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Abstract. Structure-preserving signatures are signatures whose public
keys, messages, and signatures are all group elements in bilinear groups,
and the verification is done by evaluating pairing product equations. It is
known that any structure-preserving signature in the asymmetric bilinear
group setting must include at least 3 group elements per signature and
a matching construction exists.

In this paper, we prove that optimally short structure preserving signa-
tures cannot have a security proof by an algebraic reduction that reduces
existential unforgeability against adaptive chosen message attacks to any
non-interactive assumptions. Towards this end, we present a handy char-
acterization of signature schemes that implies the separation.

Keywords. Structure-Preserving Signatures, Algebraic Reduction, Meta-
Reduction

1 Introduction

1.1 Background

When messages, signatures, and verification keys are elements of bilinear groups
and the signature verification is done by evaluating pairing product equations,
a signature scheme is called structure-preserving [2]. A structure-preserving sig-
nature (SPS for short) blends well with the Groth-Sahai non-interactive proof
system [24], and enables the construction of efficient cryptographic protocols
such as round-optimal blind signatures [4, 2], traceable signatures [1], group en-
cryption [10], proxy signatures [2], and delegatable credential systems [17].
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The first SPS was presented in [23] as a feasibility result. A variation of
the Camenisch-Lysyanskaya signature scheme [9] introduced in [22] is an SPS
that is secure against random message attacks. Schemes in [10] and [16] are
efficient when signing a single group element, but their signature size grows
linearly in the size of the message. The scheme in [16] is called automorphic as
the message space includes its own public key, which is a useful feature in many
applications. [2] presented the first constant-size SPS whose signature consists of
7 group elements. Yet shorter signatures have been pursued since then, however,
[3] proved that any secure SPS in asymmetric bilinear groups requires at least 3
group elements. They presented a scheme matching the lower bound.

The 3-element SPS in [3] is based on a strong interactive assumption. They
also constructed a 4-element SPS with a restricted message space based on a non-
interactive assumption. It has been left as an open problem to find an optimal
SPS based on a non-interactive assumption.

1.2 Black-box Separations

A fully black-box reduction from a primitive B to a cryptographic scheme A
is an algorithm R such that for any instance f of B and for any adversary E
against A, if E breaks Af then Rf,E breaks f . A black-box separation is to
show the absence of such an algorithm R. While there are number of non-black-
box techniques, e.g., [5], black-box separations are meaningful as a convincing
indication of the hardness of finding a reduction and as a guide to find a way to
get around it. For variations and more discussion we refer to [33].

Oracle separation and meta-reduction are widely used techniques in showing
a separation. Oracle separation is useful in showing the difficulty of constructing
a cryptographic scheme from a minimal primitive such as a one-way function.
Since black-box reductions relativise, showing the existence of an oracle that
is useful in breaking A but useless in breaking B implies absence of black-box
reductions from B to A. Since the seminal work by Impagliazzo and Rudich [26],
numerous results have been found using this approach. In most cases, primitives
are simple cryptographic objects such as one-way functions, and the schemes
in question are non-interactive ones such as collision-free hash function [34] or
signature schemes [20, 14, 13]. A recent work in [27] addresses more involved
interactive schemes, blind signatures, by extending this line of techniques.

In the Meta-reduction approach, initiated by [7, 11], the proof of separation
is done by constructing an algorithm, a so-called meta-reduction, that uses a re-
duction as a black-box and solves a targeted problem, which can be the same as
or different from the primitive the reduction is supposed to break. The intuition
is that if a reduction is successful, the reduction breaks the underlying prim-
itive by itself without help from the adversary. Proofs for separation exploits
strong properties of the target schemes and underlying primitives. [15] exploits
the blindness property in constructing a meta-reduction separating three-move
blind signatures from non-interactive assumptions. In [32] a class of protocols,
constant-round sequentially witness-hiding special-sound protocols for unique



Title Suppressed Due to Excessive Length 3

witness relations, is separated from any standard assumptions. It includes some
practically important protocols such as Schnorr identification schemes.

Separation is often considered for limited classes of reductions. [31] assumes a
key-preserving property where the same RSA moduli are used in all oracle calls.
Later in [29] an assumption so-called instance non-malleability is introduced to
ease the limitation. A variation in prime-order groups appears in [28]. In [7, 11,
30, 8, 19], a class of algorithms called algebraic reductions is considered. In this
class, yielding a new group element is limited so that it is possible to extract
its representation for relevant bases. As claimed in [7], the class of algebraic
reductions are not overly restrictive. In particular, for prime order groups, all
known efficient reductions fall into this class to the best of our knowledge.

1.3 Our Contribution

This paper shows that no algebraic reduction falls short in proving existential
unforgeability against adaptive chosen message attacks of 3-element SPS in type-
III bilinear groups [18] based on any non-interactive assumption. This gives a
partial justification for the existing 3-element schemes with interactive assump-
tions since algebraic algorithms, while covering all known reduction algorithms in
prime order groups, are not powerful enough to prove the security of a 3-element
SPS.

Our separation follows the meta-reduction paradigm. However, instead of
showing a monolithic proof that constructs a meta-reduction from scratch, we
present a handy characterization that separates a signature scheme from any
non-interactive assumptions. It facilitates the proofs, in particular when the
reductions are restricted to a class of algorithms where knowledge extraction is
given for free. The intuition behind our characterization is that if the signature
scheme in question forces a reduction algorithm to know some information, e.g.,
the signing-key itself, to simulate the signing oracle in the euf-cma game, and
this information is so essential that the adversary wins the game by seeing it,
then the reduction algorithm can break the assumption without help from the
adversary. Given the characterization, we show that such crucial information
exists in any 3-element SPS when the reduction algorithm is algebraic. This
gives us our separation from non-interactive assumptions.

2 Preliminaries

2.1 Digital Signature Scheme

We consider signature schemes that works over a set of common parameters, say
GK . Concretely, there is a generator of the common parameters and the key
generation algorithm takes GK as input. Such an extended formulation is often
used in practical cryptographic protocols where many users share the group for
efficiency reasons.
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Definition 1 (Digital Signature Scheme). A digital signature scheme Sig is
a set of efficient algorithms (C,K,S,V). C is the common-parameter generator
that takes security parameter 1λ as input and outputs a common parameter GK .
K is the key generator that takes GK as input and outputs a signing-key SK and
verification-key VK . The keys include GK and the public-key defines a message
space Msp. S is the signature generation algorithm that computes a signature Σ
for input message M by using signing key SK . V is the verification algorithm
that takes VK , M , and Σ and outputs 1 or 0 that represent acceptance and
rejection, respectively.

A signature scheme must be correct, i.e., it is required that for any keys generated
by K and for any message in Msp, it holds that 1 = V(VK ,M,S(SK ,M)). It is
assumed that there exists an efficiently computable function TstVk that takes λ
and VK as input and checks the validity of VK such that if 0← TstVk(1λ,VK )
then V(VK , ∗, ∗) always returns 0, and if 1← TstVk(1λ,VK ) then the message
space Msp is well defined and it is efficiently and uniformly sampleable. A sig-
nature Σ is called invalid (with respect to VK and M), if 1 6= V(VK ,M,Σ).
Otherwise, it is called valid.

We use the standard notion of existential unforgeability against adaptive
chosen message attacks (euf-cma) [21] formally defined as follows.

Definition 2 (euf-cma). A signature scheme Sig = (C,K,S,V) is existentially
unforgeable against adaptive chosen message attacks if, for any A ∈ PPT, the
probability

Pr

GK ← C(1λ),
(VK ,SK )← K(GK ),
(M?, Σ?)← AS(SK ,·)(VK )

: M? 6∈ Q ∧ 1← V(VK ,M?, Σ?)


is negligible in λ. Here, S(SK , ·) is a signing oracle that takes message M and
returns signatures Σ ← S(SK ,M). Q is the set of messages submitted to the
signing oracle.

2.2 Bilinear Groups

In this paper, let G be a generator of bilinear groups. It takes security parameter
1λ as input and outputs Λ := (p,G1,G2,GT , e) where

– p is a λ-bit prime,
– G1,G2,GT are groups of prime order p with efficiently computable group

operations, membership tests, and bilinear mapping e : G1 ×G2 → GT ,
– ∀G ∈ G1 \ {1}, H ∈ G2 \ {1}, e(G,H) generates GT , and
– ∀A ∈ G1, ∀B ∈ G2, ∀x, y ∈ Z : e(Ax, By) = e(A,B)xy.

By generic operations, we mean the group operation, membership testing,
and bilinear mapping over the groups in Λ. In Type-III groups [18], no efficient
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isomorphisms are provided for either directions between G1 and G2. Throughout
this paper, group descriptions Λ always describe Type-III groups.

By G∗, we denote either G1 or G2 in Λ. For a vector of group elements
A := (A1, . . . , Ak) ∈ Gk∗ and a vector of scalar values x := (x1, . . . , xk) ∈ Zkp, we

define the notation Ax =
∏k
i=1A

xi
i .

2.3 Structure Preserving Signatures

For a description of bilinear groups Λ = (p,G1,G2,GT , e), an equation of the
form ∏

i

∏
j

e(Ai, Bj)
aij = Z

for constants aij ∈ Zp, Z ∈ GT , and constants or variables Ai ∈ G1, Bj ∈ G2 is
called a pairing product equation (PPE for short).

Definition 3 (Structure-Preserving Signatures). A signature scheme (C,K,
S,V) is called structure preserving with respect to bilinear group generator G if

– Common parameter GK consists of a group description Λ. Constants aij in
Zp are also included in GK if any,

– Verification-key VK includes Λ and group elements in G1, G2, and GT ,
– Messages M consists of group elements in G1 and G2,
– Signature Σ consists of group elements in G1 and G2, and
– Verification V evaluates membership in G1 and G2 and PPEs.

In a narrow sense, SPS might be limited to Z = 1 and VK excluding elements
in GT so that accompanying witness-indistinguishable Groth-Sahai proofs can
have the zero-knowledge property.

2.4 Algebraic Algorithms

An algorithm is called algebraic with respect to a group if it takes a vector
of elements X in the group and outputs a group element Y and there is a
corresponding algorithm called an extractor that can output the representation
of Y with respect to X. For instance, if the algebraic algorithm R takes A,B ∈
G∗ as input and outputs C ∈ G∗, then R’s extractor E outputs (a, b) such that
C = AaBb.

In the following, we give a formal definition of the minimal case where an
algorithm takes group elements from one group as input and outputs only one
group element.

Definition 4 (Algebraic Algorithm). Let R be a probabilistic polynomial
time algorithm that takes Λ, a string aux ∈ {0, 1}∗, and group elements X ∈ Gk∗
for some k and G∗ in Λ as input and outputs a group element in G∗ and a string
ext ∈ {0, 1}∗. R is called algebraic with respect to G if there exists E ∈ PPT

getting the same input as R including the same random coins such that for
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any Λ ← G(1λ) and all polynomial size X and aux, the following probability is
negligible in λ.

Pr

[
(Y, ext)← R(Λ,X, aux ; r),
(y, ext)← E(Λ,X, aux ; r)

: Y 6= Xy

]
.

Please note that unlike the case of the knowledge of exponent assump-
tions [12, 25, 6] that assumes the presence of E for any malicious R, here we
try to capture the limitation of current technology in building reduction algo-
rithms. It is in fact easy to imagine an algorithm R that may not be algebraic
as defined above; R takes a string from aux and directly translates it as a group
element in G∗. For such R there may not be an efficient extractor E . However,
a reduction algorithm that chooses Y in this way will typically not be more
useful than one that chooses Y with a known discrete logarithm with respect to
X. Accordingly, we consider algorithms that compute on explicitly given group
elements. We also stress that we are only interested in capturing the structure of
Y with respect to the base X. It is possible that aux contains additional group
elements and that R returns group elements in ext for which we do not care to
know a representation with respect to X.

The above definition extends naturally to A that takes group elements from
both groups and outputs multiple group elements at the same time. Furthermore,
we note that algorithms that outputs no group elements can also be regarded
as algebraic by taking the identity as default output for such algorithms so that
extracting the representation is trivial. Trivial algorithms that output group
elements taken from inputs intact are algebraic, too.

The notion is also extended to oracle algorithms. Let (Y, ext)[X ′, aux ′] ←
R̄O(Λ,X, aux ) denote an execution of R̄ accessing to oracle O where [X ′, aux ′]
denotes all inputs to R̄ given from (all invocations of) O. We say that oracle
algorithm R̄ is algebraic if there exists an algebraic algorithm R, and the com-
putation by R̄O is equivalent to the following sequence of computation. First set
X0 := X and aux 0 := aux . Run (Y 1, ext1||ω1)← R(Λ,X0, aux 0) and repeat

(X ′i, aux ′i)← O(Λ,Y i, ext i),

Xi+1 := Xi||X ′i, aux i+1 := ωi||aux ′i

(Y i+1, ext i+1||ωi+1)← R(Λ,Xi+1, aux i+1).

for i = 1 until state ωi+1 explicitly indicates termination and Y i+1 includes Y .
The extractor for R̄ is to compute (y, ext) ← EO(Λ,X, aux ) that fulfills Y =
(X ′′)y for X ′′ = X ∪X ′. Such extractor can be constructed in straightforward
manner by using the extractor for R.

By Clsalb we denote the set of all algebraic algorithms with respect to G.

2.5 Non-interactive Hardness Assumptions

Intuitively, an assumption states that there is no algorithm A that is better
than any known (typically trivial) algorithm U , which, for example, selects its
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output uniformly from a proper domain. In fact, our formulation is so general
that it can capture too strong assumptions that never hold and too weak ones
that always hold. But it does not matter for our purpose since we are to show
the impossibility to reduce the security of a signature scheme to such (extreme)
assumptions.

Definition 5 (Non-interactive Hardness Assumptions). A non-interactive
problem consists of a triple of algorithms P = (I, V, U) where I ∈ PPT is an
instance generator, which takes 1λ and outputs a pair of an instance and a wit-
ness, (y, w), and V is a verification algorithm that takes y, w and an answer
x, and outputs 1 or 0 that represents acceptance or rejection, respectively. A
non-interactive hardness assumption for problem P is to assume that, for any
A ∈ PPT, the following advantage function Adv is negligible in λ.

AdvA(1λ) = Pr[(y, w)← I(1λ), x← A(y) : 1 = V (y, x, w)]

− Pr[(y, w)← I(1λ), x← U(y) : 1 = V (y, x, w)] (1)

In search problems, U is typically set to an algorithm that returns constant
⊥ (or a random answer x when the domain is uniformly sampleable). In decision
problems, U typically returns 1 or 0 randomly so that the latter probability is
1/2.

As we are concerned with structure preserving signatures, we consider hard
problems that are defined over bilinear groups as follows.

Definition 6 (Hard Problem over G). A non-interactive problem P over
bilinear group generator G is a non-interactive problem such that

– instance generator I runs Λ← G(1λ), and output y includes Λ, and
– there exists A that solves P with access to an oracle that solves the discrete

logarithm problem for the groups in Λ.

By NIP, we denote all non-interactive problems. Similarly, NIPG denotes NIP
over G. Throughout the paper, we simply say that algorithm A solves problem
P if advantage AdvA(1λ) is not negligible.

2.6 Black-Box Reduction and Meta-Reduction

When algorithm R is given A as black-box, denoted by RA, we mean that R
and A are given the same security parameter and A is given access to arbitrary
number of copies of A as oracles. Interaction between R and A can be done
in interleaving manner. If A is a randomized algorithm, A has random coins
inside and every copy uses the same randomness. The security parameter and
the random coins are out of the control of R.

For problem P and signature scheme Sig, R is a fully black-box reduction if,
for any (even inefficient) successful forger A for Sig, RA is successful in solving
P . By Sig ⇒R P , we mean that R is a black-box reduction from Sig to P . A
separation between Sig and P is to show that for Sig and P , there is no such R



8 Masayuki Abe, Jens Groth, and Miyako Ohkubo

under hardness assumption for problem P ′. (The problem P ′ can be the same
as P to make the separation unconditional.) Note that R depends on Sig and P .
To claim that a class of hardness assumption falls short of proving the security
of any construction of a signature scheme in a class by any black-box reduction,
one need to show the absence of R for every signature and assumption in the
respective classes.

In the meta-reduction paradigm, a proof typically begin with constructing
a magic adversary A that is inefficient (or given access to powerful oracle) but
successful in breaking Sig so thatRA works as expected. It then constructs meta-
reduction M that MR solves P ′. A major task of M is to efficiently emulate
A by rewinding R and/or exploiting special properties of R and Sig. If M is
successful in the emulation, MR can be seen as a polynomial-time algorithm
that solves P ′, which contradicts the assumed hardness of P ′.

3 Crucial Relation

If any algorithm that simulates signatures must “know” the secret key, the un-
forgeability of the signature scheme cannot be proven by black-box reduction to
any non-interactive assumption. We extend this idea in such a way that it is not
necessary to know the entire secret key but some crucial information is neces-
sary to conduct the simulation and sufficient to forge a signature if leaked to
the adversary. Informally, crucial information is a witness for a binary relation,
Ψ(θ,$), which we call crucial relation defined over signatures θ and some sen-
sitive information $. The relation requires three properties: every θ has exactly
one $ (uniqueness), whenever an entity is successful in producing signatures, it
is possible to extract $ from the entity (extractability), and $ is useful enough
to yield a forgery (usefulness). A crucial relation is defined with respect to a
class of algorithms, Cls ⊆ PPT to which the entity that generates θ belongs.

Let us first prepare some notations used in the formal definition. For a public
key VK , a sequence of messages M = {M1, . . . ,Mn} ∈ Mspn and signatures
Σ = {Σ1, . . . , Σn}, define V(θ) for θ := (VK ,M ,Σ) by a function that returns∏n
i=1 V(VK ,Mi, Σi).

Definition 7 (Crucial Relation). Let Sig = (C,K,S,V) be a signature scheme.
Let $ ∈ {0, 1}∗ and θ = (VK ,M ,Σ) ∈ {0, 1}∗. A relation Ψ(θ,$) is a cru-
cial relation for Sig with respect to a class of algorithms Cls if the following
properties are provided.

– (Uniqueness) For every θ := (VK ,M ,Σ) such that 1 = V(θ), there exists
exactly one (polynomial size) $ fulfilling 1 = Ψ(θ,$).

– (Extractability) For any R ∈ Cls, there exists E ∈ PPT and n > 0 such
that, for any VK ∈ {0, 1}∗ such that 1← TstVk(1λ,VK ), and any arbitrary
string ϕ in 1λ||{0, 1}∗, probability

Pr


M←Mspn

Σ ← R(ϕ,M)
$ ← E(ϕ,M)
θ := (VK ,M ,Σ)

: 1 = V(θ) ∧ 1 6= Ψ(θ,$)

 (2)
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is negligible in λ. The probability is taken over the choice of M and the
randomness given to R. The same randomness is given to E.

– (Usefulness) There exists an algorithm B ∈ PPT such that, for any θ :=
(VK ,M ,Σ) and $ that satisfies Ψ(θ,$) = 1, the following probability is
not negligible in λ.

Pr
[

(M,Σ)← B(θ,$) : M 6∈M ∧ 1 = V(VK ,M,Σ)
]

Remarks:

- The intuition of extractability is that whenever ϕ is helpful for R in comput-
ing valid signatures, extractor E should be successful in extracting $ from
ϕ. This must hold even for non-legitimate VK as long as it is functional with
respect to the verification.

- For R that is successful only with negligible probability, E can be an empty
algorithm. So we only need to care for successful R that yields valid sig-
natures. In particular, conditioned that 1 = V(θ) happens with noticeable
probability, the conditional provability that 1 = Ψ(θ,$) is overwhelming.

- There may be many ϕ that make R produce the same Σ from the same VK
and M . Whichever ϕ is given, E must output the same $.

Let SIGCRCls denote signature schemes that has a crucial relation for a class
of algorithms, Cls. We require Cls be a class of algorithms in PPT that satisfies
the following trivial composition. For any A ∈ Cls, the following A′ is also in
Cls. A′ takes inputs, say aux 1 and X1, . . . , Xn, and runs A as (aux i+1, Yi+1)←
A(aux i, Xi) for i = 1, ..., n. A then picks some Yi whose index is in the list spec-
ified in aux 1. Obviously, algebraic algorithms are in such a class. The following
proof is given for such Cls.

Theorem 8. For any signature scheme Sig in SIGCRCls, for any non-interactive
problem P in NIP, there is no R ∈ Cls such that Sig ⇒R P if pseudo-random
functions exit.

Proof. Let O be a deterministic oracle that takes θ as input and returns $
that 1 = Ψ(θ,$) if it exists (otherwise return ⊥). Consider the following all-
powerful adversary A attacking Sig with access to O. Let f be a pseudo-random
function. Given VK as input, A selects a random key for f and checks if 1 ←
TstVk(1λ,VK ) (if not, A halts). Then it chooses M randomly from Mspn for
some constant n by using pseudo-randomness generated by f (VK ). Let M ←
Mspf (VK ) denote these steps.A then sendM to the signing oracle (simulated by
R). After receiving n signatures, Σ, A aborts if Σ contains an invalid signature.
Otherwise,A callsO with input θ = (VK ,M ,Σ) and obtains$. It then executes
(M,Σ)← B(VK ,M ,Σ, $) and outputs (M,Σ).

To verify that above AO is indeed a successful forger, consider that AO is
given legitimate VK and signatures generated by S(SK ,M). By correctness of
Sig and the uniqueness property, $ indeed exist and is uniquely defined. So O
returns $. Then due to the usefulness property, the output from B satisfies the
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predicates with probability not negligible in λ. Thus AO is a successful forger
against Sig.

Suppose that there exists R ∈ Cls that Sig ⇒R P holds. Since R is a
fully black-box reduction it must be successful with the above AO. Namely,
AdvRAO (1λ) as defined in Definition 5 is not negligible.

Without loss of generality, we assume that A outputs n messages as M at
once. We also assume, without loss of generality, that whenR outputs something
for interaction it also outputs the internal state ϕ at that moment. Then R is
restarted taking ϕ and some data from the interaction as input.

We construct meta-reductionM thatMR solves P .M emulates AO without
any oracles. By a session, we mean the conversation between R and a copy of
A initiated by R with input VK i to A. Every session is labelled by an index.
Given y ← I(1λ), M sets ϕ0 := y. Let BADSIG[i] be a flag that indicates the
presence of an invalid signature in i-th session. It is initialized to zero. M runs
R(ϕ0) and do as follows.

– If R outputs (ϕi,VK j) to invoke j-th copy of A,M checks TstVk(1λ,VK j)
and halt the session if it is not 1. Otherwise, M selects M j←Mspnj (if the
same VK j has been observed before, say in session k, M uses the same
Mk instead), and resume R as R(ϕi||M j). Here Mspj is the message space
associated to VK j .

– If R outputs (ϕi, Σk,`) for existing session k, M checks if 1 = V(VK k,
Mk,`,Σk,`). If not, M sets BADSIG[k] to 1. It then continues as follows.

• If ` < n, M continues by running R(ϕi).
• If ` = n and BADSIG[k] = 0, then M extracts $k for this session

as follows. Let ϕi be the internal state that R outputs with VK k.
Let Mk′ be the last message R is given before outputting Σk,n. Let
ϕ′i := ϕi||{Mk+1, . . . ,Mk′}. Let R′ be an algorithm associated to R
that computes Σk ← R′(ϕ′i,Mk). R′ is a simple algorithm that parses
ϕ′i into ϕi||{Mk+1, . . . ,Mk′}, runs R(ϕi,Mk), continue running R giv-
ing messages Mk+1, . . . ,Mk′ as input, and collects signatures Σk,i for
i = 1, . . . , n, and finally outputs Σk. As R is in Cls, so is R′ as assumed
to Cls. Due to the extractability property, there exists polynomial-time
E that computes $k for θk := (VK k,Mk,Σk). Thus,M runs E(ϕ′i,Mk)
and obtains $k. As V(θk) = 1 holds, 1 = Ψ(θk, $k) holds except for neg-
ligible probability. M then invokes (M?

k, Σ
?
k) ← B(θk, $k) and runs

R(ϕi||(M?
k, Σ

?
k)) to continue.

– If R outputs x, then M outputs x and halts.

Let AdvPMR(1λ) be the advantage of the aboveM in solving P . We show that
the difference |AdvPRAO (1λ)−AdvPMR(1λ)| is negligible. We start fromMR and
modifiesM slightly at a time. First replace truly random choiceM j←Mspnj with

pseudo-random one M ← Mspf (VK ). Call this modified algorithmM′. The loss
of the advantage by this modification is negligible due to the indistinguishability
of f . We prove that by constructing a distinguisher D for f as follows. D runs
(y, w) ← I(1λ) and emulate MR(y) as it is except that whenever M chooses
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Mk, D sends VK k to the challenger and obtains a string and use it as random
coins to generate Mk. It then returns Mk to R. When M terminates with
x, D outputs V (y, x, w). Obviously, if the strings from the challenger are truly
random, D emulates M. If, on the other hand, they are the output of f , D
emulates M′. Since the advantage of D, say Advf

D(1λ), is assumed negligible,

we have |AdvPM(1λ)−AdvPM′(1
λ)| = Advf

D(1λ) < negl(λ).
Next replace extractor E with oracle O. Call this modified algorithm M′′.

We show that the loss of advantage by moving fromM′ toM′′ is negligible. Let

Pr

[
M ← Mspnj
$ ← E

]
(3)

denote the probability presented in (2). We replace Mspnj and E with Mspf and
O accordingly with trivial meaning. With this notation, the loss of advantage is
upper bound by

|AdvPM′(1
λ)−AdvPM′′(1

λ)| ≤
∣∣∣∣Pr

[
M ← Mspf

$ ← E

]
− Pr

[
M ← Mspf

$ ← O

]∣∣∣∣ . (4)

To evaluate the right hand of (4), first observe that∣∣∣∣Pr

[
M ← Mspnj
$ ← E

]
− Pr

[
M ← Mspf

$ ← E

]∣∣∣∣ (5)

is negligible due to the indistinguishability of f . Also,∣∣∣∣Pr

[
M ← Mspnj
$ ← E

]
− Pr

[
M ← Mspnj
$ ← O

]∣∣∣∣ (6)

is negligible due to the extractability property. Finally observe that∣∣∣∣Pr

[
M ← Mspnj
$ ← O

]
− Pr

[
M ← Mspf

$ ← O

]∣∣∣∣ (7)

is zero because oracle O never causes 1 6= Ψ(θ,$) if 1 = V(θ) due to the unique-
ness condition. Thus both probabilities in (7) are zero. Since (5) to (7) are all
negligible, we conclude that (4) is negligible, too.

Finally, observe that M′′ is identical to AO. Accordingly, |AdvPRAO (1λ) −
AdvPMR(1λ)| is negligible. Since R and E belongs to Cls ⊆ PPT and M only
performs operations that can be done in polynomial-time, the total running time
ofM and R remains polynomial. ThusMR forms a polynomial-time algorithm
that solves P , which contradicts to the assumed hardness of P . �

4 Crucial Relation in Size-3 SPS

We consider the class of algebraic reductions that make oracle calls with keys
formed over over the groups for which it is defined as algebraic. This constraint
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plays a role when we construct an extractor for crucial relation based on the
extractor associated with the algebraic reduction. Since the extractor works only
for the groups the algebraic reduction is defined, so does the resulting extractor
for crucial relation. Since the crucial relation involves the verification keys, we
require all keys to be generated over the same groups the extractor works for.
We call such algorithms group-preserving algebraic reductions. This notion has
been used before in the literature, e.g., [19] and the constraint also has some
similarity to key-preservation [31] and instance non-malleability [29].

Theorem 9. There exists no group-preserving algebraic reduction that reduces
the existential unforgeability of an SPS scheme to hardness of any problem in
NIPG if signatures consist of three base group elements.

We prove Theorem 9 actually by proving the following lemma. Then applying
Theorem 8 completes the proof.

Lemma 10. Any SPS scheme with signature size 3 has a crucial relation with
respect to group-preserving algebraic algorithms.

We begin by recalling the result from [3] that any SPS scheme whose verification
consists of one pairing product equation, or whose signature consists only of G1

or G2 is not euf-cma. A signature scheme for signing multiple elements at once
can always be used to sign a single element by setting the other group elements
to 1. Without loss of generality, it therefore suffices to consider schemes whose
message consists of a single group element and where the signature consists
of 2 elements in one group and 1 element in the other. We will also consider,
without loss of generality, the case where the verification consists of two pairing
product equations. The result applies to schemes with more than two verification
equations as well and the proofs can be adopted with superficial changes.

Case of Σ ∈ G2
1 ×G2.

In any SPS whose signature consists of 3 group elements, (R,S, T ) ∈ G2
1 × G2,

the verification predicate includes at least two pairing product equations that
can be reduced to the following general form.

e(R,U1 T
a1) e(S,U2 T

a2) e(M,U3 T
a3) e(U0, T

a4) = Z1 (8)

e(R, V1 T
b1) e(S, V2 T

b2) e(M,V3 T
b3) e(V0, T

b4) = Z2 (9)

The group elements except for M,R, S and T are taken from the public key, and
the constants in Zp are taken from the common parameters. For a message M
and a signature (R,S, T ), let ϕr, αr, ϕs, αs, and t be

R = GϕrMαr , S = GϕsMαs , and T = Ht. (10)

We consider ϕr, αr, ϕs, αs be variables that fulfill relations determined by (8),
(9) and (10). Let f1 and f2 be

f1 = αrm+ ϕr − r, and f2 = αsm+ ϕs − s (11)
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where small-case letters, r, s, and m, represents the discrete-logs (to base G)
of group elements denoted by corresponding large-case letters. (This convention
is used throughout this paper.) By replacing R and S in (8) with those in (10)
and taking the discrete-logs with respect to base e(G,H), we can represent (8)
as f3m+ f4 = 0 where

f3 = αr (u1 + a1 t) + αs (u2 + a2 t) + (u3 + a3 t), and (12)

f4 = ϕr (u1 + a1 t) + ϕs (u2 + a2 t) + u0 a4 t− z1. (13)

Similarly, (9) can be represented as f5m+ f6 = 0 where

f5 = αr (v1 + b1 t) + αs (v2 + b2 t) + (v3 + b3 t), and (14)

f6 = ϕr (v1 + b1 t) + ϕs (v2 + b2 t) + v0 b4 t− z2. (15)

Consider a system of equations Q := {f1 = 0, . . . , f6 = 0}. Focus on a non-
redundant part, e.g., f1 = f2 = f3 = f5 = 0 which is represented as

m 0 1 0
0 m 0 1

u1 + a1t u2 + a2t 0 0
v1 + b1t v2 + b2t 0 0

 ·

αr
αs
ϕr
ϕs

 =


r
s

−(u3 + a3t)
−(v3 + b3t)

 . (16)

Let Kt denote the leftmost matrix in (16). It has rank 4, and

det(Kt) = (a1b2 − a2b1) t2 + (a1v2 + u1b2 − u2b1 − a2v1) t+ (u1v2 − u2v1).
(17)

If det(Kt) 6= 0, there exists unique (αr, αs, ϕr, ϕs) that fulfills Q. Note that Q is
defined with respect to the public key and M and T .

Crucial Relation. Now we are ready to define a crucial relation as follows.
For VK = (GK , U0, U1, U2, U3, U4, V0, V1, V2, V3, V4) and θ = (VK ,M ,Σ), let
$ = (αr, αs, G

ϕr , Gϕs , Ht). Relation Ψ(θ,$) returns 1 if there exists a valid
(M,R, S, T ) in θ such that

- T = Ht,
- (αr, αs, ϕr, ϕs) determined by $ fulfills Q w.r.t. VK and M , and
- (M,R, S, T ) is the first one in θ that det(Kt) 6= 0.

Relation Ψ also returns 1 if det(Kt) = 0 for all (M,R, S, T ) in θ and $ = ⊥.
Note that the second condition implies R = GϕrMαr , S = GϕsMαs . Such $ is
extractable, unique, and useful as shown below.

Uniqueness. The first (M,Σ) with det(Kt) 6= 0 is unique in θ (assuming that
signatures are stored in order) if it exists. Then, $ is uniquely determined for
such (M,Σ) from relation (16). When there is no (M,σ) with det(Kt) 6= 0 exists
in θ, $ is also uniquely defined to ⊥. Accordingly, for any θ, there is unique $
such that Ψ(θ,$) = 1.
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Usefulness. Given $ that satisfies Ψ(θ,$) = 1, a valid signature for ar-
bitrary message can be created as follows. We first consider the case where
$ = (αr, αs, G

ϕr , Gϕs , Ht) 6= ⊥. Given $ and arbitrary message M?, compute
R? = (Gϕr )M?αr , S? = (Gϕs)M?αs , T ? = (Ht). To see that Σ? = (R?, S?, T ?)
is a valid signature for M?, observe that the first verification predicate (8) is

e(R?, U1T
a1) e(S?, U2T

a2) e(M?, U3T
a3) e(U0, U4T

a4)

= e(GϕrM?αr , Hu1+a1 t) e(GϕsM?αs , Hu2+a2 t)

e(M?, Hu3+a3 t) e(Gu0 , Hu4+a4 t)

= e(M?, H)f3 e(G,H)f4 .

It results in 1 since $ satisfies f3 = f4 = 0. The second predicate can be verified
in the same way. Thus, by choosing fresh M?, (R?, S?, T ?) is a successful forgery.

We next consider the case of $ = ⊥. It means that det(Kt) = 0 holds for
all M and (R,S, T ) in θ. We then present a concrete attack as follows. First we
consider the case where (17) is not a zero polynomial. Since (17) is quadratic
in t, there are at most two T s for which det(Kt) = 0. Given θ including more
than three signatures, such T must appear more than once. Given two signa-
tures (M1, R1, S1, T ) and (M2, R2, S2, T ) in θ, the forger computes random linear

combination of the signatures as (M?, R?, S?) = (Mβ1

1 Mβ2

2 , Rβ1

1 R
β2

2 , S
β1

1 Sβ2

2 ) for
randomly chosen β1 and β2 that satisfies β1 +β2 = 1. Then (R?, S?, T ) is a valid
signature for M? that is random and fresh with high probability. (The forger
chooses messages that are not 1 to make sure M1 6= 1 or M2 6= 1 to get M?

uniform.) Next consider the case where (17) is a zero polynomial. Then we have
a1b2 = a2b1 and u1v2 = u2v1. Let δ1 and δ2 be

δ1 :=
b1
a1

=
b2
a2
, and δ2 :=

v1
u1

=
v2
u2
, (18)

which are defined to zero if any of a1, a2, u1 or u2 is zero. Then, from f3 = f5 = 0
in (12) and (14), we have(

u2 + a2 t

u1 + a1 t
− v2 + b2 t

v1 + b1 t

)
αs +

(
u3 + a3 t

u1 + a1 t
− v3 + b3 t

v1 + b1 t

)
= 0. (19)

The coefficient of αs in (19) is zero since det(Kt) = 0. Thus we have

u3 + a3 t

u1 + a1 t
− v3 + b3 t

v1 + b1 t
= 0. (20)

Since (20) holds for any t, we have

b3
a3

=
b1
a1

= δ1, and
v3
u3

=
v1
u1

= δ2. (21)

Similarly, from f4 = f6 = 0 in (13) and (15), we have

v0 b4
u0 a4

=
b1
a1

= δ1, and
z2
z1

=
v1
u1

= δ2. (22)
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From (18), (21) and (22), the second verification predicate (9) is

1 = e(Ra1Sa2Ma3Ua40 , T )δ1 · {e(R,U1) e(S,U2) e(M,U3)Z−11 }δ2 ,

and the first verification predicate (8) is

1 = e(Ra1Sa2Ma3Ua40 , T ) · {e(R,U1) e(S,U2) e(M,U3)Z−11 }.

If δ1 = δ2, the verification predicates are in a linear relation. Thus they shrink
into one predicate and the scheme is insecure. If δ1 6= δ2, the equations hold if
and only if

e(Ra1Sa2Ma3Ua40 , T ) = 1, and e(R,U1) e(S,U2) e(M,U3)Z−11 = 1.

The first equation implies either Ra1Sa2Ma3Ua40 = 1 or T = 1. For such a case,
the following attack succeeds. Request three or more signatures on randomly cho-
sen messages. Then find two signatures (M1, R1, S1, T1) and (M2, R2, S2, T2) such
that T1 = T2 = 1 or T1 · T2 6= 1. Then, linear combination of the two signatures
yields a new valid signature. That is, let (M?, R?, S?) = (Mβ1

1 Mβ2

2 , Rβ1

1 R
β2

2 ,

Sβ1

1 Sβ2

2 ) for randomly chosen β1 and β2 that satisfies β1+β2 = 1. Then (M?, R?,
S?, T1) is a valid fresh signature. Keeping the condition on T1 and T2 in mind,
inspection is not hard and omitted. This concludes that a successful forgery is
possible even for the case of $ = ⊥.

Extractability. Observe that, for any algebraic algorithm that obtains M as
input and computes group element R, there exists an extractor that outputs
αr such that R = (Gϕr )Mαr where (Gϕr ) part is computed by multi-base ex-
ponentiation of group elements except for M . Similarly, the extractor outputs
αs such that S = (Gϕs)Mαs . Thus (α1, α2, ϕ1, ϕ2) determined uniquely from
extracted (α1, α2, G

ϕ1 , Gϕ2 , Ht) fulfills f1 and f2. We then claim that fi = 0
for i = 3, . . . , 6 also hold except for negligible probability. Otherwise, the al-
gorithm can be used to solve the discrete-logarithm problem between G and
M . As we can manipulate all group elements given to the algorithm so that all
their discrete-logarithms are known except for M , we can compute ϕr (and ϕs)
from the extracted exponents. Suppose that, without loss of generality, f3 6= 0
happens for M 6= 1. Since f3m + f4 = 0 for valid signature, f4 6= 0 happens,
too. Thus equation f3m + f4 = 0 with non-zero f3 and f4 determine m. For
the case of f5 6= 0, use equation f5m+ f6 = 0 with non-zero f5 and f6 instead.
Accordingly, the extracted (α1, α2, G

ϕ1 , Gϕ2 , Ht) fulfills Qt with overwhelming
probability assuming the hardness of the discrete-logarithm problem in G1.

Since we can extract (α1, α2, G
ϕ1 , Gϕ2 , Ht) for all M and (R,S, T ) in θ,

a question is how to find the first one with det(Kt) 6= 0 if it exists. It is
done as follows. Suppose that θ includes more than six valid signatures, say
(Ri, Si, Ti) for Mi for i = 1, . . . , q. Given corresponding αri and αsi that satisfies
f1 = 0 and f2 = 0 from (12) and (13), one can solve the equations to obtain
(u1, u2, u3, v1, v2, v3) and every ti. Observe that, when (12) and (14) are to be
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zero, we can represent αri and αsi by

αri = {(u3 + a3 ti)(v2 + b2 ti)− (v3 + b3 ti)(u2 + a2 ti)}/det(Kti) , and

αsi = {(v3 + b3 ti)(u1 + a1 ti)− (u3 + a3 ti)(v1 + b1 ti)}/det(Kti).

If det(Kti) 6= 0, pair (αri, αsi) is unique to ti. By using the extracted (u1, u2, u3,
v1, v2, v3) and ti in each signature, we can find the smallest index i∗ ∈ {1, . . . , q}
at which det(Kti∗ ) 6= 0 with respect to (Mi∗ , Σi∗) ∈ M × Σ, and assign $
accordingly. If there is no such index, we set $ = ⊥. The success probability
of the extraction is overwhelming since the probability of the extractor for the
algebraic algorithm is overwhelming conditioned that given signatures are valid.

Case of Σ ∈ G1 ×G2
2.

As well as the previous case, any SPS with signature (R,S, T ) ∈ G1 × G2
2 for

message M ∈ G1 verifies at least two pairing product equations that can be
reduced to the following form.

e(R,U1 T
a1Sb1) e(M,U2 T

a2Sb2) e(U3, T
a3) e(U4, S

b4) = Z1 (23)

e(R, V1 T
c1Sd1) e(M,V2 T

c2Sd2) e(V3, T
c3) e(V4, S

d4) = Z2 (24)

Let R = GϕrMαr . As before, we consider the relation in the exponent with
respect to base e(G,H). Then (23) and (24) are transformed as follows.

{αr(u1 + a1t+ b1s) + (u2 + a2t+ b2s)}m

+ ϕr(u1 + a1t+ b1s) + u3a3t+ u4b4s = z1 , and (25)

{αr(v1 + c1t+ d1s) + (v2 + c2t+ d2s)}m

+ ϕr(v1 + c1t+ d1s) + v3c3t+ v4d4s = z2. (26)

Consider a system of equations Q := {f1 = 0, . . . , f5 = 0} where fi is defined as

f1 = αrm+ ϕr − r, (27)

f2 = αr(u1 + a1t+ b1s) + (u2 + a2t+ b2s), (28)

f3 = ϕr(u1 + a1t+ b1s) + u3a3t+ u4b4s− z1, (29)

f4 = αr(v1 + c1t+ d1s) + (v2 + c2t+ d2s) , and (30)

f5 = ϕr(v1 + c1t+ d1s) + v3c3t+ v4d4s− z2. (31)

Note that, with the above definition, (25) and (26) can be written as f2m+f3 =
0 and f4m + f5 = 0, respectively. Also note that if u1 + a1t + b1s 6= 0 or
v1 + c1t+ d1s 6= 0, then αr is uniquely determined by Q.

Crucial Relation. For VK = (GK , G,H,U0, U1, U2, U3, V0, V1, V2, V3) and
θ = (VK ,M ,Σ), let $ = (αr, G

ϕr , Hs, Ht). Relation Ψ(θ,$) returns 1 if,
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- $ = ⊥, and there exists (M,R, S, T ) in θ for which u1 + a1t+ b1s = 0 and
v1 + c1t+ d1s = 0 hold, or

for the first (M,R, S, T ) in θ,

- R = GϕrMαr , S = Hs, and T = Ht hold, and
- (αr, ϕr) determined by $ fulfills Q with respect to VK , M , S, and T .

In the following, we show that such $ is unique, useful and extractable.

Uniqueness. If θ includes a signature that causes u1 + a1t + b1s = 0 and
v1 + c1t + d1s = 0, then $ must be ⊥ to have Ψ(θ,$) = 1. If θ does not, then
each element in $ is uniquely determined from the first (M,R, S, T ) in θ.

Usefulness. Given $ = (αr, G
ϕr , Hs, Ht), pick random M? and compute R? =

GϕrM?αr , and set S? = Hs and T ? = Ht. Then (M?, R?, S, T ) is a valid forgery.
If $ = ⊥ and Ψ(θ,$) = 1, we show that the scheme is insecure. Suppose that
(u1 + a1t+ b1s = 0 ∧ v1 + c1t+ d1s = 0) happens with respect to (M,R, S, T )
in θ. From (28) and (30), we have u2 + a2t+ b2s = 0 and v2 + c2t+ d2s = 0. It
results in U2 T

a2Sb2 = V2 T
c2Sd2 = 1 in (23) and (24). Thus, (M?, R, S, T ) is a

valid forgery.

Extractability. Given (M,R, S, T ), relation (u1 + a1t+ b1s = 0 ∧ v1 + c1t+
d1s = 0) can be verified by testing (U1T

a1Sb1 = 1 ∧ V1T
c1Sd1 = 1). If it

happens for any signature in θ, set $ = ⊥. Suppose, without loss of generality,
u1 + a1t + b1s 6= 0 holds. Let (M,R, S, T ) be the first signature in θ. For any
algebraic algorithm that outputs (R,S, T ) for given M , there exists an extractor
that outputs αr such that R = GϕrMαr for some ϕr. As argued before, this αr
fulfills Q except for negligible probability if the discrete-logarithm problem in
G1 is hard. Thus outputting $ = (αr, G

ϕr , S, T ) completes the extraction.

5 Conclusion and Open Problems

Some ideas are suggested to get around our impossibility result. The first is to
resort to interactive assumptions as done for constructing 3-element scheme in
[3]. The second would be to go beyond the group-preserving algebraic reduction.
It however needs a number theoretic breakthrough to exploit an adversary that
works for a group with different prime order. More exotic approach is to find a
non-blackbox reduction that uses the adversary in non-blackbox manner. It also
needs a breakthrough technique to exploit the code of the adversary to handle
number-theoretic object like bilinear groups.

While this paper focused on particular type of bilinear groups due to its
importance, it is of interest to see whether similar result is obtained in other
settings. Since known 4-element schemes based on non-interactive assumptions
only sign messages in either of the base groups but not both, it would be worth
pursuing a 4-element scheme that signs group elements from both groups at the
same time, or to show the impossibility.
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