
Short Signatures From Weaker Assumptions

Dennis Hofheinz1, Tibor Jager2, and Eike Kiltz2

1 Institut für Kryptographie und Sicherheit, Karlsruhe Institute of Technology,
Germany.

Dennis.Hofheinz@kit.edu
2 Horst-Görtz Institute for IT Security, Ruhr-University Bochum, Germany.

{tibor.jager,eike.kiltz}@rub.de

Abstract. We provide constructions of (m, 1)-programmable hash func-
tions (PHFs) for m ≥ 2. Mimicking certain programmability properties
of random oracles, PHFs can, e.g., be plugged into the generic construc-
tions by Hofheinz and Kiltz (J. Cryptol. 2011) to yield digital signature
schemes from the strong RSA and strong q-Diffie-Hellman assumptions.
As another application of PHFs, we propose new and efficient construc-
tions of digital signature schemes from weaker assumptions, i.e., from
the (standard, non-strong) RSA and the (standard, non-strong) q-Diffie-
Hellman assumptions.

The resulting signature schemes offer interesting tradeoffs between ef-
ficiency/signature length and the size of the public-keys. For example,
our q-Diffie-Hellman signatures can be as short as 200 bits; the signing
algorithm of our Strong RSA signature scheme can be as efficient as the
one in RSA full domain hash; compared to previous constructions, our
RSA signatures are shorter (by a factor of roughly 2) and we obtain a
considerable efficiency improvement (by an even larger factor). All our
constructions are in the standard model, i.e., without random oracles.

Keywords: digital signatures, RSA assumption, q-DH assumption, pro-
grammable hash functions.

1 Introduction

Digital Signatures are one of the most fundamental cryptographic primitives.
They are used as a building block in numerous high-level cryptographic proto-
cols. Practical signature schemes are known whose security is based on relatively
mild intractability assumptions such as the RSA [6] or the (bilinear) Computa-
tional Diffie-Hellman (CDH) assumption [13]. However, their security can only
be proved in the random oracle model [5] with all its limitations (e.g., [17, 26]).

Standard Model Signatures. Signature schemes in the standard model (i.e.,
without using random oracles) are often considerably less efficient or based on
much stronger assumptions. While tree-based signature schemes can be built
from any one-way function [48], these constructions are far from practical. On the
other hand, “Hash-and-sign” signatures are considerably more efficient, but the

most efficient of these schemes rely on specific “strong” number theoretic hard-
ness assumptions which we call Strong q-assumptions.3 In Strong q-assumptions,
an adversary is provided with a polynomial number of random “solved instances”
and has to compute a new solved instance of its choice. For example, the schemes
in [23, 29, 28, 36, 38, 50] are based on the Strong (or, Flexible) RSA assumption
and the schemes in [11, 38, 50] are based on the Strong q-Diffie-Hellman as-
sumption. Both assumptions are considerably stronger than their “non-strong”
counterparts (i.e., the q-Diffie-Hellman and the RSA assumptions, respectively),
in which an adversary has to solve a given, fixed instance. (See the full version
of this paper [34] for a discussion of the exact difference between strong and
non-strong assumptions.)

Programmable Hash Functions. In order to mimic certain “programma-
bility properties” of random oracles, Hofheinz and Kiltz [38] introduced the
combinatorial concept of programmable hash functions (PHF). (See Section 3
for a formal definition.) Among a number of other applications, they used PHFs
as a building block for efficient and short hash-and-sign signatures based on the
Strong RSA and the Strong q-Diffie-Hellman assumptions. Concretely, signa-
tures in the Strong RSA based HK signature scheme SigRSA[H] are of the form
sig(M) = (H(M)1/e mod N, e), where N = pq is a public RSA modulus, H(·) is
a (m, 1)-PHF, and e is a short prime (chosen at random during the signing pro-
cess). A given HK signature (σ, e) is verified by checking if σe = H(M) mod N .
The efficiency of the HK signature scheme is dominated by the time needed to
generate the prime e, which (as shown in [38]) depends on the parameter m
of the PHF: the bigger m, the smaller e and consequently the more efficient is
the signing process.4 Over bilinear groups there exists a similar construction,
SigS-q-DH[H], whose security is based on the Strong q-DH assumption. The main
disadvantages of HK signatures is that their security relies on Strong assump-
tions, i.e., on the Strong RSA (Strong q-DH) and not on the standard RSA
(q-DH) assumption.

RSA signatures. As a step towards practical signatures from the (standard)
RSA assumption, Hohenberger and Waters [40, 39] proposed the first hash-and-
sign signature scheme (HW signatures) whose security is based on the RSA
assumption. HW signatures are computed as sig(M) = g1/P(M) mod N , where
g ∈ Z∗N is a public element and P(M) = e1 · . . . · e|M | is the product of |M |
distinct primes. Here each prime ei is uniquely determined by the i-bit prefix
M|i of the message M , and for each generation of ei a number of primality
tests have to be executed which is the dominant running time of signing (and
verifying). The above signature scheme is only weakly secure under the RSA

3 There are exceptions, e.g., by Waters [53] (CDH assumption in bilinear groups), Ho-
henberger and Waters [40], and the lattice-based schemes [18, 14] (SIS assumption).
However, these are not among the most efficient “Hash-and-sign”-type schemes.

4 We stress that the PHF parameter m does not directly correspond to the number
of signatures that can be created during the security reduction. Rather, m indicates
how many collisions of (honestly generated) e-values we can handle in the reduction.
Hence, the larger m is, the smaller e can be chosen.

assumption, and a chameleon hash has to be used to make it fully secure, thereby
doubling the signature size to two elements from ZN and adding ≈ 2kbit to the
public-key size [39]. The main disadvantage of HW signatures is, however, the
generation and testing of the |M | primes e1, . . . , e|M | necessary to compute the
hash function P(M). Concretely, for k = 80 bits security, HW signatures need
to generate |M | = 160 random primes for the signing process.

1.1 Summary of our Contributions

As the main technical contribution we propose several new constructions of
(m, 1)-PHFs for any m ≥ 1. In particular, we solve the open problem posed
in [38] of constructing deterministic (m, 1)-PHFs for m > 2. Even though our
main applications are digital signatures we remark that PHFs are a very general
framework for designing and analyzing cryptographic protocols in the Diffie-
Hellman and RSA setting. For example, in [38], it was shown that PHFs imply
collision-resistant hash functions and lead to elegant and simple proofs of Wa-
ters’ IBE and signature schemes [53] and its countless variants (e.g., [15, 7]). More
importantly, a large body of cryptographic protocols with security in the stan-
dard model are using — implicitly or explicitly — the partitioning trick that is
formalized in PHFs. To mention only a few examples, this ranges from collision-
resistant hashing [20, 4], digital signature schemes [12, 53] (also in various flavors
[47, 51, 8]), chosen-ciphertext secure encryption [15, 41, 35, 37, 14], identity-based
encryption [9, 10, 42, 18, 1], attribute-based encryption [49] to symmetric authen-
tication [43]. We expect that our new PHF constructions can also be applied to
some of the mentioned applications.

We also show how to use our new (m, 1)-PHFs for generic constructions of
short yet efficient hash-and-sign signatures whose security is based on weaker
hardness assumptions: the q-DH and the RSA assumption. Whereas our q-DH
schemes Sigq-DH[H] are (to the best of our knowledge) the first hash-and-sign
schemes from this assumption, our RSA schemes SigRSA[H] and SigRSA[H] are
conceptually different from HW signatures and we obtain a considerable effi-
ciency improvement. A large number of new signature schemes with different
tradeoffs can be derived by combining the generic signature schemes with PRFs.
An overview of the efficiency of some resulting schemes and a comparison with
existing schemes from [23, 29, 11, 38, 40] is provided in Table 1. Our new schemes
offer different tradeoffs between signature size, efficiency, and public-key size.
The bigger the parameter m in the (m, 1)-PHF, the larger the public-key size,
the shorter the signatures. To obtain extremely short and/or efficient signatures,
the size of the public key can get quite large. Concretely, with a public-key of size
26mbit we obtain 200 bit signatures from the (Strong) q-DH assumption. These
are the shortest knwon standard-model digital signatures in bilinear groups. Re-
markably, SigSRSA[Hcfs] which instatiates the Strong RSA signatures from [38]
with our new (m, 1)-PHF Hcfs for m ≥ 6, results in a hash-and-sign signature
scheme where the signing procedure is dominated by one single modular expo-
nentiation. This is the first RSA-based signature scheme whose signing complex-

ity is not dominated by generating random primes.5 Hence signing is essentially
as efficient as RSA full-domain-hash [6] with the drawback of a huge public-key.

While these short signatures are mostly of theoretical interest and contribute
to the problem of determining concrete bounds on the size of standard-model
signatures, we think that in certain applications even a large public-key is tol-
erable. In particular, our public key sizes are still comparable to the ones of
recently proposed lattice-based signatures [46, 30, 18, 14].

We note furthermore, that it is possible to apply efficiency improvements
from [40] to our RSA-based schemes as well. This allows us to reduce the number
of primality tests required for signing and verification sigificantly. More precisely,
it is possible to transform each signature scheme requiring λ primality tests into
a scheme which requires only λ/c primality tests, at the cost of loosing a factor
of 2−c in the security reduction. For example, Sig∗RSA[HWeak]

§ with m = 11 and
c = 40 is a RSA-based signature scheme which requires only a single primality
test for signing and verification, at the cost of loosing a factor of 2−40 in the
security reduction.

1.2 Details of our Contributions

Our main technical contribution to obtain shorter signatures are several new
constructions of (m, 1)-PHFs for m ≥ 2 (cf. Table 2 in Section 3). Using cover-
free sets, we construct a deterministic (m, 1)-PHF Hcfs with public parameters
of O(km2) group elements. This solves the problem from [38] of constructing
deterministic (m, 1)-PHFs for m > 2. We remark that cover-free sets were al-
ready used in [25, 33, 22] to construct identity-based encryption schemes. Fur-
thermore, we propose a randomized (m, 1)-PHF Hrand with public parameters
of O(m2) group elements and small randomness space. Finally, we construct
a weakly secure deterministic (m, 1)-PHF HWeak with public parameters of m
group elements. The latter PHF already appeared implicitly in the context
of identity/attribute-based encryption [19, 49] (generalizing [9]). Weakly secure
PHFs only yield weakly secure signature schemes that need to be “upgraded”
to fully secure schemes using a chameleon hash function.

RSA Signatures. Our new RSA signatures SigRSA[H] are of the form

sig(M) = (H(M)1/P(s) mod N, s), (1)

where s is a short random bitstring, H(·) is a (m, 1)-PHF, and P(s) := e1·. . .·e|s| is
the product of |s| primes e1, . . . , e|s|, where the ith prime is uniquely determined
by the ith prefix s|i of the randomness s. (If the PHF H is probabilistic, sig
additionally contains a small random bitstring r.) Our security proof is along the
lines of [38], but using P enables a reduction to the RSA assumption (Theorem 7)

5 Since the complexity of finding a random µ-bit prime with error 2−k is O(kµ4), we
expect that for µ ≈ 60 (or, equivalently, using Hcfs with m ≥ 6) a full exponentiation
modulo a 1024-bit integer become roughly as expensive as generating a random µ-bit
prime.

Signature scheme Assumption Sig. Size Efficiency PK size

Waters [53] CDH 320 2× Exp 26k

Boneh-Boyen [11] Strong q-DH 320 1× Exp 640
SigS-q-DH[HWat] [38] Strong q-DH 230 1× Exp 26k
SigS-q-DH[Hcfs] (m=8) Strong q-DH 200 1× Exp 26m

Sigq-DH[HWat,HWat] (m=2) q-DH 230 1× Exp 48k
Sigq-DH[Hcfs,HWat] (m=8) q-DH 200 1× Exp 26m

Cramer-Shoup [23] Strong RSA 2208 1× P160 3k
Gennaro et. al.∗ [29] Strong RSA 2048 1× P160 3k
SigSRSA[HWat] [38] Strong RSA 1104 1× P80 128k
SigSRSA[Hcfs] (m=6) Strong RSA 1068 ≈ 1× Exp 94m
Sig∗SRSA[HWeak] (m=6) Strong RSA 2048 ≈ 2× Exp 9k

Hohenberger-Waters∗ [40] RSA 2048 160× P1024 3k
Sig∗RSA[HWeak] (m=2) RSA 2048 70× P1024 5k
Sig∗RSA[HWeak] (m=4) RSA 2048 50× P1024 7k
SigRSA[HWat] (m=2) RSA 1094 70× P1024 128k
SigRSA[Hrand] (m=4) RSA 1214 50× P1024 32k
SigRSA[Hcfs] (m=4) RSA 1074 50× P1024 40m

Sig∗RSA[HWeak]
§

(m=11) RSA 2048 1× P1024 14k

Table 1: Signature sizes of different schemes. Rows with grey background indicate
new results from this paper. The chosen parameters provide unforgeability with k =
80 bits of security after revealing maximally q = 230 signatures. RSA signatures are
instantiated with a modulus of |N | = 1024 bits, Bilinear signatures in asymmetric
pairings using a BN curve [3] with log p = 160 bits. (In this, we actually ignore the
multiplicative reduction loss between a forger and, e.g., an RSA adversary.) We assume
that elements in G1 can be represented by |G1| = 160 bits, while an element G2 by
|G2| = 320 bits. The description of the bilinear group/modulus N is not counted in the
public key. We assume 2k = 160-bit messages in order to provide k=80 bits of security
(to sign longer messages, we can apply a collision-resistant hash function first). The
efficiency column counts the dominant operations for signing. For Bilinear and RSA
signatures this counts the number of modular exponentiations, for RSA signatures
k×Pµ counts the number of random µ-bit primes that need to be generated to evaluate
function P(·). (For µ � 60, 1 × Pµ takes more time than 1 × Exp.) ∗The RSA-based
chameleon hash function from [39] (which builds upon [2]) was used (adding 1× |ZN |
to signature size). §Security reduction loses an additional factor of 240.

in the standard model. The main conceptual novelty is that we apply P to the
randomness s rather than the message M as in HW signatures. Because the
values s are relatively small, our scheme is considerably more efficient than that
of [40].

Concretely, the length of s is controlled by the PHF parameter m as |s| =
log q+ k/m, where q is an upper bound on the number of signatures the scheme
supports. (See the full version [34] for a formal argument.) For k = 80 bits secu-
rity and q = 230 (as recommended in [6]) we can make use of our new construc-
tions of (m, 1)-PHFs with m ≥ 2. For example, with a (4, 1)-PHF, the bitstring

s can be as small as 50 bits which leads to very small signatures. More impor-
tantly, since the function P(s) only has to generate |s| distinct primes e1, . . . , e|s|
(compared to |M | � |s| primes in HW signatures), the signing and verification
algorithms are considerably faster. The drawback of our new signature scheme
is that the system parameters of H grow with m.

Bilinear Signatures. Our new q-DH signatures Sigq-DH[H] are of the form

sig(M) = (H(M)1/d(s), s), (2)

where again s is a short random bitstring, H is a (m, 1) programmable hash
function, and d(·) is a special (secret) function mapping bitstrings to Zp. Since
D(s) := gd(s) can be computed publicly, verification is done by using the proper-
ties of the bilinear group. Security is proved under the q-DH assumption in the
standard model. Similar to our RSA-based signatures the length of s is controlled
by the PHF parameter m. For example, for m = 8 we obtain standard-model
signatures of size |G| + |s| = 160 + 40 = 200 bits. We have to refer to the full
version [34] for details.

Full-Domain Hash Signatures. We remark that full-domain hash signa-
ture schemes over a homomorphic domain (e.g., RSA-FDH [6] and BLS sig-
natures [13]) instantiated with (m, 1)-PHFs provide efficient m-time signature
schemes without random oracles. This nicely complements the impossibility re-
sults from [26] who show that without the homomorphic property this is not
possible. We remark that an instantiation of RSA-FDH as a m-time signature
scheme was independently observed in [24].

Proof Techniques and Related Work. Our RSA-based signature scheme
represents a combination of techniques from [38] and [40]. Namely, in the basic
RSA-based signature scheme from [38], a signature is of the form (H(M)1/s mod
N, s) for a prime s. The use of a programmable hash function H enables very
efficient schemes, whose security however cannot be reduced to the standard
(non-strong) RSA problem, since a forged signature (H(M)1/s

∗
, s∗) corresponds

to an RSA inversion with adversarially chosen exponent s∗. On the other hand,
the (basic, weakly secure) signature scheme from [40] is of the form g1/P(M) mod
N . The special structure of P (which maps a message M to the product of |M |
primes) makes it possible to prove security under the standard RSA assumption.
However, since P is applied to messages (i.e., 160-bit strings), evaluation of P
requires a large number of primality tests. We combine the best of both worlds
with signatures of the form (H(M)1/P(s) mod N, s) for short (e.g., 40-bit) random
strings s. In contrast to the scheme of [40], this directly yields a fully secure
signature scheme, so we do not need a chameleon hash function.

In the security proof of our RSA signatures we distinguish between two types
of forgers: type I forgers recycle a value from {s1, . . . , sq} for the forgery, where
the si’s are the random bitstrings used for the simulated signatures; type II
forgers use a new value s∗ 6∈ {s1, . . . , sq} for the forgery and therefore are more
difficult to reduce to the RSA assumption. For the reduction of type II forgers to
the RSA assumption we can use a clever “prefix-guessing” technique from [40]

to embed the prime e from the RSA challenge in the function P(·) such that
the product P(s∗) contains e.6 Similar to the proof of HK signatures [38], the
reduction for Type I forgers makes use of the (m, 1) programmability of H(·).

Strong q-DH signatures from [38] can actually be viewed as our q-DH signa-
tures from (2) instantiated with the special function d(s) = x+s (where x is part
of the secret-key). In our scheme, the leverage to obtain security from q-DH is
that the function D(s) := gd(s) acts as a (poly, 1)-PHF. That is, d(·) can be setup
such that (with non-negligible probability) d(si) = x + a(si) for a(si) 6= 0 but
d(s∗) = x, where s1, . . . , sq is the randomness used for the generated signatures
and s∗ is the randomness used for the forgery.

1.3 Open Problems

A number of interesting open problems remain. We ask how to construct (de-
terministic) (m, 1)-PHFs for m ≥ 1 with smaller parameters than the ones from
Table 2. Since the constructions of cover free sets are known to be optimal up to
a log factor, a new method will be required. Furthermore, obtaining truely prac-
tical signatures from the RSA or factoring assumption is still an open problem.
In particular, we ask for a construction of hash-and-sign (strong) RSA signatures
that do not require the generation of primes at signing.

2 Preliminaries

For k ∈ N, we write 1k for the string of k ones, and [k] for {1, . . . , k}. Moreover,
|x| denotes the length of a bitstring x, while |S| denotes the size of a set S.

Further, s
$← S denotes the sampling a uniformly random element s of S. For

an algorithm A, we write z
$← A(x, y, . . .) to indicate that A is a (probabilistic)

algorithm that outputs z on input (x, y, . . .).

2.1 Digital signatures

A digital signature scheme Sig = (Gen,Sign,Vfy) consists of three algorithms.

Key generation Gen generates a keypair (pk, sk)
$← Gen(1k) for a secret signing

key sk and a public verification key pk. The signing algorithm Sign inputs a

message and the secret signing key, and returns a signature σ
$← Sign(sk,m)

of the message. The verification algorithm Vfy takes a verification key and a
message with corresponding signature as input, and returns b ← Vfy(pk,m, σ)
where b ∈ {accept, reject}. We require the usual correctness properties.

6 More precisely, when simulating a type II forger, the values s1, . . . , sq are known
in advance to the simulator. Since s∗ 6∈ {s1, . . . , sq} there is some prefix s∗|i of s∗

that is different from all prefixes of s1, . . . , sq. We can guess the smallest such prefix
such that the simulator knows s∗|i from the forgery at the beginning. This knowledge
can be used to embed e from the RSA challenge in the function P(·) such that the
product P(s∗) contains e.

Let us recall the existential unforgeability against chosen message attacks
(EUF-CMA) security experiment [31], played between a challenger and a forger
F .

1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives
pk as input.

2. The forger may ask the challenger to sign a number of messages. To query
the i-th signature, F submits a message mi to the challenger. The challenger
returns a signature σi under sk for this message.

3. The forger outputs a message m∗ and signature σ∗.

F wins the game, if accept ← Vfy(pk,m∗, σ∗), that is, σ∗ is a valid signature
for m∗, and m∗ 6= mi for all i. We say that F (t, q, ε)-breaks the EUF-CMA
security of Sig, if F runs in time t, makes at most q signing queries, and has
success probability ε. We say that Sig is EUF-CMA secure, or Sig is fully secure,
if ε is negligible for any probabilistic polynomial-time algorithm F .

We also say, that a scheme is weakly secure, if it meets the above security
definition, but the adversary can not choose the messages to be signed adaptively.
Instead it has to commit to a list m1, . . . ,mq before seeing the public key. There
exist efficient generic techniques to convert a weakly secure signature scheme
into a fully secure one, e.g., using chameleon hashes [44].

2.2 Prime Numbers, Factoring, and the RSA Assumption

For x ∈ N let π(x) denote the number of primes between 0 and x. The following
lemma is a direct consequence of Chebyshev’s bounds on π(x) (see [32], for
instance).

Lemma 1. x
log2 x

< π(x) < 2x
log2 x

We say that a prime p is a safe prime, if p = 2p′ + 1 and p′ is also prime.
Let p and q be two randomly chosen k/2-bit safe primes, and let N = pq.
Let e ∈ Zφ(n) be a random integer, relatively prime to φ(N). We say that an
algorithm A (t, ε)-breaks the RSA assumption, if A runs in time t and

Pr[y1/e
$← A(N, e, y)] ≥ ε.

We assume that there exists no algorithm that (t, ε)-breaks the RSA assumption
with polynomial t and non-negligible ε.

We denote with QRN the group of quadratic residues modulo N . The follow-
ing lemma, which is due to Shamir [52], is useful for the security proof of the
generic RSA-based signature scheme described in Section 4.

Lemma 2. There is an efficient algorithm that, on input y, z ∈ ZN and integers
e, f ∈ Z such that gcd(e, f) = 1 and ze ≡ yf mod n, computes x ∈ ZN satisfying
xe ≡ y mod N .

2.3 Generalized Birthday Bound

Although not explicitly stated, the following lemma is implicit in [36]. We will
apply it several times in the security proofs for our generic signature schemes.

Lemma 3. Let A be a set with |A| = a. Let X1, . . . , Xq be q independent random
variables, taking uniformly random values from A. Then the probability that there
exist m+ 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 = · · · = Xim+1 is

upper bounded by qm+1

am .

3 Programmable Hash Functions

3.1 Definitions

Let G = (Gk) be a family of groups, indexed by security parameter k ∈ N. We
omit the subscript when the reference to the security parameter is clear, thus
write G for Gk.

A group hash function H over G with input length l = l(k) consists of
two efficient algorithms PHF.Gen and PHF.Eval. The probabilistic algorithm

κ
$← PHF.Gen(1k) generates a hash key κ for security parameter k. Algorithm

PHF.Eval is a deterministic algorithm, taking as input a hash function key κ and
X ∈ {0, 1}l, and returning PHF.Eval(κ,X) ∈ G.

Definition 1. We say that a group hash function H = (PHF.Gen,PHF.Eval) is
(m,n, γ, δ)-programmable, if there is an efficient trapdoor generation algorithm
PHF.TrapGen and an efficient trapdoor evaluation algorithm PHF.TrapEval with
the following properties.

1. The probabilistic algorithm (κ, τ)
$← PHF.TrapGen(1k, g, h) takes as input

group elements g, h ∈ G, and produces a hash function key κ together with
trapdoor information τ .

2. For all generators g, h ∈ G, the keys κ, κ′, where κ
$← PHF.Gen(1k) and

κ′
$← PHF.TrapGen(1k, g, h), are statistically γ-close.

3. On input X ∈ {0, 1}l and trapdoor information τ , the deterministic trapdoor
evaluation algorithm (aX , bX) ← PHF.TrapEval(τ,X) produces aX , bX ∈ Z
so that for all X ∈ {0, 1}l,

PHF.Eval(κ,X) = gaXhbX

4. For all g, h ∈ G, all κ generated by κ
$← PHF.TrapGen(1k, g, h), and all

X1, . . . , Xm ∈ {0, 1}l and Z1, . . . , Zn ∈ {0, 1}l such that Xi 6= Zj for all i, j,
we have

Pr[aX1 = · · · = aXm = 0 and aZ1 , . . . , aZn 6= 0] ≥ δ,

where (aXi
, bXi

) = PHF.TrapEval(τ,Xi), (aZj
, bZj

) = PHF.TrapEval(τ, Zj),
and the probability is taken over the trapdoor τ produced along with κ.

We also say that H is (m,n)-programmable for short, if γ is negligible and δ is
noticeable. If H is (1, q)-programmable for every polynomial q = q(k), then we
say that H is (1, poly)-programmable.

In settings in which the group order is hidden, we will use a refinement of
the PHF definition:

Definition 2. A group hash function H = (RPHF.Gen,RPHF.Eval) is evasively
(m,n, γ, δ)-programmable, if it is (m,n, γ, δ)-programmable as in Definition 1,
but with the strengthened requirement

4’. For all prime numbers e with 2l < e ≤ |G|, all g, h ∈ G, and all κ gen-

erated by κ
$← PHF.TrapGen(1k, g, h), and all X1, . . . , Xm ∈ {0, 1}l and

Z1, . . . , Zn ∈ {0, 1}l such that Xi 6= Zj for all i, j, we have

Pr[aX1 = · · · = aXm = 0 and gcd(aZ1 , e) = · · · = gcd(aZn , e) = 1] ≥ δ.

Here aXi and aZj denote the output of the trapdoor evaluation algorithm
(aXi , bXi) = PHF.TrapEval(τ,Xi) and (aZj , bZj) = PHF.TrapEval(τ, Zj), and
the probability is taken over the trapdoor τ produced along with κ.

Hofheinz and Kiltz [36] have also introduced the notion of randomized pro-
grammable hash functions. A randomized group hash function H with input
length l = l(k) and randomness space R = (Rk) consists of two efficient al-
gorithms RPHF.Gen and RPHF.Eval. Algorithm RPHF.Gen is probabilistic, and

generates a hash key κ
$← RPHF.Gen(1k) for security parameter k. The determin-

istic algorithm RPHF.Eval takes randomness r ∈ Rk and X ∈ {0, 1}l as input,
and returns a group element RPHF.Eval(κ,X) ∈ G.

Definition 3. Let H = (RPHF.Gen,RPHF.Eval) be a randomized group hash
function. We say that H is (m,n, γ, δ)-programmable, if there are efficient algo-
rithms RPHF.TrapGen, RPHF.TrapEval, and RPHF.TrapRand such that:

1. The probabilistic algorithm RPHF.TrapGen(1k, g, h) takes as input group el-
ements g, h ∈ G, and produces a key κ and trapdoor τ . For all generators

g, h ∈ G, the keys κ
$← RPHF.Gen(1k) and κ′

$← RPHF.TrapGen(1k, g, h) are
statistically γ-close.

2. The deterministic trapdoor evaluation algorithm takes as input X ∈ {0, 1}l
and r ∈ Rk, and produces two functions (aX(·), bX(·))← RPHF.TrapEval(τ,X, r)
such that for all X ∈ {0, 1}l,

RPHF.Eval(κ,X, r) = gaX(r)hbX(r).

3. On input of trapdoor τ , X ∈ {0, 1}l, and index i ∈ [m], the RPHF.TrapRand
algorithm produces r ← RPHF.TrapRand(τ,X, i) with r ∈ Rk. For all g, h ∈
G, all κ generated by (κ, τ)

$← PHF.TrapGen(1k, g, h), all X1, . . . , Xm, and
rXi

= RPHF.TrapRand(τ,Xi, i), we require that the rXi
are independent and

uniformly distributed random variables over Rk.

4. For all g, h ∈ G and all κ generated by (κ, τ)
$← PHF.TrapGen(1k, g, h), all

X1, . . . , Xm ∈ {0, 1}l and Z1, . . . , Zn ∈ {0, 1}l such that Xi 6= Zj, and for
all r̃1, . . . , r̃n ∈ Rk and rXi ← RPHF.TrapRand(τ,Xi, i), we have

Pr[aX1
(rX1

) = · · · = aXm
(rXm

) = 0 and aZ1
(r̃1), . . . , aZn

(r̃n) 6= 0] ≥ δ,

where the aXi
and aZj

are the output of the trapdoor evaluation (aXi
, bXi

) =
RPHF.TrapEval(τ,Xi, rXi

) and (aZj
, bZj

) = PHF.TrapEval(τ, Zj , r̃j), and the
probability is taken over the trapdoor τ produced along with κ. Here Xi may
depend on Xj and rXj for j < i, and the Z1, . . . , Zn may depend on all Xi

and ri.
Again we omit γ and δ, if γ is negligible and δ is noticeable. Randomized eva-
sively programmable hash functions are defined as in Definition 2.

In the remainder of this Section we propose a number of new PHFs offering
different trade-offs. Our results are summarized in Table 2.

Name Type Param. (m,n) Size of κ Randomness

HWat [53, 36] (§ 3.2) PHF (1, poly) and (2, 1) (l + 1)× |G| —
Hcfs (§ 3.3) PHF (m, 1) (16m2l + 1)× |G| —

Hrand (§ 3.4) RPHF (m, 1) (2m2 + 1)× |G| {0, 1}l
HWeak (§ 3.5) weak PHF (m, 1) (m+ 1)× |G| —

Table 2: Overview of our constructions of (randomized/weak) programmable hash func-
tions. Rows with grey background are new constructions from this paper.

3.2 Multi-generator programmable hash function

The programmable hash function described in Definition 4 below was (implicitly)
introduced in [53]. An explicit analysis can be found in [36].

Definition 4. Let G = (Gk) be a group family, and l = l(k) be a polynomial.
Let HWat = (PHF.Gen,PHF.Eval) be defined as follows.

– PHF.Gen(1k) returns κ = (h0, . . . , hl), where hi
$← Gk for i ∈ [l].

– On input X = (x1, . . . , xl) ∈ {0, 1}l and κ = (h0, . . . , hl), PHF.Eval(κ,X)
returns

PHF.Eval(κ,X) = h0

l∏
i=1

hxi
i .

Theorem 1 (Theorem 3.6 of [36]). For any fixed polynomial q = q(k) and
any group with known order, HWat is evasively (1, q, 0, O(1/(q

√
l)))-programmable

and (2, 1, 0, O(1/l))-programmable hash function.

Although evasive programmability was not introduced in [36], it follows from
their proof, since the values of aZj

that occur there are bounded in the sense
|aZj
| < 2l. We remark that Theorem 1 also carries over to groups of unknown

order.

3.3 A new deterministic programmable hash function

Let S, T be sets. We say that S does not cover T , if T 6⊆ S. Let d,m, s be
integers, and let F = (Fi)i∈[s] be a family of s subsets of [d]. We say that F is
m-cover free, if for any set I containing (up to) m indices I = {i1, . . . , im} ⊆ [s],
it holds that Fj 6⊆

⋃
i∈I Fi for any j which is not contained in I. In other words,

if |I| ≤ m, then the union
⋃
i∈I Fi is not covering Fj for all j ∈ [s] \ I. We say

that F is w-uniform, if |Fi| = w for all i ∈ [s].

Lemma 4 ([27, 45]). There is a deterministic polynomial-time algorithm that,
on input of integers m, s = 2l, returns d ∈ N and set family F = (Fi)i∈[s] such
that F is m-cover free over [d] and w-uniform, where d ≤ 16m2l and w = d/4m.

In the following we will associate X ∈ {0, 1}l to a subset Fi, i ∈ [s], by inter-
preting X as an integer in the range [0, 2l − 1], and setting i = X + 1. We will
write FX to denote the subset associated to X.

Definition 5. Let G = (Gk) be a group family, and l = l(k) and m = m(k) be
polynomials. Let s = 2l, d = 16m2l, and w = d/4m. We define a hash function
Hcfs = (PHF.Gen,PHF.Eval) be as follows.

– PHF.Gen(1k) returns κ = (h1, . . . , hd), where hi
$← Gk for 1 ≤ i ≤ d.

– Let FX ⊆ [d] be the subset associated to X ∈ [0, 2l − 1]. On input X and
κ = (h1, . . . , hd), PHF.Eval(κ,X) returns

PHF.Eval(κ,X) =
∏
i∈FX

hi.

Theorem 2. Let G = Gk be a group of known order p. Hcfs is an evasively
(m, 1, γ, δ)-programmable hash function with γ = 0 and δ = 1/(16m2l).

Proof. Consider the following algorithms.

– PHF.TrapGen(1k, g, h) samples d uniformly random integers b1, . . . , bd
$← Zp

and an index t
$← [d]. Then it sets ht = ghbt , and hi = hbi for all i ∈ [1, d]

with i 6= t. PHF.TrapGen returns (κ, τ) with τ = (t, b1, . . . , bd) and κ =
(h1, . . . , hd).

– On input (τ,X), PHF.TrapEval sets bX =
∑
i∈FX

bi, and aX = 1 if t ∈ FX ,
and aX = 0 if t 6∈ FX , and returns (aX , bX).

PHF.TrapGen outputs a vector of independent and uniformly distributed group
elements, thus we have γ = 0. Fix X1, . . . , Xm, Z ∈ [0, 2l − 1]. Since F is a
m-cover free set family, there must be an index t′ such that t′ 6∈

⋃m
i=1 FXi ,

but t′ ∈ FZ . Since t is picked uniformly random among 16m2l possibilities, we
have t = t′, and thus aXi

= 0 and aZ = 1, with probability δ = 1/(16m2l).
Finally, aZ = 1 implies gcd(aZ , e) = 1 for all primes e, thus Hcfs is evasively
programmable.

Theorem 2 can be generalized to groups of hidden order. The proof proceeds
exactly like the proof of Theorem 2, except that we have to approximate the

group order. E.g., for the group of quadratic residues QRn, we can sample random

exponents bi
$← Zn2 . This way, we can sample nearly uniform (1/

√
n-close) group

elements hi = hbi , which yields the following theorem.

Theorem 3. Let G = QRn be the group of quadratic residues modulo n =
pq, where p and q are safe distinct primes. Hcfs is a (m, 1, γ, δ)-evasively pro-
grammable hash function over G with γ = d/

√
n and δ = 1/(16m2l).

3.4 A randomized programmable hash function

In [38] a randomized (2, 1)-PHF was described which we now generalize to a
randomzied (m, 1)-PRF, for any m ≥ 1.

Definition 6. Let G = (Gk) be a group family, and m = m(k) be a polynomial.
In the following, let [X]2l ∈ Z denote a canonical interpretation of a field element
X ∈ F2l as an integer between 0 and 2l − 1. We assume that X and [X]2l are
efficiently computable from one another. Let Hrand = (PHF.Gen,PHF.Eval) be
defined as follows.
– RPHF.Gen(1k) returns a uniformly sampled κ = (h0, (hi,j)(i,j)∈[2m]×[m]) ∈

G2m2+1.
– RPHF.Eval(κ,X; r) parses X, r ∈ F2l , and computes and returns

RPHF.Evalκ(X; r) = h0

m∏
i,j=1

h
([iX+r]

2l
)j

i,j .

Theorem 4. For any group G of known order, Hrand is evasively (m, 1, 0, 1/2)-
programmable. For the group G = QRN of quadratic residues modulo N = pq
for safe distinct primes p and q, the function Hrand is evasively (m, 1, (2m2 +
1)/
√
N, 1/2)-programmable.

The proof is given in the full version of this paper [34].

3.5 A Weak Programmable Hash Function

Essentially, a weak programmable hash function is a programmable hash func-
tion according to Definition 1, except that the trapdoor generation algorithm
receives a list X1, . . . , Xm ∈ {0, 1}l as additional input. On the one hand this
allows us to construct significantly more efficient deterministic programmable
hash functions, while on the other hand our generic signatures schemes are only
weakly secure when instantiated with weak programmable hash functions. Fully
secure signature schemes can be obtained by applying a generic conversion from
weak to full security, for instance using chameleon hashes [44] which can be con-
structed based on standard assumptions like discrete logarithms [44], RSA [2,
21, 39], or factoring [44].

Definition 7. A group hash function is a weak (m,n, γ, δ)-programmable hash
function, if there is a (probabilistic) algorithm PHF.TrapGen and a (determinis-
tic) algorithm PHF.TrapEval such that:

1. (κ, τ)
$← PHF.TrapGen(1k, g, h,X1, . . . , Xm) takes as input group elements

g, h ∈ G and X1, . . . , Xm ∈ {0, 1}l, and produces a hash function key κ
together with trapdoor information τ .

2.-4. Like in Definition 1.
As before, we may omit γ and δ, if γ is negligible and δ is noticeable. Weak
evasively programmable hash functions are defined as in Definition 2.

Interestingly, there is a very simple way to construct a randomized pro-
grammable hash function according to Definition 3 from any weak programmable
hash function. Let us now describe our instantiation of a weak (evasively) pro-
grammable hash function. This PHF already appeared implicitly in [19, 49] and
[9] for m = 1.

Definition 8. Let G = (Gk) be a group family, and l = l(k) and m = m(k) be
polynomials. Let HWeak = (PHF.Gen,PHF.Eval) be defined as follows.

– PHF.Gen(1k) returns κ = (h0, . . . , hm), where hi
$← Gk for i ∈ {0, . . . ,m}.

– On input X ∈ {0, 1}l and κ = (h0, . . . , hm), PHF.Eval(κ,X) returns

PHF.Eval(κ,X) =

m∏
i=0

h
(Xi)
i .

Here we interpret the l-bit strings Xi, i ∈ [m], as integers in the canonical
way.

Theorem 5. Let G = Gk be a group of known order p. HWeak is a weak evasively
(m, 1, γ, δ)-programmable hash function with γ = 0 and δ = 1.

Again we can generalize Theorem 5 to groups of hidden order. The proof
proceeds exactly like the proof of Theorem 5, except that we have to approximate
the group order. For the group of quadratic residues QRn, we can sample the
random exponents bi from Zn2 for i ∈ [0,m], which yields the following theorem.

Theorem 6. Let G = QRN be the group of quadratic residues modulo N = pq,
where p and q are safe distinct primes. HWeak is a (m, 1, γ, δ)-programmable hash
function over G with γ = (m+ 1)/

√
N and δ = 0.

4 Signatures from the RSA Problem

4.1 Construction

Let l = l(k) and λ = λ(k) be polynomials. Let H = (PHF.Gen,PHF.Eval) be
group hash functions over G = QRN with input length l. We define the signature
scheme SigRSA[H] = (Gen,Sign,Vfy) as follows.

Gen(1k): The key generation algorithm picks two large safe k/2-bit primes p

and q, and sets N = pq. Then it generates a group hash function key κ
$←

PHF.Gen(1k) for the group QRN . Finally it chooses a random key K for the

pseudorandom function PRF : {0, 1}∗ → {0, 1}r and picks c
$← {0, 1}r, where

r = dlogNe. These values define a function F as

F(z) = PRFK(µ||z)⊕ c,

where µ, called the resolving index of z, denotes the smallest positive integer
such that PRFK(µ||z)⊕ c is an odd prime. Here ⊕ denotes the bit-wise XOR
operation, and we interpret the r-bit string returned by F as an integer in
the obvious way. (The definition of F is the same as in [40]. It is possible
to replace the PRF with an 2k2-wise independent hash function [16].) The
public key is pk = (n, κ,K, c), the secret key is sk = (pk, p, q).

In the following we will write H(M) shorthand for PHF.Eval(κ,M), and define

P : {0, 1}λ → N as P(s) =
∏λ
i=1 F(s|i), where s|i is the i-th prefix of s, i.e., the

bit string consisting of the first i bits of s. We also define s|0 = ∅, where ∅ is the
empty string, for technical reasons.

Sign(sk,M): On input of secret key sk and message M ∈ {0, 1}l, the signing

algorithm picks s
$← {0, 1}λ uniformly random and computes

σ = H(M)1/P(s) mod N,

where the inverse of P(s) is computed modulo the order φ(n) = (p−1)(q−1)
of the multiplicative group Z∗N . The signature is (σ, s) ∈ ZN × {0, 1}λ.

Vfy(pk,M, (σ, s)): On input of pk , message M , and signature (σ, s), return
accept if

H(M) = σP(s) mod N.

Otherwise return reject.

Correctness. If σ = H(M)1/P(s), then we have σP(s) = H(M)P(s)/P(s) = H(M).

Theorem 7. Let PRF be a (ε′′, t′′)-secure pseudo-random function and H be a
(m, 1, γ, δ)-evasively programmable hash function. Suppose there exists a (t, q, ε)-
forger F breaking the existential forgery under adaptive chosen message attacks
of SigRSA[H]. Then there exists an adversary that (t′, ε′)-breaks the RSA assump-
tion with t′ ≈ t and ε is bounded by

(q + 1)λ

(
4r2

δ

(
ε′ +

r

l · 2r−l−1
)

+ 3ε′′ +
r(q + 1)2λ2 + 2r + 1

2r
+ γ +

1

2r−l

)
+
qm+1

2mλ

We only give a brief proof outline here, and refer to the full version [34] for
details. As customary in proofs for similar signature schemes (e.g., [23, 28, 36]),
we distinguish between Type I and Type II forgers. A Type I forger forges a
signature of the form (M∗, σ∗, s∗) with s∗ = si for some i ∈ [q]. (That is, a
Type I forger reuses some si from a signature query.) A Type II forger returns
a signature with a fresh s∗.

It will be easiest to first describe how to treat a Type II forger F . Re-
call that we need to put up a simulation that is able to generate q signatures
(Mi, σi, si)i∈[q] for adversarially chosen messages Mi. To do this, we choose all
si in advance. We then prepare the PHF H using PHF.TrapGen, but relative to
generators g and h for which we know P(si)-th roots. (That is, we set g := ĝE

and h = ĥE for E :=
∏
i P(si).) This allows to generate signatures for F ; also,

by the security of the PHF H, this change goes unnoticed by F . However, each
time F outputs a new signature, it essentially outputs a fresh root g1/P(s

∗) of g,
from which we can derive a P(s∗)-th root of ĝ. To construct an RSA adversary
from this experiment, we have to embed an auxiliary given exponent e into the
definition of P, such that ĝ1/P(s

∗) allows to derive ĝ1/e. This can be done along
the lines of the proof of the Hohenberger-Waters scheme [40]. Concretely, for
initially given values si and e, we can set up P such that (a) e does not divide
any P(si), but (b) for any other fixed s∗, the probability that e divides P(s∗) is
significant. Note that in our scheme, the si are chosen by the signer, and thus our
simulation can select them in advance. In contrast to that, the HW scheme uses
the signed messages Mi as arguments to P, and thus their argument achieves
only a weaker form of security in which the forger has to commit to all signature
queries beforehand.

Now the proof for Type I forgers proceeds similarly, but with the addi-
tional complication that we have to prepare one or more signatures of the form
H(Mi)

1/P(si) for the same si = s∗ that F eventually uses in his forgery. We re-
solve this complication by relying on the PHF properties of H. Namely, we first
choose all si and guess i (i.e., the index of the si with si = s∗). We then prepare
H with generators g, h such that we know all P(sj)th roots of h (for all j), and
all P(sj)th roots of g for all sj 6= si. Our hope is that whenever F asks for the
signature of some Mj with sj = si, we have H(Mi) ∈ 〈h〉, so we can compute
H(Mj)

1/P(sj). At the same time, we hope that H(M∗) 6∈ 〈h〉 has a nontrivial
g-factor, so we can build an RSA adversary as for Type II forgers. The PHF
property of H guarantees a significant probability that this works out, provided
that there are no more than m indices j with sj = si (i.e., provided that there
are no (m+ 1)-collisions). However, using a birthday bound, we can reasonably
upper bound the probability of (m+ 1)-collisions.

In the full version [34] we also give a variant of our scheme which is slightly
more efficient but only offers weak security. A weakly secure signature scheme
can be updated to a fully secure one by using a (randomized) Chameleon Hash
Function.

Efficiency. Given P(s) and φ(N), computing σ = H(M)1/P(s) can also be car-
ried out by one single exponentiation. Since one single evaluation of P(·) has to
perform (expected) λr many primality tests (for r-bit primes), the dominiant
part of signing and verification is to compute P(s), for s ∈ {0, 1}λ. Theorem 7
tells us that if H is a (m, 1)-PHF we can set λ = log q + k/m, see the full
version [34] for more details.

Hohenberger and Waters [40] proposed several ways to improve the efficiency
of their RSA-based signature scheme. These improvements apply to our RSA-
based schemes as well. We refer to the full version [34] for details.

References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in
the standard model. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 553–572.
Springer, May 2010.

2. Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and
applications. In Ari Juels, editor, FC 2004: 8th International Conference on Fi-
nancial Cryptography, volume 3110 of Lecture Notes in Computer Science, pages
164–180. Springer, February 2004.

3. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005: 12th Annual
International Workshop on Selected Areas in Cryptography, volume 3897 of Lecture
Notes in Computer Science, pages 319–331. Springer, August 2005.

4. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Yvo Desmedt, editor, Advances in Cryptology
– CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 216–233.
Springer, August 1994.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

6. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology
– EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
399–416. Springer, May 1996.

7. Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic
constructions of identity-based and certificateless KEMs. Journal of Cryptology,
21(2):178–199, April 2008.

8. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Sig-
natures on randomizable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop
on Theory and Practice in Public Key Cryptography, volume 6571 of Lecture Notes
in Computer Science, pages 403–422. Springer, March 2011.

9. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 223–238. Springer, May 2004.

10. Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 443–459. Springer, Au-
gust 2004.

11. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 56–73.
Springer, May 2004.

12. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

13. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pair-
ing. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 514–532. Springer, December
2001.

14. Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully
secure short signatures and more. In Phong Q. Nguyen and David Pointcheval,
editors, PKC 2010: 13th International Conference on Theory and Practice of Public
Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 499–
517. Springer, May 2010.

15. Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 05: 12th Conference on Computer and Communica-
tions Security, pages 320–329. ACM Press, November 2005.

16. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In Jacques Stern, edi-
tor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 402–414. Springer, May 1999.

17. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th Annual ACM Symposium on Theory of
Computing, pages 209–218. ACM Press, May 1998.

18. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
523–552. Springer, May 2010.

19. Sanjit Chatterjee and Palash Sarkar. Generalization of the selective-ID security
model for HIBE protocols. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006: 9th International Conference on Theory and Practice
of Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 241–256. Springer, April 2006.

20. David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved proto-
col for demonstrating possession of discrete logarithms and some generalizations.
In David Chaum and Wyn L. Price, editors, Advances in Cryptology – EURO-
CRYPT’87, volume 304 of Lecture Notes in Computer Science, pages 127–141.
Springer, April 1988.

21. Benôıt Chevallier-Mames and Marc Joye. A practical and tightly secure signature
scheme without hash function. In Masayuki Abe, editor, Topics in Cryptology –
CT-RSA 2007, volume 4377 of Lecture Notes in Computer Science, pages 339–356.
Springer, February 2007.

22. Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz,
Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure en-
cryption. In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages 502–518. Springer, De-
cember 2007.

23. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. In ACM CCS 99: 6th Conference on Computer and Communications
Security, pages 46–51. ACM Press, November 1999.

24. Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the (in)security of rsa signa-
tures. Cryptology ePrint Archive, Report 2011/087, 2011. http://eprint.iacr.

org/.
25. Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated

public key cryptosystems. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
65–82. Springer, April / May 2002.

26. Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic inse-
curity of the full domain hash. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 449–466.
Springer, August 2005.

27. P. Erdös, P. Frankel, and Z. Furedi. Families of finite sets in which no set is covered
by the union of r others. Israeli Journal of Mathematics, 51:79–89, 1985.

28. Marc Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice
in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 116–129. Springer, January 2003.

29. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In Jacques Stern, editor, Advances in Cryptology –
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 123–
139. Springer, May 1999.

30. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Richard E. Ladner and Cynthia
Dwork, editors, 40th Annual ACM Symposium on Theory of Computing, pages
197–206. ACM Press, May 2008.

31. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

32. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, fifth edition, 1979.

33. Swee-Huay Heng and Kaoru Kurosawa. k-resilient identity-based encryption in
the standard model. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT-
RSA 2004, volume 2964 of Lecture Notes in Computer Science, pages 67–80.
Springer, February 2004.

34. Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from weaker as-
sumptions. Cryptology ePrint Archive, Report 2011/296, 2011. http://eprint.

iacr.org/.
35. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key en-

capsulation. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007,
volume 4622 of Lecture Notes in Computer Science, pages 553–571. Springer, Au-
gust 2007.

36. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume
5157 of Lecture Notes in Computer Science, pages 21–38. Springer, August 2008.

37. Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from
factoring. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 313–332. Springer, April
2009.

38. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. Journal of Cryptology, pages ???–???, 2011.

39. Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In Antoine Joux, editor, Advances in Cryptology – EURO-
CRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 333–350.
Springer, April 2009.

40. Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA
assumption. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, vol-
ume 5677 of Lecture Notes in Computer Science, pages 654–670. Springer, August
2009.

41. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi
and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume
3876 of Lecture Notes in Computer Science, pages 581–600. Springer, March 2006.

42. Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key
encapsulation without random oracles. Theor. Comput. Sci., 410(47-49):5093–
5111, 2009.

43. Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi.
Efficient authentication from hard learning problems. In Kenneth G. Paterson, ed-
itor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 7–26. Springer, May 2011.

44. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Dis-
tributed System Security Symposium – NDSS 2000. The Internet Society, February
2000.

45. Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for
blacklisting problems without computational assumptions. In Michael J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 609–623. Springer, August 1999.

46. Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-
based digital signatures. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryp-
tography Conference, volume 4948 of Lecture Notes in Computer Science, pages
37–54. Springer, March 2008.

47. Tatsuaki Okamoto. Efficient blind and partially blind signatures without random
oracles. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryp-
tography Conference, volume 3876 of Lecture Notes in Computer Science, pages
80–99. Springer, March 2006.

48. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394. ACM
Press, May 1990.

49. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 457–473. Springer, May 2005.

50. Sven Schäge. Tight proofs for signature schemes without random oracles. In Ken-
neth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume
6632 of Lecture Notes in Computer Science, pages 189–206. Springer, May 2011.

51. Sven Schäge and Jörg Schwenk. A CDH-based ring signature scheme with short
signatures and public keys. In Radu Sion, editor, FC 2010: 14th International
Conference on Financial Cryptography and Data Security, volume 6052 of Lecture
Notes in Computer Science, pages 129–142. Springer, January 2010.

52. Adi Shamir. On the generation of cryptographically strong pseudorandom se-
quences. ACM Trans. Comput. Syst., 1(1):38–44, 1983.

53. Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 114–127. Springer, May 2005.

