-invert leakage. We thus weaken the security notion by
focusing on the setting where the challenge message is chosen uniformly at
random. Our construction uses ideas from [19] to achieve security against
polynomially hard-to-invert leakage when prior to the challenge message the
adversary only has seen signatures for random messages. Such schemes can
straightforwardly be used to construct identification schemes with security
against any polynomially hard-to-invert leakage (cf. Sections 3.2).

2. We show that the generic constructions proposed in [4, 9, 17] achieve the
strongest notion of security, namely existentially unforgeable under chosen
message attacks, if we restrict the adversary to obtain only exponentially
hard-to-invert leakage. As basic ingredients these schemes use a family of
second preimage resistant hash functions, an IND-CCA secure public key
encryption scheme with labels and a reusable CRS-NIZK proof system. For
our result to be meaningful, we require both the decryption key and the
simulation trapdoor of the underlying encryption scheme to be short when
compared to the length of the signing key for the signature scheme (cf. Sec-
tion 3.3).

3. We show an instantiation of this generic transformation that satisfies our
requirements on the length of the keys based on the 2-Linear hardness as-
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sumption in pairing based groups, using the Groth-Sahai proof system [16]
(we refer the reader to the full version).

We elaborate on these results in more detail below.

Polynomially hard-to-invert leakage and random challenges. Impor-
tantly, security with respect to polynomially hard-to-invert leakage is impossible
if the message for which the adversary needs to output a forgery, is fixed at the
time the leakage function is chosen. This is certainly the case for the standard
security notion of existential unforgeability. One potential weakening of the se-
curity definition is by requiring the adversary to forge a signature on a random
challenge message. In the case when the challenge messages is sampled uniformly
at random, even though the leakage may reveal signatures for some messages, it
is very unlikely that the adversary hits a forgery for the challenge message.

Specifically, inspired by the work of Malkin et al. [19], we propose a construc-
tion that guarantees security in the presence of any polynomially hard-to-invert
leakage, when the challenge message is chosen uniformly at random. The scheme
uses the message as the CRS for a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK). To sign, we use the CRS to prove knowledge of sk such that
vk = H(sk), where H is a second preimage resistant hash function. Therefore,
if an adversary forges a signature given vk and the leakage h(vk, sk) with non-
negligible probability, we can use this forgery to extract a preimage of vk which
either contradicts the second preimage resistance of H or the assumption that h
is polynomially hard-to-invert. An obvious drawback of this scheme is that prior
to outputting a forgery for the challenge message the adversary only sees sig-
natures on random messages. Finally, as a natural application of such schemes,
we show that auxiliary input security for signatures carries over to auxiliary
input security of identification schemes. Hence, our scheme can be readily used
to build simple identification schemes with security against any polynomially
hard-to-invert leakage function.

Exponentially hard-to-invert leakage and existential unforgeability.
The standard security notion for signature schemes is existential unforgeability
under adaptive chosen-message attacks [15]. Here, one requires that an adver-
sary cannot forge a signature of any message m, even when given access to a
signing oracle. We strengthen this notion and additionally give the adversary
leakage h(vk, sk), where h is some admissible function from class H. It is easy to
verify that no signature scheme can satisfy this security notion when the only
assumption that is made about h ∈ H, is that it is polynomially hard to com-
pute sk given h(vk, sk). The reason for this is as follows. Since the secret key
must be polynomially hard to compute even given some set of signatures (and
the public key), a signature is an admissible leakage function with respect to H.
Hence, a forgery is a valid leakage. This observation holds even when we define
the hardness of h with respect to the public key as well.

Our first observation towards constructing signatures with auxiliary input
security is that the above issues do not necessarily arise when we consider the
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more restricted class of functions that maintain (sub)-exponentially hardness of
inversion. Suppose, for concreteness, that there exists a constant 1 > c > 0 such
that there exists a probabilistic polynomial-time algorithm, taking as input a
signature and the public key and outputting sk with probability p. Here, we
assume that negl(k) ≥ p≫ 2−k

c

for some negligible function negl(·). Then, if we
let H be the class of functions with hardness at least 2−k

c

, the signing algorithm
is not in H and hence the artificial counterexample from above does not work
anymore! We instantiate this idea by adding an encryption C = Encek(sk) of the
signing key sk to each signature. The encryption key ek is part of the verification
key of the signature scheme, but the decryption key dk associated with ek is
not part of the signing key. However, we set up the scheme such that dk can be
guessed with probability p. Interestingly, it turns out that recent constructions
of leakage resilient signatures [4,9,17], which originally were designed to protect
against bounded leakage, use as part of the signature an encryption of the secret
key. This enables us to prove that these schemes also enjoy security against
exponentially hard-to-invert leakages.

One may object that artificially adding an encryption of the secret key to the
signature is somewhat counter-intuitive as it seems to reduce the security of the
signature scheme. However, all that is needed for this trick is that guessing dk is
significantly easier than guessing sk. For a given security level we can therefore
pick the length of dk first, as to achieve that security level. After that we can
then pick the length of sk as to achieve meaningful leakage bounds. Our concrete
security analysis allows to choose these keys as to achieve a given security. Note,
also, that adding trapdoors to cryptographic schemes for what superficially only
seems to be proof reasons is common in the field – non-interactive zero-knowledge
being another prominent example.

For readers familiar with the security proof of the Katz-Vaikuntanathan
scheme [17], we note that the crux of our new proof is that in the reduction
we cannot generate a CRS together with its simulation trapdoor. Instead, to
simulate signatures for chosen messages we will guess the simulation trapdoor.
Fortunately, we can show that the loss from guessing the simulation trapdoor
only effects the tightness in the reduction to the inversion hardness of the leakage
functions. As we use a NIZK proof system with a short simulation trapdoor and
only aim for exponential hard-to-invert leakage functions, we can successfully
complete the reduction.

Instantiation under the 2-linear Assumption. As a concrete example, we
show in the full version how to instantiate our generic transformation using
the Groth-Sahai proofs system based on the 2-linear assumption. This yields
security with respect to any 2−6k

′
-hard-to-invert leakage. If we do not wish to

define the hardness with respect to the public key as well, it is possible to guess
it and thus loose an additional factor of 2−3k

′
in the hardness assumption. Here,

k′ := log(p) for a prime p that denotes the order of the group for which the
2-linear assumption holds, and the secret key of our scheme has length k := ℓ ·k′
bits for some constant ℓ ∈ N.
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1.3 A Road Map

In Section 2 we specify basic security definitions and our modeling for the aux-
iliary input setting. In Section 3 we present our signature schemes for random
messages (Section 3.2) and chosen massage attack security (Section 3.3). In the
full version we show how to use signatures on random messages to construct iden-
tification schemes with security against any polynomially hard-to-invert leakage.
We also show an instantiation of the later signature scheme under the 2-linear
hardness assumption.

2 Preliminaries

Basic Notation. We denote the security parameter by k and by PPT probabilistic
polynomial-time. For a set S we write x ← S to denote that x is sampled
uniformly from S. We write y ← A(x) to indicate that y is the output of an
algorithm A when running on input x. We denote by ⟨a, b⟩ the inner product of
field elements a and b. We use negl(·) to denote a negligible function f : N →
R and we use the ≈ notation to denote computational indistinguishability of
families of random variables.

2.1 Public Key Encryption Schemes

We introduce the notion of a labeled public key encryption scheme following the
notation used in [9].

Definition 1 (LPKE). We say that PPT algorithms Π = (KeyGen,Enc,Dec)
is a labeled public key encryption scheme (LPKE) with perfect decryption if:

– KeyGen, given a security parameter k, outputs keys (ek, dk), where ek is a
public encryption key and dk is a secret decryption key.

– Enc, given the public key ek, a label L and a plaintext message m, outputs a
ciphertext c encrypting m. We denote this by c← EncL(ek,m).

– Dec, given a label L, the secret key dk and a ciphertext c, with c← EncL(ek,
m), then with probability 1 outputs m. We denote this by m← DecL(dk, c).

Definition 2 (IND-LCCA secure encryption scheme). We say that a la-
beled public key encryption scheme Π = (KeyGen,Enc,Dec) is IND-LCCA secure
encryption scheme if, for every admissible PPT adversary A = (A1,A2), there
exists a negligible function negl such that the probability IND-LCCAΠ,A(k) that
A wins the IND-LCCA game as defined below is at most IND-LCCAΠ,A(k) ≤
1
2 + negl(k).

– IND-LCCA game.

(ek, dk)← KeyGen(1k)

(L,m0,m1, history)← ADec(·)(dk,·)
1 (ek), s.t. |m0| = |m1|

c← EncL(ek,mb), where b← {0, 1}

b′ ← ADec(·)(dk,·)
2 (c, history)

A wins if b′ = b.
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An adversary is admissible if it does not query Dec(·)(dk, ·) with (L, c)

In this work we require a weaker notion, called IND-WLCCA, where the ad-
versary cannot query the decryption oracle with label L. Namely, we change the
definition of admissible to mean that the adversary never queries Dec(·)(dk, ·)
with any input of the form (L, ·), where L is the label picked to compute the
challenge. We discuss further details why this security notion is needed for our
construction in Section 3.3.

2.2 Signature Schemes

A signature scheme is a tuple of PPT algorithms Σ = (Gen, Sig,Ver) defined as
follows. The key generation algorithm Gen, on input 1k outputs a signing and a
verification key (sk, vk). The signing algorithm Sig takes as input a message m
and a signing key sk and outputs a signature σ. The verification algorithm Ver,
on input (vk,m, σ), outputs either 0 or 1 (respectively rejecting or accepting the
signature). A signature scheme has to satisfy the following correctness property:
for any message m and keys (sk, vk)← Gen(1k)

Pr[Ver(vk,m, Sig(sk,m)) = 1] = 1

The standard security notion for a signature scheme is existentially unforgeabil-
ity under chosen message attacks. A scheme is said to be secure under this notion
if, even after seeing signatures for chosen messages, no adversary can come up
with a forgery for a new message. In this article, we extend this security notion
and give the adversary additional auxiliary information about the signing key.
To this end, we define a set of admissible leakage functions H and allow the
adversary to obtain the value h(sk, vk) for any h ∈ H. Notice that by giving vk
as input to the leakage function, we capture the fact that the choice of h may
depend on vk.

Definition 3 (Existential Unforgeability under Chosen Message and
Auxiliary Input Attacks (EU-CMAA)). We say that a signature scheme
Σ = (Gen, Sig,Ver) is existentially unforgeable against chosen message and auxiliary
input attacks (EU-CMAA) with respect to H if for all PPT adversaries A and any
function h ∈ H, the following probability Pr[CMAΣ,A,h(k) = 1] is negligible in k,
where CMAΣ,A,h(k) is defined as follows:

Experiment CMAΣ,A,h(k)
(vk, sk)← Gen(1k)
(m∗, σ∗)← AO(sk,·)(1k, h(vk, sk), vk)
If m∗ ̸∈M return Ver(vk,m∗, σ∗), else return 0.

Oracle O(sk,m)
Return (m,Sig(sk,m))

Where M is the set of messages submitted by A to the oracle.

We note that the leakage may also depend on A’s signature queries as the
function h may internally run A, using the access to the secret key in order to
emulate the entire security game, including the signature queries made by A.
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As outlined in the introduction, we are also interested in a weaker security
notion where the adversary is required to output a forgery for a random message
after seeing signatures for randommessages. To this end, we extend the definition
from above and let the signing oracle reply with random messages, as well as
pick the challenge message at random. This is formally described in the following
definition.

Definition 4 (Random Message Unforgeability under Random Mes-
sage and Auxiliary Input Attacks (RU-RMAA)). We say that a signa-
ture scheme Σ = (Gen,Sig,Ver) is random message unforgeable against random
message and auxiliary input attacks (RU-RMAA) with respect to H if for all PPT
adversaries A and any function h ∈ H, the probability Pr[RMAΣ,A,h(k) = 1] is
negligible in k, where RMAΣ,A,h(k) is defined as follows:

Experiment RMAΣ,A,h(k)
(vk, sk)← Gen(1k)
m∗ ←M, whereM is the message space
σ∗ ← AO(sk)(1k, h(vk, sk), vk,m∗)
Return Ver(vk,m∗, σ∗).

Oracle O(sk)
m←M
Return (m,Sig(sk,m))

We notice that this notion of security is useful in some settings. For instance,
it suffices to construct 2-round identification schemes w.r.t auxiliary inputs. In
the full version of this article [12] we propose formal definitions and a simple
construction of an identification scheme with security in the presence of auxiliary
input leakage.

One way to enhance the security notion obtained by Definition 4 is to allow
chosen message attacks, i.e., random message unforgeability under chosen mes-
sage and auxiliary input attacks (RU-CMAA). In this game the adversary can
pick the messages to be signed by itself but still need to forge a signature on a
random message; see Section 3.2 for further discussion.

2.3 Classes of Auxiliary Input Functions

The above notions of security require to specify the set of admissible functions
H. In the public key setting one can define two different types of classes of
leakage functions. In the first class, we require that given the leakage h(sk, vk) it
is computationally hard to compute sk, while in the latter we require hardness of
computing sk when additionally given the public key vk. We follow the work of
Dodis et al. [7] to formally define this difference. Let in the following (sk, vk)←
Gen(1k) be generated randomly.

– Let How(ℓ(k)) be the class of polynomial-time computable functions h :
{0, 1}|sk|+|vk| → {0, 1}∗ such that given h(sk, vk), no PPT adversary can find
sk with probability ℓ(k) ≥ 2−k, i.e., for any PPT adversaryA: Pr(sk,vk)←Gen(1k)

[sk← A(h(sk, vk))] < ℓ(k).
– Let Hvkow(ℓ(k)) be the class of polynomial-time computable functions h :
{0, 1}|sk|+|vk| → {0, 1}∗ such that given (vk, h(sk, vk)), no PPT adversary
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can find sk with probability ℓ(k) ≥ 2−k, i.e., for any PPT adversary A:
Pr(sk,vk)←Gen(1k)[sk← A(vk, h(sk, vk))] < ℓ(k).

Security with respect to auxiliary input gets stronger if ℓ(k) is larger. Our goal
is typically to make ℓ(k) as large as possible while still negl(k). If a scheme is
EU-CMAA for Hvkow(ℓ(k)) according to Definition 3, we say for short that it is
ℓ(k)-EU-CMAA. Similarly, if a scheme is RU-RMAA for Hvkow(ℓ(k)), then we say
that it is an ℓ(k)-RU-RMAA signature scheme. If the class of admissible leakage
functions is How(ℓ(k)), we will mention it explicitly.

As outlined in the introduction, we typically prove security with respect to
the class Hvkow(ℓ(k)). The stronger security notion where hardness is required to
hold only given the leakage, i.e., for the class of admissible functions How(ℓ(k)),
can be achieved by a relation between How(·) and Hvkow(·) proven by Dodis et
al. [7].

Lemma 1 ([7]). If |vk| = t(k) then for any ℓ(k), we have

1. Hvkow(ℓ(k)) ⊆ How(ℓ(k))
2. How(2

−t(k)ℓ(k)) ⊆ Hvkow(ℓ(k))

The first point of Lemma 1 says that if no PPT adversary finds sk given (vk,
h(sk, vk)) with probability ℓ(k) or better, then no PPT adversary finds sk given
only h(sk, vk) with probability ℓ(k) or better. Clearly this is the case since know-
ing vk will not make it harder to guess sk. The second point states that if no
PPT adversary finds sk given h(sk, vk) with probability 2−t(k)ℓ(k) or better,
then any PPT adversary has advantage at most ℓ(k) in guessing sk when given
additionally vk. To see this consider a PPT adversary A that finds sk given
(vk, h(sk, vk)) with probability ℓ′(k) ≥ ℓ(k). A then implies a PPT adversary B
that given h(sk, vk) simply tries to guess vk and uses it to run A. Since B can
guess vk with probability at least 2−t(k), B has probability at least 2−t(k)ℓ′(k)
of finding sk. Thus contradicting h ∈ How(2

−t(k)ℓ(k)).

3 Signature Schemes with Auxiliary Input Security

3.1 A Warm-Up Construction

In order to illustrate the difficulties encountered in designing cryptographic prim-
itives in the auxiliary input setting we present a warm-up construction of a sig-
nature scheme that may seem secure at first glance but, unfortunately, proving
its security is impossible. Essentially, the problem arises due to the computa-
tional hardness of the leakage and does not occur in other leakage models, where
given the leakage the secret key is still information theoretically hidden. For
ease of understanding, in this warm-up construction we only aim for the simpler
one-time security notion on random messages, where the adversary only views a
single signature before it outputs its forgery on a random message. We consider
two building blocks for the following scheme:

10



1. A family H of second preimage resistant hash functions.
2. A non-interactive zero-knowledge proof of knowledge4 (NIZKPoK) system Π =

(CRSGen,P,V) for proving knowledge of a secret value x so that y = Hs(x)
given s and y . We further require that the CRS’s of Π are uniformly random
strings of some length p(k) for security parameter k and some polynomial
p(·). Denote the message spaceM by {0, 1}p(k).

Informally, the signature scheme is built as follows. The signing key sk is a
random element x in the domain of the hash function, whereas the verification
key vk is y = H(x). The verification key vk also contains a common reference
string crs for Π. A signature on a message m is the bit b = ⟨m, sk⟩ together with
a non-interactive proof with respect to crs proving that b was computed as the
inner product of the preimage of y and the message m. More precisely, define
the signature scheme Σ = (GenΣ , SigΣ ,VerΣ) as follows:

Key Generation, GenΣ(1
k): Sample a second preimage resistant hash func-

tion Hs from H, a random element x in the domain of Hs and crs ←
CRSGen(1k). Output sk = x, vk = (H(x), crs).

Signing, SigΣ(sk,m): Parse vk as (H(sk), crs). Compute b = ⟨m, sk⟩. Use the crs
to generate a non-interactive zero-knowledge proof of knowledge π, demon-
strating that b = ⟨m, sk⟩ and H(sk) = y. Output σ = (b, π).

Verifying, VerΣ(vk,m, σ): Parse vk as (H(sk), crs) and σ as (b, π). Use crs to
verify the proof π. Output 1 if the proof is verified correctly and 0 otherwise.

We continue with an attempt to prove security. Note first that by the prop-
erties of Π, the ability to generate a forgery (σ′,m′) reduces to the ability using
the extraction trapdoor to either find a second preimage for the hash function or
break the hardness assumption of the leakage function. As the difficulties arise in
the reduction to the hardness of the leakage function, we focus in this outline on
that part. Assume there is an adversary A attacking signature scheme Σ given
auxiliary input leakage h(sk, vk) and (y, crs). Then, an attempt to construct B
that breaks the hardness assumption of the leakage function by invoking A works
as follows. B obtains (y, crs) and the leakage h(sk, vk) from its challenge oracle.
It forwards them to A who will ask for signature query. Unfortunately, at that
point we are not able to answer this query as we cannot simulate a proof without
knowing the witness or the trapdoor.

An alternative approach may be to directly prove security with respect to
the leakage class How(ℓ(k)) and let B sample the CRS herself using the zero-
knowledge simulator to know a trapdoor. Unfortunately, also this approach is
deemed to fail as in this case there is no way to learn a y = H(sk) that is con-
sistent with the leakage. Moreover this results into several difficulties in defining
the set of admissible leakage functions as they must be different now for A and
B. This can be illustrated as follows. Suppose that the CRS is a public key for
an encryption scheme and the trapdoor is the corresponding secret key. As A
only knows the CRS but not the trapdoor a leakage function h that outputs

4 For definition of NIZKPoK we refer to the full version of this article [12]
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an encryption of sk = x is admissible. On the other hand, however, for B who
knows the trapdoor (hence the secret key of the encryption scheme) such leakage
cannot be admissible. This shows that we need to consider different approaches
when analyzing the security of digital signature schemes in the presence of aux-
iliary input. In what follows, we demonstrate two different approaches for such
constructions, obtaining two different notions of security.

3.2 A RU-RMAA Signature Scheme

In this section we present our construction of a RU-RMAA signature scheme as
defined in Definition 4. For this scheme we assume the following building blocks:

1. A family H of second preimage resistant hash functions with input length
k1 and key sampling algorithm GenH .

2. A (NIZKPoK) system Π = (CRSGen,P,V) for proving knowledge of a secret
value x so that y = Hs(x) given s and y . We further require that the CRS’s
ofΠ are uniformly random strings of some length p(k) for security parameter
k and some polynomial p(·). Denote the message spaceM by {0, 1}p(k).

The main idea for the scheme is inspired by the work of Malkin et al. [19]
where we view each message m as a common reference string for the proof
system Π. Since m is uniformly generated, we are guaranteed that the CRS is
generated correctly and knowledge soundness holds. Intuitively since each new
message induces a new CRS, each proof is given with respect to an independent
CRS. This implies that in the security proof the simulator (playing the role of
the signer) can use the trapdoor of the CRS that corresponds to the challenge
message m∗.

We formally define our scheme Σ = (Gen, Sig,Ver) as follows.

Key Generation, Gen(1k): Sample s ← GenH(1k). Sample x ← {0, 1}k1 and
compute y = Hs(x). Output sk = (x, s) and vk = (y, s).

Signing, Sig(sk,m): To sign m ← M, let crs = m and sample the signature
σ ← P(crs, vk, sk) as a proof of knowledge of x such that y = Hs(x).

Verifying, Ver(vk,m, σ): To verify σ on m = crs, output V(crs, vk, σ).

Theorem 1. Assume that H is a second preimage resistant family of hash func-
tions and Π = (CRSGen,P,V) is a NIZKPoK system. Then Σ = (Gen, Sig,Ver)
is a negl(k)-RU-RMAA signature scheme.

The intuition of the proof is that if one can efficiently forge a signature on a
random m∗ after getting signatures on random messages m, then one can also
efficiently compute x, contradicting the assumption that the leakage is hard to
efficiently invert. During the simulated attack the signatures on random messages
m are simulated by sampling m = crs, where crs is sampled along with the
simulation trapdoor. In the end one samplesm∗ = crs, where crs is sampled along
with the extraction trapdoor. Upon getting a forgery on m∗, we can extract x
using the extraction trapdoor.
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In the standard setting, a simple modification using Chameleon hash func-
tions [18] enables to achieve a stronger notion of security. Recall first that
Chameleon hash functions are collision resistance hash functions such that given
a trapdoor one can efficiently find collisions for every given preimage and its
hashed value. Thereby, instead of signing random messages the scheme can be
modified so that the signer signs the hashed value of the message. This achieves
chosen message attacks security so that the adversary picks the messages to be
signed during the security game, yet the challenge is still picked at random. Nev-
ertheless, when introducing hard-to-invert leakage into the system this approach
does not enable to obtain security against polynomially hard-to-invert leakage,
because we run into the same problem specified in Section 3.1. Moreover, in
Section 3.3 we show how to obtain the strongest security notion of existential
unforgeability under chosen message and auxiliary input attacks.

Proof. Let ExpΣ,A,h be as defined in Definition 4 for PPT adversary A and
leakage function h ∈ Hvkow(negl(k)). Furthermore let W be the event that A
wins the game. We show that Pr[W ] is negligible. Denote this probability by p0.
Consider the following modification to ExpΣ,A,h(k).

1. Generate (vk, sk) as in ExpΣ,A,h(k).

2. Instead of sampling the challengem∗ asm∗ ←M sample (m′, tde)← E1(1
k)

and let m∗ = m′, where E = (E1, E2) is the knowledge extractor for Π.

3. Give input to A as in ExpΣ,A,h(k).

4. To answer the oracle queries ofA, sample (m′, tds)← S1(1
k), letm = m′ and

return the signature (m,S2(m, vk, tds)), where S = (S1, S2) is the simulator
for Π.

5. Receive a forgery σ∗ from A as in ExpΣ,A,h(k).

6. Output as in ExpΣ,A,h(k).

Let p1 be the probability that the modified experiment above outputs 1.
Also consider x′ = E2(m

∗, vk, tde, σ
∗). I.e. x′ is a signing key extracted from A’s

forgery. By Π being a NIZKPoK we have that distributions of messages and sig-
natures in the modified experiment are indistinguishable from the distributions
in the original experiment ExpΣ,A,h(k). Thus it follows that p1 is negligibly close
to p0. Let p2 be the probability that Hs(x

′) = y. By the knowledge soundness
of Π it follows that p2 is negligibly close to p0.

Note then that, since S and E are both PPT algorithms, the modified exper-
iment describes a PPT algorithm which computes x′ where with probability p2
it holds that y = Hs(x

′). Let p3 be the probability that y = Hs(x
′) and x′ ̸= x

and let p4 be the probability that x′ = x. Note that p2 = p3 + p4.

The Event X Consider the PPT algorithm B that given vk and leakage h(sk, vk),
where (sk, vk) ← Gen(1k), runs steps 2-5 of the modified experiment above and
outputs x∗ = E2(m

∗, vk, tde, σ
∗). Denote by X the event in which B outputs

x∗ = x. Since (vk, sk) is generated as in ExpΣ,A,h(k) Pr[X] ≥ p4. Thus by
definition of Hvkow(negl(k)), p4 is negligible.
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The Event C On the other hand, consider the PPT algorithm B that is given
s, x and y = Hs(x). B lets vk = (y, s) and runs steps 2-5 of the modified ex-
periment above (notice that B is given x, so it can compute the leakage h) and
outputs x∗ = E2(m

∗, vk, tde, σ
∗). Denote by C the event in which B outputs

x∗ ̸= x so that Hs(x
∗) = Hs(x). Notice again that ((Hs, y), x) are generated as

in ExpΣ,A,h(k) and therefore Pr[C] ≥ p3. Thus by the second preimage resistance
hardness of the family H, p3 is negligible.

This implies that p3 and p4 are negligible and so is p2 = p3 + p4. Since
p0 is negligibly close to p2, p0 must also be negligible. By definition p0 =
Pr[ExpΣ,A,h(k) = 1] and so by Definition 4, Σ is a negl(k)-RU-RMAA signa-
ture scheme. ⊓⊔

Notice that in the above we assume that the CRS of the NIZKPoK Π is a
uniformly random bit string. As an example of a NIZKPoK with this property we
can use the construction of [23]. In their construction the CRS is a pair (ek, r)
where r is a random string and ek is an encryption key for some semantically
secure public-key encryption scheme. Thus, we can use the construction of [23]
with a public-key encryption scheme where uniformly random bit strings can act
as public-keys, like Regev’s LWE scheme[24].

3.3 A EU-CMAA Signature Scheme

In this section we build a EU-CMAA signature scheme. We use k to denote the
security parameter. We need the following tools:

1. A family of second preimage resistant hash functions H with key sampling
algorithm GenH , where the input length can be set to be any k4 = poly(k)
and where the length of the randomness used by s ← GenH(1k) is some
l1 = poly(k) independent of k4 and where the length of an output y = Hs(x)
is some l4 = poly(k) independent of k4. I.e., it is possible to increase the input
length of Hs without increasing the randomness used to generate s or the
output length.

2. An IND-WLCCA secure labeled public-key encryption scheme Γ = (KeyGen,
Enc, Dec) with perfect decryption (cf. Definition 2), where the length of dk
is some l2 = poly(k) independent of the length of the messages that Γ can
encrypt.

3. A reusable-CRS non-interactive zero-knowledge proof5 system (NIZK) Π =
(CRSGen,P,V), where the length of the simulation trapdoor tds at security
level k is some l3 = poly(k) independent of the size of the proofs that the
NIZK can handle.

The IND-WLCCA secure encryption scheme might be replaced by a IND-
CPA secure scheme, but at the price of then instead using a simulation sound
NIZK: We expect a general proof via true simulation extractability to work along

5 For definition of reusable-CRS NIZK we refer to the full version of this article [12]
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the lines of [9]. We chose the above tools as they lean themeselves nicely towards
our concrete instantiation.

The reason why we use IND-WLCCA is that our signature scheme requires
to encrypt its secret key that is much longer than the decryption key. For that
we need to break the secret key into blocks and encrypt each block separately
under the same label (looking ahead, the label would be the signed message).
Note that labeled public-key encryption schemes for arbitrary length massages is
not implied by LCCA secure scheme for fixed length messages. This is because
the adversary can change the order of the ciphertexts within a specific set of
ciphertexts and ask for a decryption. We therefore work with the weaker notion
that is sufficient for our purposes to design secure signature schemes, and is
easier to instantiate as demonstrated in the full version of this article [12].

Our scheme Σ works as follows:

Key Generation, Gen(1k): Sample s← GenH(1k) and (ek, dk)← KeyGen(1k).
Furthermore, sample (crs, tds) ← S1(1

k) and x ← {0, 1}k4 , where S =
(S1, S2) is the simulator for Π.6 Compute y = Hs(x). Set (sk, vk) = (x, (y, s,
ek, crs)).

Signing, Sig(sk,m): Compute C = Encm(ek, x). Using crs and Π, generate a
NIZK proof π proving that ∃x(C = Encm(ek, x) ∧ y = Hs(x)). Output σ =
(C, π).

Verifying, Ver(vk,m, σ): Parse σ as C, π. Use crs and V to verify the NIZK
proof π. Output 1 if the proof verifies correctly and 0 otherwise.

As explained in [9], a NIZK proof system together with a CCA-secure en-
cryption scheme are a specific instantiation of true-simulation extractable (tSE).
An alternative instantiation would be to compose a simulation-sound NIZK with
a CPA-secure encryption scheme. This approach was used in [17]. We note that
our proof follows similarly for this instantiation as well.

Theorem 2. If H, Γ = (KeyGen,Enc,Dec) and Π = (CRSGen,P,V) have the
properties listed above, then Σ is 2−k5-EU-CMAA where k5 = k + l2 + l3 and
where

– k is the security parameter of Σ,
– l1 is the length of the randomness used to sample s at security parameter k1

for H,
– l2 is the length of the decryption key dk at security parameter k2 for Γ ,
– l3 is the length of the simulation trapdoor tds at security parameter k3 for

Π,

If we consider the class How(ℓ(k)), then our scheme is 2−k6-EU-CMAA where
k6 = k + l1 + l2 + l3 + l4 and where l4 is the length of y = Hs(x) at security
parameter k1 for H.

6 It is deliberate that we use a simulated CRS as part of the public key. This makes
the set of admissible leakage functions defined relative to a simulated CRS, which
we use in the proof. The scheme might be secure for a normal CRS too, but the
proof would be more complicated.
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Specifically, the best success against Σ in the forging game with 2−k5-hard leakage
by a PPT adversary A is 2−k +

∑3
i=0 εi + uε4, where u is a polynomial and

– ε0 and ε3 are the advantages of some PPT adversaries in the ZK game
against Π at security parameter k3,

– ε1 is the success probability of some PPT adversary in the soundness game
against Π at security parameter k3,

– ε2 is the probability that some PPT adversary wins the second preimage game
against H on security parameter k1 and x← {0, 1}k4 ,

– ε4 is the advantage of some PPT adversary in the IND-WLCCA game
against Γ at security parameter k2.

The intuition behind the proof of security is that a forged signature contains
an encryption of the secret key x, so forging leads to extracting x using dk, giving
a reduction to the assumption that it is hard to compute x given the leakage.
In doing this reduction the signing oracle is simulated by encrypting 0k4 and
simulating the proofs using the simulation trapdoor tds. This will clearly still
lead to an extraction of x, using reusable-CRS NIZK and IND-WLCCA. The
only hurdle is that given (vk, h(sk, vk)), we do not know dk or tds. We can,
however, guess these with probability 2−l2 respectively 2−l3 . This is why we
only get security kW = k + l2 + l3. When we prove security for How(ℓ(k)) the
reduction is not given vk either, so we additionally have to guess s and y, leading
to kS = k + l1 + l2 + l3 + l4.

If we set k4 = k+ l2+ l3+ l4+L , then the min-entropy of x given y = Hs(x)
is k + l2 + l3 + L, so leaking L bits would be an admissible leakage in the 2−kW

security game. Since, by assumption on our primitives, l2 and l3 and l4 does
not grow with k4, it follows that we can set L to be any polynomial and be
secure against leaking any fraction (1− k−O(1)) of the secret key. Due to space
constraints the complete proof is found in the full version [12].

The following is a corollary to Thm. 2.

Theorem 3. If H, Γ and Π have the properties listed above, then Σ is 2−kW -
EU-CMAA where kW = k + l2 + l3 and l1 is the length of the randomness used
to sample s, l2 is the length of the decryption key dk for Γ , l3 is the length of the
simulation trapdoor tds. In particular, Σ is 2−kW -EU-CMAA for kW = poly(k)
which do not grow with k4, i.e, the input length of the hash function.

If we consider the class How(ℓ(k)), then Σ is 2−kS-EU-CMAA where kS =
k + l1 + l2 + l3 + l4 and where l4 is the length of y = Hs(x).

Our concrete instantiation has all the needed properties, except that s has
a length which depends on k4. This, however, can be handled generically as
follows.

Lemma 2. If there exists an ε-secure family of second preimage resistant hash
functions H, with key sampling algorithm GenH , and a δ-secure pseudo-random
generator prg, then there exists an (ε+δ)-secure family of second preimage resis-
tant hash function H, with key sampling algorithm Gen′H , where s← Gen′H(1k)
can be guessed with probability 2−k0 , where k0 = poly(k) is the seed length of prg
at security level k.
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Proof. Let Gen′H(1k; r ∈ {0, 1}k0) = GenH(1k; prg(r)). It is clear that an output
of Gen′H(r ∈ {0, 1}k0) can be guessed with probability 2−k0 , by guessing r. Let

ε = Prx∗←A(s,x)∧x←{0,1}k4∧s←GenH [Hs(x
∗) = Hs(x) ∧ x∗ ̸= x]

, and let ε′ = Prx∗←A(s,x)∧x←{0,1}k4∧s←Gen′H
[Hs(x

∗) = Hs(x)∧x∗ ̸= x]. Consider

the algorithm B(s) which samples x ← {0, 1}k4 and x∗ ← A(s, x) and outputs
1 iff Hs(x

∗) = Hs(x). This algorithm is PPT, and ε′ = Pr[B(GenH(prg(r ←
{0, 1}k0))) = 1] and ε = Pr[B(GenH(r ← {0, 1}∗)) = 1]. By the prg being a
δ-pseudo-random generator, it follows that |ε′ − ε| ≤ δ. ⊓⊔

Remark. We can also prove security in the stronger model, where the leakage
function h sees not only sk, but the randomness used by Gen to generate (vk, sk).
In that case we need that the distribution on ek induced by sampling (ek, dk)
with KeyGenΓ ,the distribution of a crs sampled along with a trapdoor and that
the distribution on s induced by sampling s ← GenH can all be sampled with
invertible sampling. This is indeed the case for our concrete instantiation. The
only problematic point is Lemma 2. Even if GenH({0, 1}∗) has invertible sam-
pling, it would be very surprising if GenH(prg({0, 1}k0)) has invertible sampling.
So, if the probability of guessing a random s← GenH is not independent of the
input of Hs, we cannot generically add this property. One can circumvent this
problem as in [9] and consider s as a public parameter of the scheme. This is
modeled by sampling s in a parameter generation phase prior to the key gen-
eration phase and give s as input to all entities. This would in turn make s an
input to the reduction (called B7 in the appendix), circumventing the problem
of having to guess s. We would get security when considering the class How(ℓ(k))
for kS = k + l2 + l3 + l4.
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