
Leakage-Resilient Cryptography From the

Inner-Product Extractor

Stefan Dziembowski1? and Sebastian Faust2??

1 University of Warsaw and Sapienza University of Rome
2 Aarhus University

Abstract. We present a generic method to secure various widely-used
cryptosystems against arbitrary side-channel leakage, as long as the leak-
age adheres three restrictions: �rst, it is bounded per observation but in
total can be arbitrary large. Second, memory parts leak independently,
and, third, the randomness that is used for certain operations comes from
a simple (non-uniform) distribution.
As a fundamental building block, we construct a scheme to store a cryp-
tographic secret such that it remains information theoretically hidden,
even given arbitrary continuous leakage from the storage. To this end,
we use a randomized encoding and develop a method to securely refresh
these encodings even in the presence of leakage. We then show that our
encoding scheme exhibits an e�cient additive homomorphism which can
be used to protect important cryptographic tasks such as identi�cation,
signing and encryption. More precisely, we propose e�cient implemen-
tations of the Okamoto identi�cation scheme, and of an ElGamal-based
cryptosystem with security against continuous leakage, as long as the
leakage adheres the above mentioned restrictions. We prove security of
the Okamoto scheme under the DL assumption and CCA2 security of
our encryption scheme under the DDH assumption.

1 Introduction

In the last years, a large body of work attempts to analyze the e�ectiveness
of side-channel countermeasures in a mathematically rigorous way. These works
propose a physical model incorporating a (mostly broad) class of side-channel at-
tacks and design new cryptographic schemes that provably withstand them under
certain assumptions about the physical hardware (see, e.g., [24,11,12,16,9,5,23]
and many more). By now we have seen new constructions for many important
cryptographic primitives such as digital signature and public key encryption

? The European Research Council has provided �nancial support to the �rst author
of this paper under the European Community's Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no CNTM-207908.

?? Sebastian Faust acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within part of
this work was performed. Part of this work was done while being at KU Leuven.

schemes that are provably secure against surprisingly broad classes of leakage
attacks.

Unfortunately, most of these new constructions are rather complicated non-
standard schemes, often relying on a heavy cryptographic machinery, which
makes them less appealing for implementations on computationally limited de-
vices. In this work, we take a di�erent approach: instead of developing new
cryptographic schemes, we ask the natural question whether standard, widely-
used cryptosystems can be implemented e�ciently such that they remain secure
in the presence of continuous bounded leakage. We answer this question a�rma-
tively, and show a generic way that �compiles� various common cryptosystems
into schemes that remain secure against a broad class of leakage attacks.

Similar to earlier work, we make certain restrictions on the leakage. We follow
the work of Dziembowski and Pietrzak [11], and allow the leakage to be arbitrary
as long as the following two restrictions are satis�ed:

1. Bounded leakage: the amount of leakage in each round is bounded to λ
bits (but overall can be arbitrary large).

2. Independent leakage: the computation can be structured into rounds,
where each such round leaks independently (we de�ne the notion of a �round�
below).

Formally, this is modeled by letting the adversary in each round choose a poly-
nomial time computable leakage function f with range {0, 1}λ, and then giving
her f(τ) where τ is all the data that has been accessed during the current round.
In addition to these two restrictions, we require that our device has access to a
source of correlated randomness generated in a leak-free way � e.g., computed
by a simple leak free component. We elaborate in the following on our leakage
restrictions.

On the bounded leakage assumption. Most recent work on leakage re-
silient cryptography requires that the leakage is bounded per observation to
some fraction of the secret key. This models the observation that in practice
many side-channel attacks only exploit a polylogarithmic amount of informa-
tion, and typically require thousands of observations until the single key can
be recovered. This is, for instance, the case for DPA-based attacks where the
power consumption is modeled by a weighted sum of the computation's inter-
mediate values. We would like to mention that all our results also remain true
in the entropy loss model, i.e., we do not necessarily require that the leakage
is bounded to λ bits, but rather only need that the min entropy of the state
remains su�ciently high even after given the leakage.

On independent leakages. In this paper, we assume that the memory of
the device is divided into three parts L,R and C where (L,C) and (R,C) leak
independently. To use the independent leakage assumption, we structure the
computation into rounds, where each round only accesses either (L,C) or (R,C).
Similar assumptions have been used in several works [24,11,27,21,12].

On leak-free components. We require that devices that implement our
schemes have access to a source of correlated randomness sampled in a leak-

2

free way. Such a source can, for instance, be implemented by a probabilistic
leak-free component that outputs the correlated randomness. Of course, the as-
sumption of a leak-free component is a strong requirement on the hardware, but
let us argue why in our particular case it still may be a feasible assumption. As
in earlier works that made use of leak-free components [15,13,20,16], we require
that our component leaks from its outputs, but the leakage function is oblivi-
ous to its internals. To be more concrete, in the simplest case our component
O outputs two random vectors A,B ← Fn (with F being a �nite �eld and n
being a statistical security parameter) such that their inner product is 0, i.e.,∑
iAi ·Bi = 0. We require that A gets stored on one part of the memory, while

B gets stored on the other, thus, we require that A and B leak independently.
Our component O exhibits several properties that are bene�cial for imple-

mentations. First, O is simple and small. It can be implemented in size lin-
ear in n, as one simply needs to sample uniformly at random vectors A and
(B1, . . . , Bn−1) and computes the last element Bn such that

∑
iAi · Bi = 0.3

Second, O is used in a very limited way, namely, it is needed only when the se-
cret key gets refreshed (cf. Section 1.2 for further discussion on this). Finally, O
does not take any inputs, and hence its computation is completely independent
of the actual computation (e.g., encryption or signing) that is carried out by
the device. This not only allows to test the component independently from the
actual cryptoscheme that is implemented, but moreover makes it much harder to
attack by side-channel analysis, as successful attacks usually require some choice
(or at least knowledge) over the inputs.

1.1 Leakage Resilient Standard Cryptographic Schemes

While in the last years tremendous progress has been made in the design of new
cryptographic schemes with built-in leakage resilience, two common criticisms
are frequently brought up:

1. Cryptographic schemes are rarely used stand-alone, but more often are part
of an industrial standard. Even if desirable, it is unlikely that in the near
future these standards will be adjusted to include recent scienti�c progress.

2. Many of the current leakage resilient cryptoschemes are complicated, rely on
non-standard complexity assumptions and are often rather ine�cient.

In this work, we are interested in techniques that allow for e�cient leakage
resilient implementations of widely-used cryptographic schemes. Before we given
an overview of our contributions in the next section, we discuss some related
literature that considered a similar question.

Leakage Resilient Circuit Compilers. One fundamental question in leak-
age resilient cryptography is whether any computation can be implemented in a
way that resists certain side-channel leakages. This question has been studied in
a series of works [19,13,20,16] and dates back to the work of Ishai et al. [19]. In

3 For simplicity, we assume that Ln is non-zero.

3

particular, the works of Juma and Vahlis [20] and Goldwasser and Rothblum [16]
study the question whether any computation can be implemented in a way that
withstands arbitrary polynomial-time computable leakages. As a building block
they use a public-key encryption scheme and encrypt the entire computation of
the circuit. More precisely, the approach of Juma and Vahlis makes use of fully
homomorphic encryption, while Goldwasser and Rothblum generate for each
Boolean wire of the circuit a new key pair and encrypt the current value on the
wire using the corresponding key. We would like to emphasize that all circuit
compilers (except for the one of Ishai et al.) require leak-free components. Notice
also that the work of Goldwasser and Rothblum and Juma and Vahlis requires
the independent leakage assumption.

Leakage Resilient ElGamal. While circuit compilers allow to secure any
(cryptographic) computation against leakage, they typically su�er from a large
e�ciency overhead. A recent work of Kiltz and Pietrzak [21] makes progress in
this direction. The authors show that certain standard cryptographic schemes
can be implemented e�ciently in a leakage resilient way. The main weakness of
this work is that the security proof is given in the generic group model.

1.2 Our contribution

In this paper, we show a generic method to implement various standard cryp-
tographic schemes that are provably secure in the above described leakage model.
More precisely, we propose an e�cient and simple implementation of the Okamoto
authentication/signature scheme and of an ElGamal-based encryption scheme,
and prove the security of our implementations under continuous leakage attacks.
We also discuss why our techniques are fairly general and may �nd applica-
tions for the secure implementation of various other cryptographic schemes. As
a fundamental tool, we introduce an information theoretically secure scheme to
refresh an encoded secret in the presence of continuous leakage. We detail on
our results below.

Leakage Resilient Refreshing of Encoded Secrets. Recently, Davi et
al. [8] introduced the notion of leakage resilient storage (LRS). An LRS encodes a
secret S such that given partial knowledge about the encoding an adversary does
not obtain any knowledge about the encoded secret S. One of their instantiations
relies on the inner product two-source extractor introduced in the seminal work
of Chor and Goldreich [7]. In this scheme the secret S is encoded as a pair
(L,R) ∈ Fn × Fn, where F is some �nite �eld, and 〈L,R〉 :=

∑
i Li · Ri = S.

Unfortunately, the construction of Davi et al. has one important weakness: it
can trivially be broken if an adversary continuously leaks from the two parts L
and R. The �rst contribution of this paper is to propose an e�cient refreshing
scheme for the inner product based encoding.

This is achieved by dividing the memory of the device into three parts L,R
and C, where initially (L,R) are chosen uniformly subject to the constraint that
〈L,R〉 = S, and C is empty. Our refreshing scheme Refresh takes as input (L,R)
and outputs a fresh encoding (L′, R′) of S. The computation of Refresh will be

4

structured into several rounds, where in each round we only touch either (L,C)
or (R,C), but never L and R at the same time. We will allow the adversary
to adaptively leak a bounded amount of information from (L,C) and (R,C).
In fact, this is the only assumption we make, i.e., we do not require that the
rounds of the computation leak independently. Since in our protocol the third
part C is only used to �communicate� information between L and R, we will
usually describe our schemes in form of a 2-party protocol: one party, PL, is
controlling L, while the second party, PR, holds R. The third part C is used to
store messages that are exchanged between the parties. Hence, instead of saying
that we allow the adversary to retrieve information from (L,C) and (R,C), we
can say that the leakage functions take as inputs all variables that are in the
view of PL or PR.

Our protocol for the refreshing uses the following basic idea. Suppose initially
PL holds L and PR holds R with 〈L,R〉 = S, then we proceed as follows:

1. PL chooses a vector X that is orthogonal to L, i.e., 〈L,X〉 = 0, and sends it
over to PR.

2. PR computes R′ := R +X and chooses a vector Y that is orthogonal to R′

and sends it over to PL.
3. PL computes L′ := L+ Y .

The output of the protocol is (L′, R′). By simple linear algebra it follows that
〈L,R〉 = 〈L′, R′〉 = S. One may hope that the above scheme achieves security
in the presence of continuous leakage. Perhaps counterintuitive, we show in the
full version of this paper that this simple protocol can be broken if the leakage
function can be evaluated on (L,X, Y) and (R,X, Y). To avoid this attack, we
introduce a method for PL to send a random X to PR in an �oblivious� way,
i.e., without actually learning anything about X, besides the fact that X is
orthogonal to L (and symmetrically a similar protocol for PR sending Y to PL).
We propose an e�cient protocol that achieves this property by making use of
our source of correlated randomness (A,B)← O. Notice that even given access
to such a distribution, the refreshing of an encoded secret is a non-trivial task,
as, e.g., just computing L′ = L+A and R′ = R+B does not preserve the secret.

The protocol that we eventually construct in Figure 1 solves actually a more
general problem: we will consider schemes for storing vectors S ∈ Fm, and the
encoding of a secret S will be a random pair (L,R) where L is a vector of length
n and R is an n×m-matrix (where n� m is some parameter), and S = L ·R.

Leakage Resilient Authentication and Signatures. We then use our
protocol for refreshing an encoded secret as a building block to e�ciently im-
plement standard authentication and signature schemes. More concretely, we
show that under the DL assumption a simple implementation of the widely-used
Okamoto authentication scheme is secure against impersonation attacks even if
the prover's computation leaks continuously. Using the standard Fiat-Shamir
heuristic, we can turn our protocol into a leakage resilient signature scheme.

At a high level, our transformation of the standard Okamoto scheme encodes
the original secret keys with our inner product based encoding scheme. Then,

5

we carry out the computation of the prover in �encoded form�, and �nally after
each execution of the prover, we refresh the encoded secrets using our leakage
resilient refreshing scheme. To carry out the computation of the prover in an
encoded, we use the following two observations about the inner product based
encoding:

1. it exhibits an additive homomorphism, i.e., if we encode two secrets S1, S2 as
(L,Q) and (L,R), then (L,Q+R) represents an encoding of S1 +S2. More-
over, if Q and R are stored on the same memory part, then this computation
can be carried out in a leakage resilient way.

2. for two secrets S1 and S2 and two group generators g1 and g2, it allows to
compute gS1

1 · g
S2
2 in a leakage-resilient way. To illustrate this, suppose that

S1 is encoded by (L,Q) and S2 is encoded by (L,R). A protocol to compute

gS1
1 · g

S2
2 proceeds then as follows. PR computes the vector A := gQ1 g

R
2 =(

gQ1
1 gR1

2 , . . . , gQn

1 gRn
2

)
and sends it over to PL. Next, PL computes the vector

B := AL = (AL1
1 , . . . , ALn

n) and �nally it computes gS1
1 gS2

2 =
∏
iBi.

Together with our scheme for refreshing the inner product encoding, these both
basic components su�ce to implement the standard Okamoto authentication
scheme in a leakage resilient way (cf. Section 4).

Leakage Resilient CCA2-secure encryption. As a third contribution, we
show that a simple and e�cient variant of the ElGamal cryptosystem can be
proven to be CCA2 secure in the RO model even if the computation from the
decryption process leaks continuously. We would like to emphasize that we allow
the leakage to depend on the target ciphertext. We achieve this by exploiting
the independent leakage assumption and carry out the computation using the
above described protocol for secure exponentiation. We would like to note that
even though our scheme uses a simulation sound (SS) NIZK, our construction
is rather e�cient, as SS-NIZKs can be implemented e�ciently via the Fiat-
Shamir heuristic. Notice that the Fiat-Shamir heuristic is the only place where
the random oracle assumption is used.

A general paradigm for leakage resilient implementations. We ob-
serve that our methods for implementing cryptographic schemes is fairly general.
Indeed, the two main properties that we require are

1. the secret key of the cryptosystem is an element in a �nite �eld, and the
scheme computes only a linear function of the secret keys, and

2. the secret key is hidden information theoretically even given the transcript
that an adversary obtains when interacting with the cryptosystem.

Various other cryptosystems satisfy these properties. For instance, we can use
our techniques to construct a (rather ine�cient) leakage resilient CCA2-secure
encryption scheme that is provably secure in the standard model.

Comparison to Other Related Work We would like to mention that in a
series of important recent works [9,5,23,22,4] new schemes for leakage resilient

6

signing and encryption (CPA-secure) have been proposed. While these works
have an obvious advantage over our work by considering a more powerful leak-
age model, we would like to point out that these schemes are non-standard,
rather ine�cient and rely on non-standard assumptions. Very recently, Dodis et
al. [10] introduced a method for storing and refreshing a secret. Their construc-
tion does not require leak-free components, but is rather ine�cient and relies on
computational assumptions. Moreover, it is not clear if it can be used for other
purposes such as implementing standard cryptosystems.

2 Preliminaries

For a natural number n the set {1, . . . , n} will be denoted by [n]. IfX is a random
variable then we write x← X for the value that the random variable takes when
sampled according to the distribution of X. In this paper, we will slightly abuse
notation and also denote by X the probability distribution on the range of the
variable. V is a row vector, and we denote by V T its transposition. We let F be
a �nite �eld and for m,n ∈ N, let Fm×n denote the set of m×n-matrices over F.
Typically, we useMi to denote the column vectors of the matrixM . For a matrix
M ∈ Fm×n and anm bit vector V ∈ Fm we denote by V ·M the n-element vector
that results from matrix multiplication of V and M . For a natural number n by
(0n) we will denote the vector (0, . . . , 0) of length n. We will often use the set of
non-singular m×m matrices denoted by NonSingm×m(F) ⊂ Fm×m.

Let in the rest of this work n be the statistical and k be the computational
security parameter. Let G be a group of prime order p such that log2(p) ≥ k.
We denote by (p,G) ← G a group sampling algorithm. Let g be a generator
of G, then for a (column/row) vector A ∈ Znp we denote by gA the vector

C = (gA1 , . . . , gAn). Furthermore, let CB be the vector (gA1B1 , . . . , gAnBn).
Let X0, X1 be random variables distributed over X and Y be a random vari-

able over a set Y, then we de�ne the statistical distance between X0 and X1 as

∆(X0;X1) =
∑
x∈X 1/2|Pr[X0 = x]−Pr[X1 = x]|. Moreover, let∆(X0;X1|Y) def=

∆((Y,X0); (Y,X1)) be the statistical distance conditioned on Y .

2.1 Model of Leakage

In this work, we assume that the memory of a physical device is split into two
parts, which leak independently. We model this in form of a leakage game, where
the adversary can adaptively learn information from each part of the memory.
More formally, let L,R ∈ {0, 1}s be the two parts of the memory, then for a
parameter λ ∈ N, we de�ne a λ-leakage game played between an adaptive adver-
sary A � called a λ-limited adversary � and a leakage oracle Ω(L,R) as follows.
For some t ∈ N, the adversary A can adaptively issue a sequence {(fi, xi)}ti=1 of
requests to the oracle Ω(L,R), where xi ∈ {L,R} and fi : {0, 1}s → {0, 1}λi . For
the ith query the oracle replies with fi(xi). The only restriction is that in total
the adversary does not learn more than λ bits from each L and R. In the follow-
ing, let Out(A, Ω(L,R)) be the output of A at the end of this game. Without
loss of generality, we assume that Out(A, Ω(L,R)) := (f1(x1), . . . , ft(xt)).

7

Leakage from Computation. So far, we discussed how to model leakage from
the memory of a device, where the memory is split into two parts (L,R). If the
physical device carries out �some computation� using its memory (L,R), then
this computation leaks information to the adversary. We model this in form of
a two-party protocol Π = (PL, PR) executed between the parties PL and PR.

Initially, the party PL holds L, while PR holds R. The execution of Π with
initial inputs L and R, denoted by Π(L,R), proceeds in rounds. In each round
one player is active and sends messages to the other one. These messages can
depend on his input (i.e., his initial state), his local randomness, and the messages
that he received in earlier rounds. Additionally, the user of the protocol (or the
adversary � in case the user is malicious) may interact with the protocol, i.e., he
may receive messages from the players and send messages to them. For simplicity,
we assume that messages that are sent by the user to the protocol are delivered
to both parties PL and PR. At the end of the protocol's execution, the players
PL and PR (resp.) may output a value L′ and R′ (resp.). These outputs may be
viewed as the new internal state of the protocol.

One natural way to describe the leakage of the computation (and memory)
of such a protocol is to allow the adversary to adaptively pick at the begin-
ning of each round a leakage function f and give f(state) to the adversary.
Here, state contains the initial state of the active party, its local randomness
and the messages sent and received during this round. Indeed, we allow the
adversary to learn such leakages. To ease description, we consider however a
stronger model, and use the concept of a leakage game introduced earlier in this
section. More precisely, for player Px ∈ {PL, PR}, we denote the local random-
ness that is used by Px as ρx, and all the messages that are received or sent
(including the messages from the user of the protocol) by Mx. At any point in
time, we allow the adversary A to play a λ-leakage game against the leakage
oracle Ω((L, ρL,ML); (R, ρR,MR)). A technical problem may arise if A asks for
leakages before sending regular messages to the players. In such a case parts of
Mx may be unde�ned, and for simplicity, we will set them to constant 0. For
some initial state (L,R), we denote the output of A after this process with A
� (Π(L,R)→ (L′, R′)).

As we are interested in the continuous leakage setting, we will mostly consider
an adversary that runs in many executions of A � (Π(L,R)→ (L′, R′)). For
the ith execution of the protocol Π(Li−1, Ri−1), we will write

A�
(
Π(Li−1, Ri−1)→ (Li, Ri)

)
,

where the current initial state of this round is (Li−1, Ri−1) and the new state of
PL and PR will be (Li, Ri). After A �

(
Π(Li−1, Ri−1)→ (Li, Ri)

)
, we assume

that the players PL and PR erase their current state except for their new state Li

and Ri, respectively. For the ith execution of A�
(
Π(Li−1, Ri−1)→ (Li, Ri)

)
,

we let the adversary interact with the leakage oracle Ω((Li−1, ρiL,M
i
L); (R

i−1, ρiR,
M i

R)). If A is a λ-limited adversary, then we allow him to learn up to λ bits from
the oracle in each such execution.

8

2.2 Leakage-resilient Storage

A leakage-resilient storage (LRS) Φ = (Encode,Decode) allows to store a secret in
an �encoded form� such that even given leakage from the encoding no adversary
learns information about the encoded values. A simple LRS for the independent
leakage model can be based on two source extractors. More precisely, an LRS
for the independent leakage model is de�ned for message spaceM and encoding
space L ×R as follows:

� Encode :M→ L×R is a probabilistic, e�ciently computable function and
� Decode : L×R →M is a deterministic, e�ciently computable function such
that for every S ∈M we have Decode(Encode(S)) = S.

An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈ M and any λ-limited
adversary A, we have

∆(Out(A, Ω(L,R));Out(A, Ω(L′, R′))) ≤ ε,

where (L,R) := Encode(S) and (L′, R′) := Encode(S′).
We consider a leakage-resilient storage scheme that allows to e�ciently store

elements S ∈ Fm for some m ∈ N. Namely, we propose Φn,mF = (Encoden,mF ,
Decoden,mF) de�ned as follows:

� Encoden,mF (S) �rst selects L ← Fn \ {(0n)} at random, and then samples
R← Fn×m such that L ·R = S. It outputs (L,R).

� Decoden,mF (L,R) outputs L ·R.

The following lemma shows that Φn,mF is a secure LRS. The proof uses the fact
that an inner product over a �nite �eld is a two-source extractor [7,28] and
appears in the full version.

Lemma 1. Let m,n ∈ N with m < n and let F such that |F| = Ω(n). For
any 1/2 > δ > 0, γ > 0 the LRS Φn,mF as de�ned above is (λ, ε)-secure, with
λ = (1/2− δ)n log |F| − log γ−1 and ε = 2m(|F|m+1/2−nδ + |Fm| γ).

The following is an instantiation of Lemma 1 for concrete parameters.

Corollary 1. Suppose |F| = Ω(n) and m < n/20. Then, LRS Φn,mF is (0.3 ·
|Fn| , negl(n))-secure, for some negligible function negl.

3 Leakage-Resilient Refreshing of LRS

For a secret S and a leakage resilient storage Φ = (Encode,Decode) with mes-
sage spaceM, we develop a probabilistic protocol (L′, R′)← Refresh(L,R) that
securely refreshes (L,R) ← Encode(S), even when the adversary can continu-
ously observe the computation from the refreshing process. The only additional
assumption that we make is that the protocol has access to a simple leak-free
source O of correlated randomness.

9

Initially, PL holds L and PR holds R. At any point during the execution of
the protocol, the adversary can interact with a leakage oracle and learn infor-
mation about the internal state of PL and PR. At the end the players output
the �refreshed� encoding (L′, R′), i.e., the new state of the protocol. Notice that
the only way in which the adversary can �interact� with the protocol is via the
leakage oracle.

For correctness, we require that Decode(L,R) = Decode(L′, R′) Informally,
for security, we require that no λ-limited adversary can learn any signi�cant
information about S (for some parameter λ ∈ N). We will de�ne the security
of the refreshing protocol using an indistinguishability notion. Intuitively, the
de�nition says that for any two secrets S, S′ ∈ M the view (i.e., the leakage)
resulting from the execution of the refreshing of secret S is statistically close to
the view from the refreshing of secret S′. Before we formally de�ne security of
our refreshing, we consider the following experiment, which runs the refreshing
protocol for ` rounds and lets the adversary play a leakage game in each round.
For a protocol Π, an LRS Φ, a λ-bounded adversary A, ` ∈ N and S ∈ M, we
have Exp(Π,Φ)(A, S, `):

1. For a secret S, we generate the initial encoding as (L0, R0)← Encode(S).
2. For i = 1 to ` run A against the ith round of the refreshing protocol: A �(

Π(Li−1, Ri−1)→ (Li, Ri)
)
.

3. Return whatever A outputs.

Wlog. we assume that A outputs just a single bit b ∈ {0, 1}. To simplify notation,
we will sometimes omit to specify Φ in Exp(Π,Φ)(A, S, `) explicitly. We are now
ready to de�ne security of a refreshing protocol.

De�nition 1 (A (`, λ, ε)-refreshing protocol). For a LRS Φ = (Encode,
Decode) with message space M, a refreshing protocol (Refresh, Φ) is (`, λ, ε)-
secure, if for every λ-limited adversary A and any two secrets S, S′ ∈ M, we
have that ∆(Exp(Refresh,Φ)(A, S, `); Exp(Refresh,Φ)(A, S′, `)) ≤ ε.

In the rest of this section, we construct a secure refreshing protocol for the
LRS scheme Φn,mF = (Encoden,mF ,Decoden,mF) from Section 2.2. Our protocol can
refresh an encoding (L,R) ← Encoden,mF (S) any polynomial number of times,
and guarantees security for λ being a constant fraction of the length of L and
R (cf. Theorem 1 and Corollary 2 for the concrete parameters). To ease nota-
tion, we often omit to specify Φn,mF when talking about the refreshing protocol
(Refreshn,mF , Φn,mF) and just write Refresh.

As outlined in the introduction, we assume that the players have access to
a non-uniform source of randomness. More precisely, they may access an oracle
O that samples pairs (A,B) ∈ Fn × NonSingn×m(F) such that A 6= (0n) and
A · B = (0m). In each iteration the players will sample the oracle twice: once
for refreshing the share of PR (denote the sampled pair by (A,B)), and once for
refreshing the share of PL (denote the sampled pair by (Ã, B̃)). The protocol is
depicted on Fig. 1. To understand the main idea behind the protocol, the reader
may initially disregard the checks (in Steps 1 and 4) that L and R′ have full

10

rank (these checks were introduced only to facilitate the proof and only occur
with very small probability). The reader may also initially assume that m = 1
(the case of m > 1 is a simple generalization of the m = 1 case). The main idea
of our protocol is that �rst the players generate the value X ∈ Fn×m such that
L ·X = (0m), and then in Steps 3 the player PR sets R′ := R+X (note that, by
simple linear algebra L ·R′ = L · (R+X) = L ·R+L ·X = L ·R). Symmetrically,
later, the players generate Y ∈ Fn such that Y · R′ = (0m) and set (in Step 6)
L′ = L+ Y . By a similar reasoning as before we have L′ ·R′ = L ·R′(= L ·R).
The above analysis gives us the correctness of our protocol.

Lemma 2 (Correctness of the refreshing). Assuming that the players PL

and PR did not abort, we have for any S ∈ Fm: Decoden,mF (Refreshn,mF (S)) = S.

Protocol (L′, R′)← Refreshn,m
F (L,R):

Input (L,R): L ∈ Fn is given to PL and R ∈ Fn×m is given to PR.

Refreshing the share of PR:

1. If L does not have a full rank then the players abort. Let (A,B)← O and give A
to PL and B to PR.

2. Player PL generates a random non-singular matrix M ∈ Fn×n such that L ·M = A
and sends it to PR.

3. Player PR sets X := M ·B and R′ := R+X.

Refreshing the share of PL:

4. If R′ does not have a full rank then the players abort. Let (Ã, B̃)← O and give Ã
to PL and B̃ to PR.

5. Player PR generates a random non-singular matrix M̃ ∈ Fn×n such that M̃ ·R′ = B̃
and sends it to PL.

6. Player PL sets Y := Ã · M̃ and L′ := L+ Y .

Output: The players output (L′, R′).

The adversary plays a λ-leakage game against:

Ω
(
(L,A,M, Ã, M̃) ; (R,B,M, B̃, M̃)

)

Fig. 1. Protocol Refreshn,m
F . The oracle O samples randomly pairs (A,B) ∈ Fn ×

NonSingn×m(F) such that A 6= (0n) and A ·B = (0m). The text in the frame describes
the leakage game played by the adversary. Note that sampling the random matrices in
Steps 2 and 5 can be done e�ciently.

We now state our main theorem which shows that the protocol Refreshn,mF
from Figure 1 satis�es De�nition 1. In the full version of this paper, we show that
our refreshing is secure even if the adversary has some (not necessarily short)
auxiliary information about the encoding.

Theorem 1 (Security of Refreshn,mF). Let m/3 ≤ n, n ≥ 16 and ` ∈ N. Let
n,m and F be such that Φn,mF is (λ, ε)-secure (for some λ and ε). The protocol
Refreshn,mF is a (`, λ/2 − 1, ε′)-refreshing protocol for an LRS Φn,mF with ε′ :=
2` |F|m (3 |F|m ε+m |F|−n−1).

11

For the proof of this theorem, we will need to show that any adversary A that
interacts for ` iterations with the refreshing experiment ExpRefresh (as given in
De�nition 1), will only gain a negligible (in n) amount of information about the
encoded secret S. Notice that this in particular means that A's interaction with
the leakage oracle given in the frame of Figure 1 will not provide the adversary
with information on the encoded secret. More formally, we will show that for
every (λ/2− 1)-limited A and every S, S′ we have:

∆(ExpRefresh(A, S, `); ExpRefresh(A, S′, `)) ≤ 2` |F|m (3 |F|m ε+m |F|−n−1). (1)

This will be proven using the standard technique called the �hybrid argument�
by creating a sequence of �hybrid distributions�. We will show that the �rst dis-
tribution in this sequence is statistically very close to ExpRefresh(A, S, `), while the
latter is close to ExpRefresh(A, S′, `). Moreover, each two consecutive distributions
in the sequence will be statistically close. Hence, by applying the triangle inequal-
ity multiple times, we will obtain that ExpRefresh(A, S, `) and ExpRefresh(A, S′, `)
are close. The proof of the theorem is deferred to the full version of this paper.
Combining Theorem 1 with Corollary 1 we get the following.

Corollary 2. Let n ∈ N be the security parameter. Suppose |F| = Ω(n) and
let m = o(n). Then Refreshn,mF is a (`, 0.15 · n log(|F|) − 1, negl(n))-refreshing
protocol for the LRS Φn,mF , where ` is a polynomial in n and negl(n) is some
negligible function.

4 Identi�cation and Signature Schemes

In an identi�cation scheme ID a prover attempts to prove its identity to a
veri�er. For a security parameter k, ID consists out of three PPT algorithms
ID = (KeyGen,P,V):

� (pk , sk)← KeyGen(1k): It outputs the public parameters of the scheme and
a valid key pair.

� (P(pk , sk),V(pk)): An interactive protocol in which P tries to convince V of
its identity by using his secret key sk . The veri�er V outputs either accept
or reject .

We require that ID is complete. This means that an honest prover will always
be accepted by the veri�er. The standard security de�nition of an identi�cation
scheme ID considers a polynomial-time adversary A that inputs the public key
pk and interacts with the prover P(pk , sk) playing the role of a veri�er. Then,
A tries to impersonate P(pk , sk) by engaging in an interaction with V(pk). We
say that the scheme is secure if every polynomial-time adversary A impersonates
the prover with only negligible probability.

We extend this standard security to incorporate leakage from the prover's
computation. To this end, we let the adversary take the role of V in the exe-
cution of the protocol (P(pk , sk),V(pk)) and allow him to obtain leakage from
the prover's execution. We denote a single execution of this process by A �(
P(sk)→ sk ′

)
, where sk ′ may be the updated key.

12

De�nition 2 (Security against Leakage and Impersonation Attacks (ID-
LEAK security)). Let k ∈ N be the security parameter. An identi�cation
scheme ID = (KeyGen,P,V) is λ(k)-ID-LEAK secure if for any PPT λ(k)-
limited adversary A it holds that the experiment below outputs 1 with probability
at most negl(k):

1. The challenger samples (pk , sk0)← KeyGen(1k) and gives pk to A.
2. Repeat for i = 0 . . . poly(k) times: A �

(
P(sk i)→ sk i+1

)
, where in each

execution the adversary can interact with the honest prover and gets up to
λ(k) bits about the current secret state sk i and the randomness that is used.

3. A impersonates the prover and interacts with V(pk). If V(pk) accepts, then
output 1; otherwise output 0.

Notice that the adversary is allowed to obtain λ bits of information for each
execution of the identi�cation protocol.

4.1 A Construction of a Leakage-Resilient Identi�cation Protocol

Our construction is based on the standard Okamoto identi�cation scheme [25].
Let g1 and g2 be two generators of G such that α = logg1(g2) is unknown. The
secret key sk is equal to (x1, x2)← Z2

p and the public key pk is gx1
1 · g

x2
2 .

1. P chooses (w1, w2)← Z2
p, computes a := gw1

1 gw2
2 , and sends a to V.

2. V chooses c← Zp and sends it to P.
3. P computes z1 := w1 + cx1 and z2 := w2 + cx2 and sends (z1, z2) to V.
4. V accepts if and only if gz11 g

z2
2

?= a · pk c.

We next describe how to implement the Okamoto scheme such that it remains
secure even if the computation of the prover is carried out on a leaky device.
Veri�cation is as in the standard Okamoto scheme, while the key generation
and the computation of the prover is adjusted to protect against leakage at-
tacks. More precisely, instead of using (x1, x2) ∈ Z2

p as secret key, we store

(L, (R1, R2))← Encoden,2F (x1, x2) and implement the computation of the prover
as a two-party protocol run between PL(L) and PR(R1, R2). To this end, we will
use the fact that the Okamoto identi�cation protocol only requires to compute
a linear function of the encoded secret key. The protocol is given in Figure 2.

Finally, we will combine our identi�cation protocol with our protocol for
refreshing to construct an identi�cation scheme Oka = (KeyGen,P,V,Refreshn,2Zp

)
that is ID-LEAK secure. More precisely, in the ith execution of (P(pk , (L,R)),
V(pk)) after Step 5 in Figure 2, we execute (Li+1, Ri+1) ← Refreshn,2Zp

(Li, Ri)
and set the prover's secret key for the next round to sk i+1 := (Li+1, Ri+1).
Notice that in such a case, we include into the leakage oracle from the �gure the
variables that are used by the refreshing and let the adversary interact in each
round with the following leakage oracle:

Ω
(
(Li, U, Z,A,M, Ã, M̃) ; (Ri,W,A,M, Ã, M̃)

)
.

13

Key generation KeyGen(1k):

Sample (p,G) ← G(1k), generators g1, g2 ← G, S = (x1, x2) ← Z2
p and

(L,R)← Encoden,2
Zp

(S). Set sk = (L,R) and pk = (p, g1, g2, h := gx1
1 gx2

2).

The identi�cation protocol (P(pk , (L,R)),V(pk))

Input for prover (L,R): L is given to PL and R is given to PR.

Prover P(pk , (L,R)): Veri�er V(pk):

1. PR samples (W1,W2) ← Z2n
p , computes U :=

gW1
1 � gW2

2 and sets W := (WT
1 ,W

T
2). The vec-

tor U is sent to PL (� is component-wise mul-
tiplication of vectors).

2. PL computes V = UL and a =
∏

i Vi. The value
a is sent to V.

3. Senc c← Zp to P.

4. PR computes the n × 2 matrix Z := W + cR
and sends it to PL.

5. PL computes (z1, z2) = L·Z. The values (z1, z2)
are given to V.

At any time, the adversary can play a λ-
leakage game against: Ω ((L,U, Z) ; (R,W)).
We set Z = 0 for leakage queries that are
asked before c is �xed.

6. Accept i� gz1
1 gz2

2 = ahc.

Fig. 2. The key generation algorithm and the protocol (P(pk , (L,R)),V(pk)) for iden-
ti�cation. (P(pk , (L,R)),V(pk)) is an interactive protocol between a prover P and a
veri�er V.

It is easy to see that the above protocol satis�es the completeness property.
This is due to the correctness of the refreshing protocol, and the fact that mes-
sages that are exchanged by the parties P and V in Figure 2 are as in the original
Okamoto protocol. The security of our protocol Oka is proven in the following
theorem.

Theorem 2. Oka = (KeyGen,P,V,Refreshn,2Zp
) is ((0.15 · n − 3) log p − 1)-ID-

LEAK secure, if the DL assumption holds.

The proof follows from the following three observations:

1. We �rst consider a single execution of the protocol (P(pk , (L,R)),V(pk))
from Figure 2 and prove a simple property in the information theoretic set-
ting. Namely, we show that the there exists an (unbounded) simulator with
access to a leakage oracle Ω(L∗, R∗) can simulate A(pk)'s view in A �
(P(L,R))→ (L,R)). In this step the analysis neglects the leakage from the
refreshing process as we consider only a single run of the protocol.

14

2. We next consider the setting where unbounded A runs in many iterations of
A�

(
P(Li, Ri))→ (Li+1, Ri+1)

)
, where we also take into account that the

refreshing of (Li, Ri) leaks information. We will combine our results from
the last section with the simulator de�ned in 1 to show that any unbounded
adversary will only learn a negligible amount of information about the secret
key.

3. Finally, we will argue why this proves the ID-Leak security of our scheme. To
this end, we rely on a recent result of Dodis et al. [2], which shows security
of the original Okamoto scheme for keys sampled from a high average min-
entropy source.

Leakage Resilient Signatures It is well known fact that the Okamoto iden-
ti�cation protocol can be turned into a signature scheme using the Fiat-Shamir
heuristic. Similarly, we can turn the scheme from Figure 2 into a leakage resilient
signature scheme which can be proven secure against continuous leakage attacks
in the random oracle model under the DL assumption.

5 Leakage Resilient Encryption

In this section, we construct an e�cient encryption schemes that is secure against
continuous leakage attacks. Our construction is based on a variant of the ElGa-
mal cryptosystem and is proven secure against adaptive chosen message and
leakage attacks (CCLA2) in the Random Oracle model.

5.1 De�nitions

For security parameter k a public-key encryption scheme PKE = (KeyGen,Encr,
Decr) consists of three PPT algorithms.

� (pk , sk)← KeyGen(1k): It outputs a valid public/secret key pair.
� c ← Encr(pk ,m): That is, a probabilistic algorithm that on input some
message m and the public key pk outputs a ciphertext c = Encr(pk ,m).

� m = Decr(sk , c): The decryption algorithm takes as input the secret key sk
and a ciphertext c such that for any m we have m = Decr(sk ,Encr(pk ,m)).

To de�ne security we allow the adversary to query the decryption oracle
on some chosen ciphertext c, and additionally allow him to obtain a bounded
amount of leakage from the decryption process. This may be repeated many
times, hence, eventually the adversary may learn a large amount of information.
Formally, we de�ne security against adaptive chosen ciphertext and leakage at-
tacks (IND-CCLA2 security) as follows.

De�nition 3 (Security against Chosen Ciphertext Leakage Attacks
(CCLA2-secure)). Let k ∈ N be the security parameter. A public-key encryp-
tion scheme PKE = (KeyGen,Encr,Decr) is λ(k)-IND-CCLA2 secure if for any
PPT λ(k)-limited adversary A the probability that the experiment below outputs
1 is at most 1/2 + negl(k).

15

1. Sample b← {0, 1} and (pk , sk)← KeyGen(1k). Give pk to A.
2. Repeat until A(1k) outputs (m0,m1): A(1k) �

(
Decr(sk , c)→ sk ′

)
, where for

each decryption query c the adversary additionally retrieves up to λ(k) bits
about the current secret state sk . Set the key for the next round to sk := sk ′.

3. The challenger computes c∗ ← Encr(pk ,mb) and gives it to A.
4. Repeat until A(1k) outputs b′: A(1k) �

(
Decr(sk , c)→ sk ′

)
, where for each

decryption query c 6= c∗ the adversary additionally retrieves up to λ(k) bits
about the current secret state sk . Set the key for the next round to sk := sk ′.

5. If b = b′ then output 1; otherwise output 0.

The weaker notion of CCLA1-security can be obtained by omitting Step 4 in the
experiment above.

5.2 E�cient IND-CCLA2-secure Encryption

An important tool of our encryption scheme is a simulation-sound (SS) NIZK.
Informally, a NIZK proof system is said to be simulation sound, if any adver-
sary has negligible advantage in breaking soundness (i.e., forging an accepting
proof for an invalid statement), even after seeing a bounded number of proofs
for (in)valid statements. We refer the reader to [3,29] for the formal de�nition of
NIZKs and simulation soundness. SS-NIZKs can be instantiated in the common
random string model using the Groth-Sahai proof system [18] and the techniques
of [17]. Unfortunately, this results into an impractical scheme. In contrast, in the
random oracle model using the Fiat-Shamir heuristic [14] simulation soundness
can be achieved e�ciently. In particular, it has been proven in [1] that the stan-
dard Chaum-Pedersen protocol [6] for proving equivalence of discrete logarithms
can be turned into a SS-NIZK using the Fiat-Shamir heuristic. Let in the fol-
lowing (Prov,Ver) denote such a non-interactive proof system for proving the
equivalence of discrete logarithms.

Our scheme can be viewed as a leakage-resilient implementation of the fol-
lowing simple variant of the ElGamal encryption scheme using the above sim-
ulation sound NIZK. Let g1, g2 be two generators of a prime order p group G.
Let sk = (x1, x2) ∈ Z2

p be the secret key and pk = (g1, g2, h = gx1
1 · g

x2
2) the

public key. To encrypt a message m ∈ G, pick uniformly r ← Zp and compute
c = (u := gr1, v := gr2, w := hrm,π), where π := Prov(u, v, r) is a NIZK proof
of logg1(u) = logg2(v). To decrypt c = (u, v, w, π), verify the NIZK, and if it
accepts, output w · (u−x1 · v−x2).

It can easily be shown that this scheme achieves standard CCA2 security in
the RO model. In this section, we will show how to implement this scheme such
that it remains secure even if the decryption continuously leaks information.
Similar to our transformation of the Okamoto scheme, we store the secret key
(x1, x2) as (L,R) ← Encoden,2F (x1, x2) and implement the computation of the
decryption process as a two-party protocol run between PL(L) and PR(R). The
protocol for key generation and decryption is given in Figure 3. Finally, we will
combine the protocol from Figure 3 with our refreshing protocol from Section 3
to construct an encryption scheme PKE = (KeyGen,Encr,Decr,Refreshn,2Zp

) that
is CCLA2 secure.

16

Key generation KeyGen(1k):

Let (p,G) ← G(1k), g1, g2 ← G, S = (x1, x2) ← Z2
p and (L,R) ← Encoden,2

Zp
(S).

Let sk = (L,R) and pk = (p, g1, g2, h := gx1
1 gx2

2).

Encryption Encr(pk ,m) :

Sample r ← Zp uniformly at random and compute c = (u := gr
1 , v :=

gr
2 , w := hrm). Run the NIZK prover Prov(u, v, r) to obtain a proof π for

logg1
(u) = logg2

(v). Return (c, π).

The protocol for decryption Decr(sk , c) :

Input for decryption sk := (L,R): L is given to PL and R is given to PR.

Both parties obtain c and parse it as (u, v, w, π). If Ver(u, v, π) = reject then abort;
otherwise proceed as follows:

1. PR computes the vector U := uR1�vR2 . U is sent to PL (� denotes component-
wise multiplication of vectors).

2. PL computes V = U−L and outputs w
∏

i Vi.

Notice that we can omit the leakage from the veri�cation of the NIZK as it
only includes publicly known values. At any time, the adversary can play a
λ-leakage game against: Ω ((L,U) ; R).

Fig. 3. Our public-key encryption scheme PKE.

The security analysis follows the outline given in the last section. We �rst
show that the leakage from a single decryption query can be simulated in a per-
fect way with just access to a leakage oracle Ω(L∗, R∗). For this simulation to
go through, we require that an adversary can only observe leakage from opera-
tions that involve the secret key, if the decryption oracle is queried on a valid
ciphertexts. We call a ciphertext valid, if logg1(u) = logg2(v) holds. Notice that
this is also the reason why we need NIZKs and cannot use the standard tech-
niques to get CCA1/2 security based on hash proof systems. In the next step,
we show that even when the adversary can continuously obtain leakage from the
decryption, he will not be able to learn information about the encoded secret
key. To this end, we will combine the scheme from Figure 3 with our refreshing
protocol Refreshn,2Zp

. In the following theorem, we show IND-CCLA2 security of
our scheme.

Theorem 3. PKE is (0.15·n log p−1)-IND-CCLA2 secure in the random oracle
model, if the DDH assumption holds.

6 A General Paradigm for Leakage-Resilient

Cryptographic Schemes

In the last sections, we proposed leakage-resilient implementations of standard
cryptographic schemes. Namely, we showed how to implement the standard
Okamoto identi�cation scheme and a variant of the ElGamal encryption scheme

17

such that they satisfy strong security guarantees even under continuous leakage
attacks. The security proof of both schemes relied on very similar observations,
namely:

1. The underlying cryptographic scheme (e.g., the Okamoto scheme or the El-
Gamal variant) computes only a linear function of the secret key. Notice that
in the examples of the last section the linear function was computed in the
exponen. This is not a problem as long as the computation can be carried
out e�ciently. This was indeed the case for the schemes of the last sections.

2. The secret key is hidden information theoretically even given the protocol
transcript that an adversary obtains when interacting with the underlying
cryptographic scheme. In the protocols from the last section, for instance,
the secret key (x1, x2) was information theoretically hidden even given the
corresponding public key. Furthermore, for the Okamoto scheme this holds
even given (a, z1, z2), which were sent by the prover to the veri�er.

Various other cryptographic schemes satisfy the above properties, and hence can
be made secure against continuous leakage attacks. For instance, the Pedersen
commitment scheme [26], which is information-theoretically hiding and at the
same time only requires to compute a linear function of its secrets.4 Another
example of the above paradigm is a variant of the linear Cramer-Shoup cryp-
tosystem as presented in [30]. Notice that as in the encryption scheme from
Section 5, this requires to use as a check for the validity of the ciphertexts a
NIZK proof system. One can instantiate such a NIZK in the standard model us-
ing the Groth-Sahai proof system [18]. This gives us an e�cient CCLA1-secure
public-key encryption scheme in the standard model, and a rather ine�cient
CCLA2-secure scheme using the extensions of [17]. We suggest that many other
standard cryptographic schemes can be proven secure following the ideas that
were presented in this paper.

Acknowledgments. The authors are grateful to Francesco Davi, Yevgeniy Dodis,
Krzysztof Pietrzak, Leonid Reyzin and Daniele Venturi for helpful discussions
on the problem of leakage-resilient refreshing.

References

1. Michel Abdalla, Xavier Boyen, Céline Chevalier, and David Pointcheval. Dis-
tributed public-key cryptography from weak secrets. In Public Key Cryptography,
pages 139�159, 2009.

2. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryp-
tography in the bounded-retrieval model. In CRYPTO, pages 36�54, 2009.

3. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In STOC, pages 103�112, 1988.

4. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
EUROCRYPT, pages 89�108, 2011.

4 Notice that we computed a Pedersen commitment as part of the prover's protocol
in our implementation of the Okamoto scheme.

18

5. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In FOCS, pages 501�510, 2010.

6. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
CRYPTO, pages 89�105, 1992.

7. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput., 17(2):230�261,
1988.

8. Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient stor-
age. In SCN, volume 6280 of Lecture Notes in Computer Science, pages 121�137.
Springer, 2010.

9. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Cryptography against continuous memory attacks. In FOCS, pages 511�520, 2010.

10. Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel Wichs. How to store a
secret on continually leaky devices. Accepted to FOCS'11, 2011.

11. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS '08: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science, Washington, DC, USA, 2008. IEEE Computer Society.

12. Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In TCC 2010, volume 5978 of LNCS, pages 343�360. Springer,
2010.

13. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and noisy
cases. In EUROCRYPT, pages 135�156, 2010.

14. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�-
cation and signature problems. In CRYPTO, pages 186�194, 1986.

15. Sha� Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In CRYPTO 2008, volume 5157 of LNCS, pages 39�56. Springer, 2008.

16. Sha� Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In CRYPTO, pages 59�79, 2010.

17. Jens Groth. Simulation-sound nizk proofs for a practical language and constant
size group signatures. In ASIACRYPT, pages 444�459, 2006.

18. Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear
groups. In EUROCRYPT, pages 415�432, 2008.

19. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In CRYPTO, pages 463�481, 2003.

20. Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual
leakage. In CRYPTO, pages 41�58, 2010.

21. Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In ASI-
ACRYPT, pages 595�612, 2010.

22. Allison Lewko, Mark Lewko, and Brent Waters. Achieving leakage resilience
through dual system encryption. to appear at TCC 2011, 2011.

23. Allison Lewko, Mark Lewko, and Brent Waters. How to leak on key updates. to
appear at STOC 2011, 2011.

24. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 278�296. Springer, 2004.

25. Tatsuaki Okamoto. Provably secure and practical identi�cation schemes and cor-
responding signature schemes. In CRYPTO, pages 31�53, 1992.

26. Torben P. Pedersen. Non-interactive and information-theoretic secure veri�able
secret sharing. In CRYPTO, pages 129�140, 1991.

19

27. Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT 2009,
volume 5479 of LNCS, pages 462�482, 2009.

28. Anup Rao. An exposition of bourgain's 2-source extractor. Electronic Colloquium
on Computational Complexity (ECCC), 14(034), 2007.

29. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543�553, 1999.

30. Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074, 2007. http://eprint.iacr.org/.

20

