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Abstract. In this paper, we introduce the abstraction of Dual Form
Signatures as a useful framework for proving security (existential un-
forgeability) from static assumptions for schemes with special structure
that are used as a basis of other cryptographic protocols and applications.
We demonstrate the power of this framework by proving security under
static assumptions for close variants of pre-existing schemes: the LRSW-
based Camenisch-Lysyanskaya signature scheme, and the identity-based
sequential aggregate signatures of Boldyreva, Gentry, O’Neill, and Yum.
The Camenisch-Lysyanskaya signature scheme was previously proven
only under the interactive LRSW assumption, and our result can be
viewed as a static replacement for the LRSW assumption. The scheme
of Boldyreva, Gentry, O’Neill, and Yum was also previously proven only
under an interactive assumption that was shown to hold in the generic
group model. The structure of the public key signature scheme under-
lying the BGOY aggregate signatures is quite distinctive, and our work
presents the first security analysis of this kind of structure under static
assumptions.

1 Introduction

Digital signatures are a fundamental technique for verifying the authenticity of
a digital message. The significance of digital signatures in cryptography is also
amplified by their use as building blocks for more complex cryptographic proto-
cols. Recently, we have seen several pairing based signature schemes (e.g., [17,
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13, 24, 48]) that are both practical and have added structure which has been used
to build other primitives ranging from Aggregate Signatures [15, 43] to Obliv-
ious Transfer [25, 32]. Ideally, for such a fundamental cryptographic primitive
we would like to have security proofs from straightforward, static complexity
assumptions.

Meeting this goal for certain systems is often challenging. For instance, the
Camenisch and Lysyanskaya signature scheme [24]5 has been very influential as
it is used as the foundation for a wide variety of advanced cryptographic systems,
including anonymous credentials [24, 7, 6], group signatures [24, 5], ecash [22], un-
cloneable functions [21], batch verification [23], and RFID encryption [4]. While
the demonstrated utility of CL signatures has made them desirable, it has been
difficult to reduce their security to a static security assumption. Currently, the
CL signature scheme is proven secure under the LRSW assumption [44], an
interactive complexity assumption that closely mirrors the description of the
signature scheme itself. In addition, the interactive assumption transfers to the
systems built around these signatures.

The identity-based sequential aggregate signatures of Boldyreva, Gentry,
O’Neill, and Yum [9, 10] were also proven in the random oracle model under
an interactive assumption (justified in the generic bilinear group model), which
again closely mirrors the underlying signature scheme itself. (This can be viewed
as providing a proof of the scheme only in the generic group model.) Proofs of
complicated interactive assumptions in the generic group model have several
disadvantages. First, they are themselves complex and prone to error. In fact,
the original version of the BGOY identity-based sequential aggregate signature
scheme [9] relied on an assumption that was shown to be false, and the scheme
was insecure [36]. This scheme and proof were corrected in [10]. Secondly, such
proofs do not tend to provide much insight into the security of the scheme.
This lack of insight tends to hinder transferring schemes to other settings. For
example, many schemes developed in bilinear groups now have lattice-based
analogs, and these transformations reused high-level ideas from the original se-
curity proofs in the bilinear group setting. Techniques from [48] were used in the
lattice setting in [20], techniques from [26] were used in [27], and techniques from
[12] were used in [2]. This kind of transference of ideas from the bilinear setting
to the lattice setting is unlikely to be achieved through generic group proofs.

In this work, we develop techniques that can be applied to prove security
from static assumptions for new signature schemes as well as (slight variants of)
pre-existing schemes. Providing new proofs for these existing schemes provides
a meaningful sanity check as well as new insight into their security. This kind of
sanity check is valuable not only for schemes proven in the generic group model,
but also for signatures (CL signatures included) that require extra checks to
rule out trivial breaks (e.g. not allowing the message signed to be equal to 0),
since these subtleties can easily be missed at first glance. Having new proofs
from static assumptions for variants of schemes like CL signatures and BGOY

5 Throughout, we will be discussing the CL signatures based on the LRSW assump-
tion, which should not be confused with those based on the strong RSA assumption.



signatures gives us additional confidence in their security without having to
sacrifice the variety of applications built from them. Ultimately, this provides
us with a fuller understanding of these kinds of signatures, and is a critical step
towards obtaining proofs under the simplest and weakest assumptions.

Dual Form Signatures Our work is centered around a new abstraction that
we call Dual Form Signatures. Dual Form Signatures have similar structure to
existing signature schemes, however they have two signing algorithms, SignA
and SignB , that respectively define two forms of signatures that will both verify
under the same public key. In addition, the security definition will categorize
forgeries into two disjoint types, Type I and Type II. Typically, these forgery
types will roughly correspond with signatures of form A and B.

In a Dual Form system, we will demand three security properties (stated
informally here):

A-I Matching. If an attacker is only given oracle access to SignA, then it is
hard to create any forgery that is not of Type I.

B-II Matching. If an attacker is only given oracle access to SignB , then it is
hard to create any forgery that is not of Type II.

Dual-Oracle Invariance. If an attacker is given oracle access to both SignA
and SignB and a “challenge signature” which is either from SignA or SignB ,
the attacker’s probability of producing a Type I forgery is approximately
the same when the challenge signature is from SignA as when the challenge
signature is from SignB .

A Dual Form Signature scheme immediately gives a secure signature scheme
if we simply set the signing algorithm Sign = SignA. Unforgeability now follows
from a hybrid argument. Consider any EUF-CMA [31] attacker A. By the A-I
matching property, we know that it might have a noticeable probability ε of
producing a Type I forgery, but has only a negligible probability of producing
any other kind of forgery. We then show that ε must also be negligible. By the
dual-oracle invariance property, the probability of producing a Type I forgery
will be close to ε if we gradually replace the signing algorithm with SignB , one
signature at a time. Once all of the signatures the attacker receives are from
SignB , the B-II Matching property implies that the probability of producing a
Type I forgery must be negligible in the security parameter.

We demonstrate the usefulness of our framework with two main applica-
tions, using significantly different techniques. This illustrates the versatility of
our framework and its adaptability to schemes with different underlying struc-
tures. In particular, while dual form signatures are related to the dual system
encryption methodology introduced by Waters [49] for proving full security of
IBE schemes and other advanced encryption functionalities, we demonstrate
that our dual form framework can be applied to signature schemes that have
no known encryption or IBE analogs. Though all of the applications given here
use bilinear groups, the dual form framework can be used in other contexts,
including proofs under general assumptions.



Our first application is a slight variant of the Camenisch-Lysyanskaya sig-
nature scheme, set in a bilinear group G of composite order N = p1p2p3. This
application is surprising, since these signatures do not have a known IBE ana-
log. We let Gpi for each i = 1, 2, 3 denote the subgroup of order pi in the group.
The SignA algorithm produces signatures which exhibit the CL structure in the
Gp1 and Gp2 subgroups and are randomized in the Gp3 subgroup. The SignB
algorithm produces signatures which exhibit the CL structure in the Gp1 sub-
group and are randomized in the Gp2 and Gp3 subgroups. Type I and II forgeries
roughly mirror signatures of form A and B. The verification procedure in our
scheme will verify that the signature is well formed in the Gp1 subgroup, but
not “check” the other subgroups.

We prove security in the dual form framework based on three static subgroup
decision-type assumptions, similar to those used in [41]. The most challenging
part of the proof is dual-oracle invariance, which we prove by developing a back-
door verification test (performed by the simulator) which acts as an almost-
perfect distinguisher between forgery types. Here we face a potential paradox,
which is similar to that encountered in dual system encryption [49, 41]: we need
to create a simulator that does not know whether the challenge signature it pro-
duces is distributed as an output of SignA or SignB , but it also must be able to
test the type of the attacker’s forgery. To arrange this, we create a “backdoor
verification” test, which the simulator can perform to test the form of all but
a small space of signatures. Essentially, this backdoor verification test acts an
almost-perfect type distinguisher which fails to correctly determine the type of
only a very small set of potential forgeries.

The challenge signature of unknown form produced by the simulator will fall
within the untestable space; however, with very high probability a forgery by
an attacker will not, because some information about this space is information-
theoretically hidden from the attacker. This is possible because the elements of
the verification key are all in the subgroup Gp1 , and the space essentially resides
in Gp2 . Thus the verification key reveals no information about the hidden space.
The only information about the space that the attacker receives is contained
in the single signature of unknown type, and we show that this is insufficient
for the attacker to be able to construct a forgery that falls inside the space
for a different message. This is reminiscent of the concept of nominal semi-
functionality in dual system encryption (introduced in [41]): in this setting, the
simulator produces a key of unknown type which is correlated in its view with the
ciphertext it produces, but this correlation is information-theoretically hidden
from the attacker. This correlation prevents the simulator from determining the
type of the key for itself by testing decryption against a ciphertext.

As a second application of our dual form framework, we prove security from
static assumptions for a variant of the BGOY identity-based sequential aggregate
signature scheme. Aggregate signatures are useful because they allow signature
“compression,” meaning that any n individual signatures by n (possibly) dif-
ferent signers on n (possibly) different messages can be transformed into an
aggregate signature of the same size as an individual one that nevertheless al-



lows verifying that all these signers signed their messages. However, aggregate
signatures do not provide compression of the public keys, which are needed
for signature verification. In the identity-based setting, only the identities of the
signers are needed – this is a big savings because identities are much shorter than
randomly generated keys. However, identity-based aggegate signatures have been
notoriously difficult to realize.

We first prove security for a basic public-key version of the scheme, and then
show that security for its identity-based sequential aggregate analog reduces to
security of the basic scheme (in the random oracle model, as for the original
proof). Our techniques here are significantly different, and reflect the different
structure of the scheme (it is this structure that allows for aggregation). The
core structure of the underlying public key scheme is composed of three group
elements of the form ga+bmgr1r2 , gr1 , gr2 , where m is a message (or a hash of
the message), a, b are fixed parameters, and r1, r2 are randomly chosen for each
signature. There are significant differences between this and the core structure of
other notable signatures, like CL and Waters signatures [24, 48]. Here, the mes-
sage term is not multiplicatively randomized, but rather additively randomized
by the quadratic term r1r2. It is the quadratic nature of this term that allows
verification via application of the bilinear map while thwarting attackers who try
to combine received signatures by taking linear combinations in the exponents.
This unique structure presents a challenge for static security analysis, and we
develop new techniques to achieve a proof for a variant of this scheme in our
dual form framework.

We still employ composite order subgroups, with the main structure of the
scheme reflected in the Gp1 subgroup and the other two subgroups used for dif-
ferentiating between signature and forgery types. However, to prove dual-oracle
invariance, we rely on the fact that the scheme has the basic structure of a one-
time signature scheme embedded in it, in addition to the quadratic mechanism
to prevent an attacker from forming new signatures by taking combinations of
received signatures. We capture the security resulting from this combination of
structures through a static assumption for our dual-oracle invariance proof, and
we show that this assumption holds in the generic group model. Though we do
employ the generic group model as a check on our static assumptions, we believe
that our proof provides valuable intuition into the security of the scheme that is
not gleaned from a proof based on an interactive assumption or given solely in
the generic group model. Also, checking the security of a static assumption in
the generic group model is much easier (and less error-prone) than checking the
security of an interactive assumption or scheme. We believe that the techniques
and insights provided by our proof are an important step toward finding a prime
order variant of the scheme that is secure under more standard assumptions,
such as the decisional linear assumption.

In the full version, we provide one more application: a signature scheme
using the private key structure in the Lewko-Waters IBE system [41]. The LW
system itself can be viewed as a composite order extension of the Boneh-Boyen
selectively secure IBE scheme [11], although the structure of the proofs of these



systems are very different (LW achieves adaptive security). For this reason, we
call these “BB-derived” signatures. While the existing LW IBE system can be
transformed into a signature scheme using Naor’s 6 general transformation, our
scheme checks the signature “directly” without going through an IBE encryption.
The resulting signature has a constant number of elements in the public key and
signatures consist of two group elements.

Further Directions While we have focused here on applying our techniques for
core short signatures, we envision that dual form signatures will be a framework
for proving security of many different signature systems that have to this point
been difficult to analyze under static assumption Some examples include em-
bed additional structure, such as Attribute-Based signatures [45] and Quoteable
signatures [3]. Attribute-based signatures allow a signer to sign a message with
a predicate satisfied by his attributes, without revealing any additional infor-
mation about his attribute set. Our framework could potentially be applied to
obtain stronger security proofs for ABS schemes, such as the schemes of [45]
proved only in the generic group model. Quoteable signatures enable derivation
of signatures from each other under certain conditions, and current constructions
are proved only selectively secure [3]. Another future target is signatures that
“natively” sign group elements [1].

The primary goal of our work is providing techniques for realizing security un-
der static assumptions, and we leverage composite order groups as a convenient
setting for this. A natural future direction is to complement our work by discov-
ering prime order analogs of our techniques. Many previous systems were origi-
nally constructed in composite order groups and later transferred into prime or-
der groups [16, 34, 18, 33, 19, 47, 35, 38, 37, 28, 29, 40, 46]. The general techniques
presented in [28, 39] do not seem directly applicable here, but we emphasize that
our dual form framework is not tied to composite order groups and could also
be used in the prime order setting. Discussion of additional related works can
be found in the full version.

2 Dual Form Signatures

We now define dual form signatures and their security properties. We then show
that creating a secure dual form signature system naturally yields an existentially
unforgeable signature scheme. We emphasize that the purpose of the dual form
signature framework is to provide a template for creating security proofs from
static assumptions, but the techniques employed to prove the required properties
can be tailored to the structure of the particular scheme.

Definition We define a dual form signature system to have the following algo-
rithms:

KeyGen(λ): Given a security parameter λ, generate a public key, VK, and a
private key, SK.

6 Naor’s observation was noted in [14].



SignA(SK,M): Given a message, M , and the secret key, output a signature, σ.
SignB(SK,M): Given a message, M , and the secret key, output a signature, σ.
Verify(VK,M, σ): Given a message, the public key, and a signature, output

‘true’ or ‘false’.

We note that a dual form signature scheme is identical to a usual signa-
ture scheme, except that it has two different signing algorithms. While only one
signing algorithm will be used in the resulting existentially unforgeable scheme,
having two different signing algorithms will be useful in our proof of security.

Forgery Classes In addition to having two signature algorithms, the dual form
signature framework also considers two disjoint classes of forgeries. Whether
or not a signature verifies depends on the message that it signs as well as the
verification key. For a fixed verification key, we consider the set of pairs, S ×M,
over the message space, M, and the signature space, S. Consider the subset of
these pairs for which the Verify algorithm outputs ‘true’: we will denote this
set as V. 7 We let VI and VII denote two disjoint subsets of V, and we refer to
signatures from these sets as Type I and Type II forgeries, respectively. In our
applications, we will have the property V = VI ∪VII in addition to VI ∩VII = ∅,
but only the latter property is necessary.

We will use these classes to specify two different types of forgeries received
from an adversary in our proof of security. In general, these classes are not
the same as the output ranges of our two signing algorithms. However, Type I
forgeries will be related to signatures output by the SignA algorithm and Type
II forgeries will be related to signatures output by the SignB algorithm. The
precise relationships between the forgery types and the signing algorithms are
explicitly defined by the following set of security properties for the dual form
system.

Security Properties We define the following three security properties for a dual
form signature scheme. We consider an attacker A who is initially given the
verification key VK produced by running the key generation algorithm. The
value SK is also produced, and not given to A.

A-I Matching: Let OA be an oracle for the algorithm SignA. More precisely,
this oracle takes a message as input, and produces a signature that is identi-
cally distributed to an output of the SignA algorithm (for the SK produced
from the key generation). We say that a dual form signature is A-I matching
if for all probabilistic polynomial-time (PPT) algorithms, A, there exists a
negligible function, negl(λ), in the security parameter λ such that:

Pr[AOA(VK) /∈ VI ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to
SignA, then it is hard to create anything but a Type I forgery.

7 Here we will assume that the Verify algorithm is deterministic. If we consider a
nondeterministic Verify algorithm, we could simply take the subset of ordered pairs
that are accepted by Verify with non-negligible probability.



B-II Matching: Let OB be an oracle for the algorithm SignB (which takes in
a message and outputs a signature that is identically distributed an output
of the SignB algorithm). We say that a dual form signature is B-II matching
if for all PPT algorithms, A:

Pr[AOB (VK) /∈ VII ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to
SignB , then it is hard to create anything but a Type II forgery.

Dual-Oracle Invariance (DOI): First we define the dual-oracle security game.

1. The key generation algorithm is run, producing a verification key VK
and a secret key SK.

2. The adversary, A, is given the verification key VK and oracle access to
O0 = SignA(·) and O1 = SignB(·).

3. A outputs a challenge message, m.
4. A random bit, b← {0, 1}, is chosen, and then a signature σ ← Ob(m) is

computed and given to A. We call σ the challenge signature.
5. A continues to have oracle access to O0 and O1.
6. A outputs a forgery pair (m∗, σ∗), where A has not already received a

signature for m∗.

We say that a dual form signature scheme has dual-oracle invariance if, for all
PPT attackers A, there exists a negligible function, negl(λ), in the security
parameter λ such that

|Pr[(m∗, σ∗) ∈ VI |b = 1]− Pr[(m∗, σ∗) ∈ VI |b = 0]| = negl(λ).

We say that a dual form signature scheme is secure if it satisfies all three of
these security properties.

Secure Signature Scheme Once we have developed a secure dual form signa-
ture system, (KeyGenDF ,SignDFA ,SignDFB ,VerifyDF ), this system immediately
implies a secure signature scheme. The secure scheme is constructed as follows:

Construction 1 : KeyGen = KeyGenDF , Sign = SignDFA , Verify = VerifyDF .

Our new secure signature scheme is identical to the dual form system except
that we have arbitrarily chosen to use SignA as our signing algorithm. We could
have equivalently elected to use SignB . (In which case, we would modify the
dual-oracle invariance property to be with respect to Type II forgeries instead
of Type I forgeries. Alternatively, we could strengthen the property to address
both forgery types.) Now we will prove that this signature scheme is secure.

In the full version, we prove (the argument is rather straightforward):

Theorem 1. If Π = (KeyGenDF ,SignDFA ,SignDFB ,VerifyDF ) is a secure dual
form signature scheme, then Construction 1= (KeyGenDF ,SignDFA ,VerifyDF )
is existentially unforgeable under an adaptive chosen message attack.



3 Background on Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [16]. We define a group
generator G, an algorithm which takes a security parameter λ as input and
outputs a description of a bilinear group G. In our case, we will have G output
(N = p1p2p3,G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

Computing e(g, h) is also commonly referred to as “pairing” g with h.
We assume that the group operations in G and GT as well as the bilinear

map e are computable in polynomial time with respect to λ, and that the group
descriptions of G and GT include generators of the respective cyclic groups.
We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2, and p3 in G
respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for i 6= j, e(hi, hj) is the
identity element in GT . To see this, suppose we have h1 ∈ Gp1 and h2 ∈ Gp2 . Let
g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and
gp2p3 generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 .
Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 ,Gp2 ,Gp3 is a useful feature of composite
order bilinear groups which we leverage in our constructions and proofs.

If we let g1, g2, g3 denote generators of the subgroups Gp1 , Gp2 , and Gp3
respectively, then every element h in G can be expressed as h = ga1g

b
2g
c
3 for some

a, b, c ∈ ZN . We refer to ga1 as the “Gp1 part” or “Gp1 component” of h. If we
say that an h has no Gp2 component, for example, we mean that b ≡ 0 mod p2.
Below, we will often use g to denote an element of Gp1 (as opposed to writing
g1).

The original Camenisch-Lysyanskaya scheme and BGOY identity-based se-
quential aggregate signature scheme both use prime order bilinear groups, i.e.
groups G and GT are each of prime order q with an efficiently computable bi-
linear map e : G2 → GT .

4 Camenisch-Lysyanskaya Signatures

Now we use the dual form framework to prove security of a signature scheme sim-
ilar to the one put forward by Camenisch and Lysyanskaya [24]. The Camenisch-
Lysyanskaya signature scheme was already shown to be secure under the LRSW
assumption. However, the scheme can be naturally adapted to our framework,
allowing us to prove security under static, non-interactive assumptions. Our re-
sult is not strictly comparable to the result under the LRSW assumption because
our signature scheme is not identical to the original. However, this is the first
proof of security for a scheme similar to the Camenisch-Lysyanskaya signature
scheme from static, non-interactive assumptions.



Our signature scheme will use bilinear groups, G and GT , of composite order
N = p1p2p3, where p1, p2, and p3 are all distinct primes. Our construction is
identical to the original Camenisch-Lysyanskaya signature scheme in the Gp1
subgroup, but with additional components in the subgroups Gp2 and Gp3 . The
signatures produced by the SignA algorithm will have random components in
Gp3 and components in Gp2 which mirror the structure of the scheme in Gp1 .
The signatures produced by the SignB algorithm will have random components
in both Gp2 and Gp3 . Type I forgeries are those that are distributed exactly
like SignA signatures in the Gp2 subgroup, while Type II forgeries encompass all
other distributions.

To prove dual-oracle invariance, we develop a backdoor verification test that
the simulator can use to determine the type of the attacker’s forgery. We lever-
age the fact that the simulator will know the discrete logarithms of the public
parameters, which will allow it to strip off the components in Gp1 in the forgery
and check the distribution of the Gp2 components. This check will fail to de-
termine the type correctly only with negligible probability. In more detail, we
create a simulator which must solve a subgroup decision problem and ascertain
whether an element T is in Gp1p3 or in the full group G. It will use T to create
a challenge signature which is either distributed as an output of the SignA al-
gorithm or as an output of the SignB algorithm, depending on the nature of T .
It will be unable to determine the nature of this signature for itself because this
will fall into the negligible error space of its backdoor verification test. When the
simulator receives a forgery from the attacker, it will perform the backdoor ver-
ification test and correctly determine the type of the forgery, unless the attacker
manages to produce a forgery for which this test fails. This will occur only with
negligible probability, because the attacker will have only limited information
about the error space from the challenge signature, and it needs to forge on a
different message. This is possible because the public parameters are in Gp1 , and
so reveal no information about the error space of the backdoor test modulo p2.
We use a pairwise independent argument to show that the limited amount of
information the attacker can glean from the challenge signature on a message m
is insufficient for it to produce a forgery for a different message m∗ that causes
the backdoor test to err.

4.1 Our Dual Form Scheme

KeyGen(λ): The key generation algorithm chooses two groups, G = 〈g〉 and
GT , of order N = p1p2p3 (where p1, p2, and p3 are all distinct primes of
length λ) that have a non-degenerate, efficiently computable bilinear map,
e : G × G → GT . It then selects uniformly at random g ∈ Gp1 , g3 ∈ Gp3 ,
g2,3 ∈ Gp2p3 , and x, y, xe, ye ∈ ZN . It sets

SK = (x, y, xe, ye, g3, g2,3),

and
PK = (N,G, g,X = gx, Y = gy).



SignA(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ),
and a message m ∈ Z∗N , the algorithm chooses a random r, r′ ∈ ZN , R2,3 ∈
Gp2p3 , and random R3, R

′
3, and R′′3 ∈ Gp3 , and outputs the signature

σ = (grRr
′

2,3R3, (gr)y(Rr
′

2,3)yeR′3, (gr)x+mxy(Rr
′

2,3)xe+mxeyeR′′3 ).

Note that the random elements of Gp3 can be obtained by raising g3 to
random exponents modulo N . Likewise, the random elements of Gp2p3 can
be obtained by raising g2,3 to random exponents modulo N . The random
exponents modulo N will be uncorrelated modulo p2 and modulo p3 by the
Chinese Remainder Theorem.

SignB(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ),
and a message m ∈ Z∗N , the algorithm chooses a random r ∈ ZN and random
R2,3, R′2,3, and R′′2,3 ∈ Gp2p3 , and outputs the signature

σ = (grR2,3, (gr)yR′2,3, (gr)x+mxyR′′2,3).

The random elements can be generated in the same way as in SignA.

Verify(VK,m, σ): Given a public key pk = (N,G, g,X, Y ), message m 6= 0, and
a signature σ = (σ1, σ2, σ3), the verification algorithm checks that:

e(σ1, g) 6= 1

(which ensures that σ1 6∈ Gp2p3), and

e(σ1, Y ) = e(g, σ2) and e(X,σ1) · e(X,σ2)m = e(g, σ3).

As in the original CL scheme, messages must be chosen from Z∗N , so that
m 6= 0. If we allow m = 0, then an adversary can easily forge a valid signature
using the public key elements (g, Y,X). Also like the original scheme, the Verify
algorithm will not accept a signature where all the elements are the identity in
Gp1 . It suffices to check that the first element is not the identity in Gp1 and that
the other verification equations are satisfied. If σ1 is the identity in Gp1 , then it
will be an element of the subgroup Gp2p3 . To determine if σ1 ∈ Gp2p3 , we pair
σ1 with the public key element g under the bilinear map and verify that it does
not equal the identity in GT . Without this check, a signature where all three
elements are members of the subgroup Gp2p3 would be valid for any message
with the randomness r′ = 0 mod p1.

Notice, until SignA is called, no information about the exponents xe and
ye is given out. Once SignA is called, these exponents behave exactly like the
secret key exponents x and y, except in the Gp2 subgroup. These exponents
will be used to verify that a forgery is of Type I. The additional randomization
with the Gp3 elements guarantees that there will be no correlation in the Gp3
subgroup between the three signature elements. Unlike the signatures given out
by the SignA algorithm, signatures from the SignB algorithm will be completely
randomized in the Gp2 subgroup as well.



Forgery Classes We will divide verifiable forgeries according to their correlation
in the Gp2 subgroup, similar to the way we have defined the signatures from the
SignA and SignB algorithms. We let z be an exponent in ZN . By the Chinese
Remainder Theorem, we can represent z as an ordered tuple (z1, z2, z3) ∈ Zp1 ×
Zp2 × Zp3 , where z1 = z mod p1, z2 = z mod p2, and z3 = z mod p3. Letting
(z1, z2, z3) = (0 mod p1, 1 mod p2, 0 mod p3) and g2 be a generator of Gp2 , we
define the forgery classes as follows: Type I forgeries are of the form VI =

{(m∗, σ∗) ∈ V|(σ∗1)z = gr
′

2 , (σ
∗
2)z = gr

′ye
2 , (σ∗3)z = g

r′(xe+m
∗xeye)

2 for some r′},
while Type II are of the formVII = {(m∗, σ∗) ∈ V|(m∗, σ∗) 6∈ VI}.

Essentially, Type I forgeries will be correlated in the Gp2 subgroup exactly
in the same way as they are correlated in the Gp1 subgroup, with the expo-
nents xe and ye playing the same role in the Gp2 subgroup that x and y play
in the Gp1 subgroup. Type I forgeries will align with the SignA algorithm, to
guarantee that our scheme is A-I matching. Type II forgeries include any other
verifiable signatures, i.e. those not correctly correlated in the Gp2 subgroup. Un-
like the signatures produced by the SignB algorithm, Type II forgeries need not
be completely random in the Gp2 subgroup. However, we will show in our proof
of security that this is enough to guarantee B-II matching.

4.2 Complexity Assumptions

We now state our complexity assumptions. We let G and GT denote two cyclic
groups of order N = p1p2p3, where p1, p2, and p3 are distinct primes, and
e : G2 → GT is an efficient, non-degenerate bilinear map. In addition, we will
denote the subgroup of G of order p1p2 as Gp1p2 , for example.

The first two of these assumptions were introduced in [41], where it is proven
that these assumptions hold in the generic group model, assuming it is hard to
find a non-trivial factor of the group order, N . These are specific instances of the
General Subgroup Decision Assumption described in [8]. The third assumption
is new, and in the full version we prove that it also holds in the generic group
model, assuming it is hard to find a non-trivial factor of the group order, N .

Assumption 41 Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2

R← Gp2 , X3
R← Gp3

D = (N,G,GT , e, g,X1X2, X3)

T1
R← Gp1p2 , T2

R← Gp1
We define the advantage of an algorithm, A, in breaking Assumption 41 to

be:
Adv41A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 1. We say that G satisfies Assumption 41 if for any polynomial time
algorithm, A, Adv41A (λ) is a negligible function of λ.



Assumption 42 Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2, Y2

R← Gp2 , X3, Y3
R← Gp3 ,

D = (N,G,GT , e, g,X1X2, X3, Y2Y3),

T1
R← G, T2

R← Gp1p3
We define the advantage of an algorithm, A, in breaking Assumption 42 to

be:
Adv42A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 2. We say that G satisfies Assumption 42 if for any polynomial time
algorithm, A, Adv42A (λ) is a negligible function of λ.

Assumption 43 Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

a, r
R← ZN , g

R← Gp1 , X2, X
′
2, X

′′
2 , Z2

R← Gp2 , X3
R← Gp3 ,

D = (N,G,GT , e, g, ga, grX2, g
raX ′2, g

ra2X ′′2 , Z2, X3),

We define the advantage of an algorithm, A, in breaking Assumption 43 to
be:

Adv43A (λ) := Pr[A(D) = (gr
′a2R3, g

r′R′3) and r′ 6= 0 mod p1],

where R3 and R′3 are any values in the subgroup Gp3 .

Definition 3. We say that G satisfies Assumption 43 if for any polynomial time
algorithm, A, Adv43A (λ) is a negligible function of λ.

Proof of Security In the full version, we prove that our signature scheme is
secure under these assumptions by proving that it satisfies the three properties
of a secure dual form signature scheme.

5 BGOY Signatures

Here we give a public key variant of the BGOY signatures and prove existential
unforgeability using our dual form framework. In the full version, we show how
this base scheme can be built into an identity-based sequential aggregate signa-
ture scheme and reduce the security of the aggregate scheme to the security of
this base scheme, in the random oracle model. We will also employ the random
oracle model in our proof for the base scheme, although this use of the random
oracle can be removed (see below for discussion of this).

Our techniques here are quite different than those employed for the BB-
derived and CL signature variants, and they reflect the different structure of



this scheme. There are some basic commonalities, however: we again employ
a bilinear group of order N = p1p2p3, and the main structure of the scheme
occurs in the Gp1 subgroup. The signatures produced by the SignA algorithm
contain group elements which are only in Gp1 , while the signatures produced by
the SignB algorithm additionally have components in Gp3 . These components
in Gp3 are not fully randomized each time and do not occur on all signature
elements: they occur only on three signature elements, and the ratio between
two of their exponents is the same for all SignB signatures. Our forgery types
will be defined in terms of the subgroups present on two of the elements in the
forgery.

We design our proof to reflect the structure of the scheme, which essentially
combines a one-time signature with a mechanism to prevent an attacker from
producing new signatures from linear combinations of old signatures in the ex-
ponent. In proving dual-oracle invariance, we leverage these structures by first
changing the challenge signature from an output of SignA to a signature that
has components in Gp2 , and then changing it to an output of SignB . It is cru-
cial to note that as we proceed through this intermediary step, the challenge
signature is the only signature which has any non-zero components in Gp2 . This
allows us to argue that as we make this transition, an attacker cannot change
from producing Type I forgeries (which do not have Gp2 components on certain
elements) to producing forgeries which do have non-zero Gp2 components in the
relevant locations. Intuitively, such an attacker would violate the combination
of one-time security and inability to combine signatures, since the attacker has
only received one signature with Gp2 elements, and it cannot combine this with
any other signatures to produce a forgery on a new message. These aspects seem
hard to capture when working directly in a prime order rather than compos-
ite order group. (We note, however, that the one-time aspect was also implicit
in the security proof of the Gentry-Ramzan scheme [30] on which the BGOY
scheme was based; however, differences in the schemes prevent capturing it in
the same way for the latter.) The techniques here are also quite different from
those used in our proofs for CL and BB-derived signatures: here there is no
backdoor verification test or pairwise-independence argument.

5.1 The Dual Form Scheme

KeyGen(λ) → VK,SK The key generation algorithm chooses a bilinear group
G of order N = p1p2p3. It chooses two random elements g, k ∈ Gp1 , random
elements g3, g

d
3 ∈ Gp3 , and random exponents a1, a2, b1, b2, α1, α2, β1, β2 ∈ ZN .

It also chooses a function H : {0, 1}∗ → ZN which will be modeled as a random
oracle. It sets the verification key as

VK := {N,H,G, g, k, ga1 , ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}

and the secret key as

SK := {N,H,G, g, k, ga1a2 , gb1b2 , gα1α2 , gβ1β2 , g3, g
d
3}.



SignA(m,SK) → σ The SignA algorithm takes in a message m ∈ {0, 1}∗. It
chooses two random exponents r1, r2 ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2 , σ2 := gr1 , σ3 := gr2 ,

σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2 .

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

SignB(m,SK) → σ The SignB algorithm takes in a message m ∈ {0, 1}∗. It
chooses two random exponents r1, r2, x, y ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2gx3 , σ2 := gr1gy3 , σ3 := gr2 ,

σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2(gd3)x.

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

Verify(m,σ,VK)→ {True, False} The verification algorithm first checks that:

e(σ1, g) = e(ga1 , ga2)e(gb1 , gb2)H(m)e(σ2, σ3).

It also checks that:

e(σ5, g) = e(gα1 , gα2)e(gβ1 , gβ2)H(m)e(σ2, σ4).

Finally, it checks that:
e(g, σ4) = e(k, σ3).

If all of these checks pass, it outputs “True.” Otherwise, it outputs “False.”
We note that the use of the random oracle H to hash messages in {0, 1}∗ to

elements in ZN in this public key scheme that forms the base of our identity-
based sequential aggregate signatures is not necessary, and can be replaced in
the following way. Instead of using ga1a2+H(m)b1b2 , we can assume our mes-
sages are n-bit strings (denoted m1m2 . . .mn) and use ga0b0

∏n
i=1 g

miaibi . Here,
ga0 , . . . , gan , gb0 , . . . , gbn will be in the public verification key. In the proof, in-
stead of guessing which random oracle query corresponds to the challenge mes-
sage, the simulator will guess a bit which differs between the challenge message
and the message that will be used in the forgery. This guess will be correct with
non-negligible probability. However, the use of the random oracle model to prove
security for the full identity-based sequential aggregate scheme is still required.
Removing the random oracle model altogether remains an open problem.

Forgery Classes We will divide the forgery types based on whether they have
any Gp2 or Gp3 components on σ1 or σ5. We let z2 ∈ ZN denote the exponent
represented by the tuple (0 mod p1, 1 mod p2, 0 mod p3), and we let z3 ∈ ZN
denote the exponent represented by the tuple (0 mod p1, 0 mod p2, 1 mod p3).
Then we can define the forgery classes as follows. Type I forgeries are of the
form VI = {(m∗, σ∗) ∈ V|(σ∗1)z2 = 1, (σ∗1)z3 = 1 and (σ∗5)z2 = 1, (σ∗5)z3 = 1},



while Type II are of of the form VII = {(m∗, σ∗) ∈ V|(σ∗1)z2 6= 1 or (σ∗5)z2 6=
1 or (σ∗1)z3 6= 1 or (σ∗5)z3 6= 1}.

In other words, Type I forgeries have σ∗1 , σ
∗
5 ∈ Gp1 , while Type II forgeries

have a non-zero component in Gp3 or Gp2 on at least one of these terms. We
note that these types are disjoint and exhaustive.

We state our complexity assumptions and prove security of this scheme in
the full version. Some the assumptions we employ were previously used in [41,
42]. Those that are new are justified in the generic group model.
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