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Abstract. We present new families of access structures that, similarly
to the multilevel and compartmented access structures introduced in
previous works, are natural generalizations of threshold secret sharing.
Namely, they admit an ideal linear secret sharing schemes over every
large enough finite field, they can be described by a small number of
parameters, and they have useful properties for the applications of secret
sharing. The use of integer polymatroids makes it possible to find many
new such families and it simplifies in great measure the proofs for the
existence of ideal secret sharing schemes for them.
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1 Introduction

The first proposed secret sharing schemes by Shamir [29] and by Blakley [6]
have threshold access structures, that is, the qualified subsets are those having
at least a certain number of participants. In addition, they are ideal, which
means that every share has the same length as the secret. Moreover, as it was
noticed by Bloom [7] and by Karnin, Greene and Hellman [19], they are linear,
which implies that both the computation of the shares and the reconstruction
of the secret can be performed by using basic linear algebra operations.

Even though there exists a linear secret sharing scheme for every access
structure [4, 18], the known general constructions are very inefficient because
the length of the shares grows exponentially with the number of participants.
Actually, the optimization of secret sharing schemes for general access structures
has appeared to be an extremely difficult problem and not much is known about
it. Readers are referred to [2] for a recent survey on this topic.

Nevertheless, this does not mean that efficient secret sharing schemes exist
only for threshold access structures. Actually, the construction of ideal linear
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secret sharing schemes for non-threshold access structures has attracted a lot of
attention. This line of research was initiated by Kothari [20], who presented some
ideas to construct ideal linear secret sharing schemes with hierarchical properties.
Simmons [30] introduced the multilevel and compartmented access structures,
and presented geometric constructions of ideal linear secret sharing schemes for
some of them. Brickell [8] formalized the ideas in previous works [7, 19,20, 30]
and introduced a powerful linear-algebraic method to construct ideal linear secret
sharing schemes for non-threshold access structures. In addition, he used that
method to construct such schemes for the families of access structures introduced
by Simmons [30]. Tassa [31] and Tassa and Dyn [32] combined Brickell’s [8]
method with different kinds of polynomial interpolation to construct ideal linear
secret sharing schemes for more general families of multilevel and compartmented
access structures. Constructions for other interesting variants of compartmented
access structures are given in [16, 23]. All these families of access structures have
some common features that are enumerated in the following.

1. They are natural and useful generalizations of threshold access structures.
In the threshold case, all participants are equivalent, while the access struc-
tures in those families are multipartite, which means that the participants
are divided into several parts and the participants in the same part play
an equivalent role in the structure. In addition, they have some interesting
properties for the applications of secret sharing. Some of them are useful for
hierarchical organizations, while others can be used in situations requiring
the agreement of several parties.

2. Similarly to the threshold ones, the access structures in those families admit
a very compact description. Typically, they can be described by using a small
number of parameters, at most linear on the number of parts.

3. They are ideal access structures, that is, they admit an ideal secret sharing
scheme. Actually, every one of those access structures admits a vector space
secret sharing scheme, that is, an ideal linear secret sharing scheme con-
structed by using the method proposed by Brickell [8]. Moreover, the only
restriction on the fields over which these schemes are constructed is their
size, and hence there is no required condition about their characteristic. Ob-
serve that this is also the case for threshold access structures, which admit
vector space secret sharing schemes over every finite field with at least as
many elements as the number of participants.

4. Even though the existence of ideal linear secret sharing schemes for those
access structures has been proved, the known methods to construct such
schemes are not efficient in general. This is an important difference to the
threshold case, in which the construction proposed by Shamir [29] solves the
problem. Tassa [31, Section 3.3] presented an efficient algorithm for the mul-
tilevel access structures. This is the only other family for which an efficient
algorithm is known.

5. Determining over which fields those schemes can be constructed is another
open problem. It is unsolved even for threshold access structures. In this case,
it is equivalent to the problem considered in [1], and it is equivalent as well to
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determine over which fields uniform matroids are representable [24, Problem
6.5.12, Conjecture 14.1.5], and also to determine the size of maximum arcs
in projective spaces [27]. This is due to the well-known connection between
threshold secret sharing and maximum distance separable codes [22]. Much
less is known for the other families of multipartite access structures. Differ-
ently to the threshold case, there is a huge gap between the known lower
and upper bounds on the minimum size of such fields.

Two questions naturally arise at this point. The first one is the search for
new families of access structures with the properties above. The second one is
to determine the existence of efficient methods to construct ideal linear secret
sharing schemes for them, and to find better bounds on the minimum size of the
fields over which such schemes can be found.

Another related line of work deals with the characterization of the ideal
access structures in several families of multipartite access structures. The bi-
partite access structures [25] and the weighted threshold access structures [3]
were the first families for which such a characterization was given. Some partial
results about the tripartite case were presented in [10,16]. On the basis of the
well known connection between ideal secret sharing schemes and matroids [9],
Farras, Marti-Farré and Padré [12] introduced integer polymatroids to study
ideal multipartite secret sharing schemes. The power of this new mathematical
tool was demonstrated in the same work by using it to characterize the ideal
tripartite access structures. Subsequently, the use of integer polymatroids made
it possible to characterize the ideal hierarchical access structures [14].

This work is devoted to the search for new families of ideal access structures
that are among the most natural generalizations of threshold secret sharing, and
to the efficiency analysis of the methods to construct ideal secret sharing schemes
for them.

Our results strongly rely on the connection between integer polymatroids and
ideal multipartite secret sharing presented in [12], which is summarized here in
Theorem 2.2. The concepts, notation and related facts that are required to un-
derstand this result are recalled Section 2. Actually, the use of this tool provides
important advantages in comparison to the techniques applied in previous con-
structions of ideal multipartite secret sharing schemes [8, 16, 23, 25, 30-32].

While no strong connection between all those families was previously known,
a remarkable common feature is made apparent by identifying the integer poly-
matroids that are associated to those ideal multipartite access structures. Namely,
they are Boolean polymatroids or basic transformations and combinations of
Boolean polymatroids. This is of course a fundamental clue when trying to find
new families of ideal access structures satisfying the aforementioned require-
ments.

By using other Boolean polymatroids, and by combining them in several
different ways, we present a number of new families of ideal multipartite ac-
cess structures. Specifically, we present in Section 4 several generalizations of
the compartmented access structures introduced in [8,30,32]. Section 5 deals
with some families of partially hierarchical access structures that can be defined
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from Boolean polymatroids. For instance, we present a family of compartmented
access structures in which every compartment has a hierarchy. Ideal (totally) hi-
erarchical access structures, which were completely characterized in [14], are
associated as well to a special class of Boolean polymatroids. Finally, we use
another family of integer polymatroids, the uniform ones, to characterize in Sec-
tion 6 the ideal members of another family of multipartite access structures: the
ones that are invariant under every permutation of the parts.

All integer polymatroids that we use to find new families of ideal multipartite
access structures can be defined by a small number of parameters, linear on the
size of the ground set, and they are representable over every large enough finite
field. Actually, these requirements are implied by the conditions we imposed on
the access structures to be simple generalizations of threshold secret sharing. We
analyze in Section 3 the basic integer polymatroids as well as the operations to
modify and combine them that are used in our constructions. In particular, the
result we prove in Proposition 3.4 is extremely useful.

We focus in this paper on a few examples that can be useful for the applica-
tions of secret sharing, but many other families can be described by using other
integer polymatroids with those properties, and surely some other useful families
will be found in future works.

Differently to the aforementioned previous works, our proofs that the struc-
tures in these new families are ideal are extremely concise. Of course, this is due
to the use of integer polymatroids. In addition, some easily checkable necessary
conditions that are derived from the results in [12] make it possible to prove that
certain given multipartite access structures are not ideal. This simplifies as well
the search for new families.

Even though the efficiency of the methods to construct actual ideal linear
secret sharing schemes for those families of access structures has not been signif-
icantly improved by using the results from [12], they provide a unified framework
in which the open problems related to that issue can be precisely stated. These
open problems and some possible strategies to attack them are discussed in
Section 7.

2 Preliminaries

2.1 Multipartite Access Structures and Their Geometric
Representation

We introduce here some notation that will be used all through the paper. In
addition, we present a very useful geometric representation of multipartite access
structures that was introduced in [12, 25].

We use Z, to denote the set of the non-negative integers. For every 4,5 € Z
we write [i,j] = {i,i +1,...,7} if ¢ < j, while [¢,4] = {i} and [¢,j] =0 if i > j.
Consider a finite set J. We notate J’ for a set of the form J' = J U {po} for
some py ¢ J. Given two vectors u = (u;)ies and v = (v;)ies in Z7, we write
u < v if u; < wv; for every i € J. The modulus |u| of a vector u € Z_‘{_ is defined
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by |u] = ;o ui. For every subset X C J, we notate u(X) = (u;)icx € Z*~.
The support of u € Z” is defined as supp(u) = {i € J : u; # 0}. Finally, we
consider the vectors e’ € Z” such that eé =1if j=14and eé = 0 otherwise.

For a finite set P, we notate P(P) for the power set of P, that is, the set of
all subsets of P. A family IT = (II;);cs of subsets of P is called here a partition
of P if P = J;c,II; and II; N II; = () whenever i # j. Observe that some of
the parts may be empty. If |J| = m, we say that IT is an m-partition of P. For
a partition IT of a set P, we consider the mapping IT: P(P) — Z_{ defined by
I(A) = (JANIL|)ies. We write P = II(P(P)) = {u € Z : v < (|IL;)ies}-
For a partition IT of a set P, a IIl-permutation is a permutation ¢ on P such
that o(II;) = II; for every part II; of II. An access structure on P is said to
be II-partite if every II-permutation is an automorphism of it. If the number of
parts in I is m, such an access structure is called m-partite.

A multipartite access structure can be described in a compact way by taking
into account that its members are determined by the number of elements they
have in each part. If an access structure I" on P is II-partite, then A € I" if and
only if IT(A) € II(I"). That is, I' is completely determined by the partition IT
and set of vectors II(I") C P C Z7. Moreover, the set II(I") C P is monotone
increasing, that is, if u € IT(I") and v € P are such that u < v, then v € II(I).
Therefore, IT(I") is univocally determined by min I7(I"), the family of its minimal
vectors, that is, those representing the minimal qualified subsets of I'. By an
abuse of notation, we will use I to denote both a Il-partite access structure
on P and the corresponding set II(I") of points in P, and the same applies to
min I

2.2 Polymatroids and Matroids

A polymatroid S is a pair (J, h) formed by a finite set J, the ground set, and a
rank function h: P(J) — R satisfying

1. h(B) =0, and
2. h is monotone increasing: if X CY C J, then h(X) < h(Y), and
3. his submodular: if X, Y C J, then (X UY) 4+ h(X NY) < h(X) + h(Y).

If the rank function h is integer-valued, we say that S is an integer polymatroid.
An integer polymatroid such that h(X) < |X]| for every X C J is called a
matroid. Readers that are unfamiliar with Matroid Theory are referred to the
textbooks [24,33]. A detailed presentation about polymatroids can be found
in [28, Chapter 44] or [17].

While matroids abstract some properties related to linear dependency of col-
lections of vectors in a vector space, integer polymatroids do the same with
collections of subspaces. Let V' be a K-vector space, and let (V;);cs be a fi-
nite collection of subspaces of V. It is not difficult to check that the mapping
h: P(J) — 7Z defined by h(X) = dim(}_, x Vi) is the rank function of an integer
polymatroid. Integer polymatroids and, in particular, matroids that can be de-
fined in this way are said to be K -representable. Observe that, in a representable
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matroid, dim V; < 1 for every 7 € J, and hence representations of matroids are
considered as collections of vectors in a vector space.

Let Z be an integer polymatroid with ground set J. Consider the set D of
the integer independent vectors of Z, which is defined as

D={ueZ] : [u(X)| <h(X) for every X C J}.

Integer polymatroids can be characterized by its integer bases, which are the
maximal integer independent vectors. A nonempty subset B C Zi is the family
of integer bases of an integer polymatroid if and only if it satisfies the following
exchange condition.

— For every u € B and v € B with u; > v;, there exists j € J such that u; < v;
and u — e + e’ € B.

In particular, all bases have the same modulus. Every integer polymatroid is uni-
vocally determined by the family of its integer bases. Indeed, the rank function
of Z is determined by h(X) = max{|u(X)| : u € B}.

Since only integer polymatroids and integer vectors will be considered, we
will omit the term “integer” most of the times when dealing with the integer
independent vectors or the integer bases of an integer polymatroid.

If D is the family of independent vectors of an integer polymatroid Z on J,
then, for every X C J, the set D|X = {u(X) : u € D} C ZF is the family of
independent vectors of an integer polymatroid Z|X with ground set X. Clearly,
the rank function h|X of this polymatroid satisfies (h|X)(Y) = h(Y") for every
Y C X. Because of that, we will use the same symbol to denote both rank
functions.

For an integer polymatroid Z and a subset X C J of the ground set, we
write B(Z, X) to denote the family of the independent vectors u € D such that
supp(u) C X and |u| = h(X). Observe that there is a natural bijection between
B(Z,X) and the family of bases of the integer polymatroid Z|X.

2.3 Integer Polymatroids and Multipartite Matroid Ports

The aim of this section is to summarize the results in [12] about ideal multipartite
secret sharing schemes and their connection to integer polymatroids.

For a polymatroid S with ground set J' = J U {po}, the family I},,(S) =
{ACJ : h(AU{po}) = h(A)} of subsets of J is monotone increasing, and
hence it is an access structure on J. If § is a matroid, then the access structure
I, (S) is called the port of the matroid S at the point pg. As a consequence
of the results by Brickell [8] and by Brickell and Davenport [9], matroid ports
play a very important role in secret sharing. Ports of K-representable matroids
are called K-vector space access structures. Such an access structure admits an
ideal scheme that is constructed according to the method given by Brickell [8].
In addition, Brickell and Davenport [9] proved that the access structure of every
ideal secret sharing scheme is a matroid port. This result was generalized in [21]
by proving that the access structure of a secret sharing scheme is a matroid port
if the length of every share is less than 3/2 times the length of the secret.
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Definition 2.1. Let IT = (II;);cy be a partition of a set P of participants.
Consider an integer polymatroid Z' on J' with h({po}) = 1 and h({i}) < |IL;]
for every i € J, and take Z = Z'|J. We define a II-partite access structure
Iy (2, I0) in the following way: a vector u € P is in I, (Z',1I) if and only if
there exist a subset X € I, (Z') and a vector v € B(Z,X) such that v < u.

The following theorem summarizes the results from [12] about the connection
between ideal multipartite access structures and integer polymatroids. An access
structure is said to be connected if all participants are in at least one minimal
qualified subset.

Theorem 2.2 ([12]). Let IT = (I1;);cs be a partition of a set P. A II-partite
access structure I' on P is a matroid port if and only if it is of the form
I, (Z2', 1) for some integer polymatroid Z' on J" with h({po}) = 1 and h({i}) <
|II;| for every i € J. In addition, if Z' is K-representable, then I, (Z',II) is an
L-vector space access structure for every large enough finite extension L of K.
Moreover, if I is connected, the integer polymatroid Z' is univocally determined
by I

3 Some Useful Integer Polymatroids

In order to find families of ideal multipartite access structures with the required
properties, we need to find families of integer polymatroids that are representable
over every large enough finite field and can be described in a compact way.
To this end, we describe in the following two families of integer polymatroids,
namely the Boolean and the uniform ones, and several operations to obtain new
polymatroids from some given ones.

3.1 Operations on Polymatroids

We begin by presenting two operations on polymatroids: the sum and the trun-
cation. The first one is a binary operation, while the second one is unitary.

The sum Z1 + 25 of two polymatroids Z1,Z, on the same ground set J
and with rank functions hq, ha, respectively, is the polymatroid on J with rank
function h = hy + hso. If 21, Z5 are K-representable integer polymatroids, then
their sum is K-representable too. Clearly, if Z; is represented by the vector
subspaces (V;);es of V and Z; is represented by the vector subspaces (W;);cs
of W, then the subspaces (V; x W;);cs of V- x W form a representation of the
sum 2y + Z5. If D1, Dy C Z‘fr are the sets of independent vectors of Z; and
Z,, respectively, then, as a consequence of [28, Theorem 44.6], the independent
vectors of Z; + Z5 are the ones in Dy + Dy = {ug +uz : uy € D1, uz € Da}.
Therefore, the bases of Z1 + Z5 are the vectors in By + By, where By, By C Z'_{_
are the families of the bases of those polymatroids.

For an integer polymatroid Z on J with rank function A and a positive
integer t with ¢ < h(J), it is not difficult to prove that the map h’ defined by
R (X) = min{h(X),t} is the rank function of an integer polymatroid on .J, which
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is called the t-truncation of Z. Observe that a vector =z € Z_{_ is a basis of the
t-truncation of Z if and only if = is an independent vector of Z and |x| = ¢.

3.2 Boolean and Uniform Polymatroids

We introduce here two families of integer polymatroids.

The Boolean polymatroids form the first one. They are very simple integer
polymatroids that are representable over every finite field. Consider a finite set
B and a family (B;);cs of subsets of B. Clearly, the map h(X) = |U;cx Bil
for X C J is the rank function of an integer polymatroid Z with ground set J.
A Boolean polymatroid is an integer polymatroid that can be defined in this
way. Boolean polymatroids are representable over every field K. If |B| = r, we
can assume that B is a basis of the vector space V' = K”. For every i € J,
consider the vector subspace V; = (B;). Obviously, these subspaces form a K-
representation of Z. The modular polymatroids are those having a modular rank
function, that is, h(XUY)+h(XNY) = h(X)+h(Y) for every X, Y C J. Every
integer modular polymatroid is Boolean, and hence it is representable over every
finite field. A Boolean polymatroid is modular if and only if the sets (B;);cs are
disjoint. Observe that the rank function of an integer modular polymatroid is of
the form h(X) = >,.y b; for some vector b € Z: . Actually, this vector is the
only basis of such a polymatroid.

Proposition 3.1. FEvery truncation of a Boolean polymatroid is representable
over every large enough finite field.

Proof. For a field K and a positive integer ¢, we consider the map ¥;: K —
K! defined by v;(z) = (1,z,...,2'71). Observe that, for every ¢ different field
elements x1,...,2¢ € K, the set of vectors {¢:(z;) : ¢ = 1,...,t} is linearly
independent. Let Z be a Boolean polymatroid with ground set J, take r = h(J),
and consider a field K with |K| > r. Take B C K with |B| = r and a family
(Bi)ics of subsets of B such that h(X) = |J;cy Bi| for every X C J. For a
positive integer ¢t < r and for every i € J, consider the vector subspace V; C K
spanned by the vectors in {¢(z) : = € B;}. Clearly, these subspaces form a
K-representation of the ¢-truncation of the Boolean polymatroid Z. a

The second family that is introduced in this section is the one of the uniform
polymatroids. We say that a polymatroid Z with ground set J is uniform if
every permutation on J is an automorphism of Z. In this situation, the rank
h(X) of a set X C J depends only on its cardinality, that is, there exist values
0 =nho <hy <--- < hy, where m = |J|, such that h(X) = h; for every
X C J with |X| = 1. It is easy to see that such a sequence of values h; defines a
uniform polymatroid if and only if h; — h;—1 > h;j11 — h; for every i € [1,m —1].
Clearly, a uniform polymatroid is univocally determined by its increment vector
0 = (01,...,0m), where §; = h; — h;_1. Observe that § € R™ is the increment
vector of a uniform polymatroid if and only if §; > -+ > 4, > 0. A uniform
polymatroid is a matroid if and only if §; € {0,1} for every ¢ = 1,...,m. In this
case, we obtain the uniform matroid U, ,,, where r = max{i € [1,m] : §;, = 1}.
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It is well known that U, ,,, is K-representable whenever |K| > m. Obviously, the
sum of uniform polymatroids is a uniform polymatroid whose increment vector
is obtained by summing up the corresponding increment vectors. The next result
was proved in [13].

Proposition 3.2 ([13], Proposition 14). Every uniform integer polymatroid
18 a sum of uniform matroids. In particular, every uniform integer polymatroid
with ground set J is representable over every field K with |K| > |J|.

3.3 Multipartite Access Structures from Bases of Integer
Polymatroids

We present in the following a consequence of Theorem 2.2 that is very useful
in the search of new ideal multipartite access structures. Namely, we prove that
a multipartite access structure is ideal if its minimal vectors coincide with the
bases of a representable integer polymatroid. We need the following result, which
is a consequence of [11, Proposition 2.3].

Proposition 3.3 ([11]). Let Z be an integer polymatroid with ground set J and
let A be an access structure on J. Then there exists an integer polymatroid Z'
on J" with h({po}) = 1 and Z = Z'|J such that A = I,,(Z’) if and only if the

following conditions are satisfied.

1.IfXCYCJand X ¢ A whileY € A, then h(X) < h(Y) — 1.
2. If X, YeAand XNY ¢ A, then (X UY)+h(XNY) <h(X)+h(Y)-1.

Proposition 3.4. Let Z be a K-representable integer polymatroid on J and let
I be a II-partite access structure whose minimal vectors coincide with the bases
of Z. Then I' is an L-vector space access structure for every large enough finite
extension L of K.

Proof. The access structure A = {X C J : h(X) = h(J)} and the integer poly-
matroid Z satisfy the conditions in Proposition 3.3. Moreover, for this particular
access structure, if Z is K-representable, then the integer polymatroid Z’ whose
existence is given by Proposition 3.3 is L-representable for every large enough
finite algebraic extension IL of K. Indeed, consider a K-vector space V and vec-
tor subspaces (V;);cs forming a K-representation of Z. A representation of Z’
is obtained by finding a vector vg € V such that v ¢ >, V; for every X C J
with h(X) < h(J). Since ), Vi # V if h(X) < h(J), such a vector exists if K
is large enough. Finally, it is not difficult to check that the minimal vectors of
I,,(2',II) coincide with the bases of Z. O

4 Compartmented Access Structures

4.1 Compartmented Access Structures with Upper and Lower
Bounds

Simmons [30] introduced compartmented access structures in opposition to the
hierarchical ones. Basically, compartmented access structures can be seen as a



10 Oriol Farras, Carles Padr6, Chaoping Xing, and An Yang

modification of threshold access structures to be used in situations that require
the agreement of several parties. In a compartmented structure, all minimal
qualified subsets have the same size, but other requirements are added about
the number of participants in every part, or the number of involved parts.

The first examples of compartmented access structures were introduced by
Simmons [30]. Brickell [8] introduced a more general family, the so-called com-
partmented access structures with lower bounds, and showed how to construct
ideal secret sharing schemes for them. These are the IT-partite access structures
defined by minI" = {u € P : |u| = ¢t and u > a} for some vector a € Z7 and
some positive integer ¢ with ¢t > |a|. The compartmented access structures with
upper bounds are the IT-partite access structures with minI" ={u € P : |u| =
t and u < b}, where b € Z] and ¢ € Zy are such that b; < t < [b] for every
i € J. They were introduced by Tassa and Dyn [32], who constructed ideal secret
sharing schemes for them.

We introduce in the following a new family of compartmented access struc-
tures that generalize the previous ones. Namely, we prove that the compart-
mented access structures that are defined by imposing both upper and lower
bounds on the number of participants in every part are ideal.

For a positive integer ¢ and a pair of vectors a,b € Zi with a < b < II(P),
and |a| <t < |b|, and b; < ¢, consider the IT-partite access structure I" defined
by

minl'={zx€P : |z|=tand a <z < b}. (1)

The compartmented access structures with upper bounds and the ones with
lower bounds correspond to the compartmented access structures defined above
with ¢ = 0 and with b = II(P), respectively. We prove in the following that the
access structures (1) are ideal by checking that they are of the form I'y(Z’, IT) for
a certain family of representable integer polymatroids. Given a positive integer
t and two vectors a,b € Zi with @ < b and |a| < t < |b], consider the vector
¢ =b—a € Z] and the integer s = t — |a| € Z;. Let Z; be the integer
modular polymatroid defined by the vector a, and let Z; be the s-truncation
of the integer modular polymatroid defined by the vector c¢. Then the integer
polymatroid Z = Z; 4+ Z, is representable over every large enough finite field.
The family of bases of Z is B = {# € Z{ : |z| = tanda < z < b}. By
Proposition 3.4, this proves that the compartmented access structures of the
form (1) are vector space access structures over every large enough finite field.

4.2 Compartmented Compartments

We introduce next another family of compartmented access structures. In this
case, instead of an upper bound for every compartment, we have upper bounds
for groups of compartments. Take J = [1,m] x [1,n] and a partition IT =
(ITi5)i,jyes of the set P of participants. Take vectors a € Zi and b € Z7,
and an integer ¢ with |a] < ¢t < |b| and Z?Zl a;; < b; <t for every i € [1,m].
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Consider the IT-partite access structure I defined by

n
min'=<¢x P : |z =1, and a <z, and inj < b; for every i € [1,m]
j=1

That is, the compartments are distributed into m groups and we have an upper
bound for the number of participants in every group of compartments, while we
have a lower bound for every compartment.

We prove next that these access structures admit a vector space secret sharing
scheme over every large enough finite field. Consider the vector ¢ € ZT' defined
by ¢; = b; — 2?21 a;; and the integer s =t — |a| € Z,. Let Z; be the integer
modular polymatroid with ground set J defined by the vector a. Let Z3 the
integer polymatroid with ground set J and family of bases

n
Bs=<zxe Zi : Za:ij =¢; for every i € [1,m] ; ,
=1

and let Z5 be the s-truncation of Z3. Finally, take Z = Z; + Z,.
Lemma 4.1. The minimal qualified sets of I' coincide with the bases of Z.

Proof. Let B and By be the families of bases of Z and Z,, respectively. The
bases of Z are precisely the vectors of the form z = a + y with y € By. Observe
that a vector y € Zi is in By if and only if |y| = s and Z?Zl ¥ij < ¢ for every
i€[l,m]. O

Lemma 4.2. The integer polymatroid Z is representable over every large enough
finite field.

Proof. We only have to prove that this holds for Z,. By Proposition 3.1, for every
large enough finite field K there exist subspaces (V;)ie[1,m) of a K-vector space
V' that form a representation of the s-truncation of the modular polymatroid
with ground set [1,m] defined by the vector c. Then the subspaces (Wi;)(; jyes
of V with W;; =V for every j € [1,n] form a representation of Z,. ad

5 Ideal Partially Hierarchical Access Structures

5.1 Ideal Hierarchical Access Structures

For an access structure I" on a set P, we say that a participant p € P is hierar-
chically superior in I to a participant ¢ € P, and we write ¢ < p, if AU{p} € I
for every A C P~ {p,q} with AU {q} € I'. Two participants are hierarchically
equivalent if ¢ < p and p < ¢. Observe that, if I" is II-partite, every pair of
participants in the same part II; are hierarchically equivalent.

An access structure is hierarchical if every pair of participants are hierarchi-
cally comparable. In this situation, the hierarchical order < is a total order on
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II. Weighted threshold access structures, which were introduced by Shamir [29]
in his seminal work, are hierarchical, but they are not ideal in general. The ideal
weighted threshold access structures were characterized by Beimel, Tassa and
Weinreb [3]. Other examples of hierarchical access structures are the the mul-
tilevel access structures introduced by Simmons [30], which were proved to be
ideal by Brickell [8], and the hierarchical threshold access structures presented
by Tassa [31]. These were the only known families of ideal hierarchical access
structures before the connection between integer polymatroids and ideal mul-
tipartite secret sharing presented in [12] made it possible to characterize the
ideal hierarchical access structures [14]. Actually, all ideal hierarchical access
structures are obtained from a special class of Boolean polymatroids [14] and,
because of that, they are vector space access structures over every large enough
finite field. Moreover, they admit a very compact description, as we see in the
following.

Consider two sequences a = (ag,...,an) and b = (bg,...,b,) of integer
numbers such that ag = a1 = by = 1 and a; < a;41 < b; < bj4q for every
i € [0,m — 1]. For ¢ € [0,m], take the subsets B; = [a;,b;] of the set B =
[1,b,,] and consider the Boolean polymatroid Z' = Z’(a,b) with ground set
J' = [0,m] defined from them. It is proved in [14] (full version) that a vector
x € P C Z7 is in the II-partite access structure I' = I'y(Z2’,II) if and only if
there exists ig € [1,m] such that 320, x; > by, and Y75, x; > a;41 — 1 for
all ¢ € [1,ip — 1]. Therefore, the participants in II; are hierarchically superior
to the participants in I1; if ¢ < j, and hence every access structure of the
form I'hn(Z'(a,b), II) is hierarchical. Moreover, every ideal hierarchical access
structure is of this form or it can be obtained from a structure of this form by
removing some participants [14].

In particular, if a; = 1 for all ¢ € [0,m] and 1 = by < by < -+ < by, then
x € Iy(2'(a,b), IT) if and only if 3772, 25 > by, for some g € [1,m]. These
are precisely the multilevel access structures introduced by Simmons [30], also
called disjunctive hierarchical threshold access structures by other authors [31].
They were proved to be ideal by Brickell [8]. On the other hand, the conjunc-
tive hierarchical threshold access structures for which Tassa [31] constructs ideal
secret sharing schemes are obtained by considering 1 = ag = a1 < -+ < am
and 1 = by < by = -+ = by,. In this case, z € IH(Z'(a,b),IT) if and only if
Z;zl zj > ajp1 — 1 for all i € [1,m — 1] and ZT:l x; > by,. Observe that, in
an access structure in the first family, there may be qualified subsets involving
only participants in the lowest level. This is not the case in any access structure
in the second family, because every qualified subset must contain participants in
the highest level.

By using the results in [14], we can find other ideal hierarchical access struc-
tures with more flexible properties. If we take, for instance, a = (1,1,1,5,5) and
b = (1,4,6,10,12), every qualified subset in the hierarchical access structure
I't(Z'(a,b), IT) must contain participants in the first two levels, but some of
them do not have any participant in the first level.
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5.2 Partial Hierarchies from Boolean Polymatroids

Moreover, by considering other Boolean polymatroids, we can find other fam-
ilies of ideal access structures satisfying some given partial hierarchy, that is,
II-partite access structures in which the hierarchical relation < on I is a partial
order. We present next an example of such a family of ideal partially hierarchi-
cal access structures. Consider a family of subsets (B;);c[o,m] of a finite set B
satisfying:

- |B0‘ =1and By C By, while BoN B; = 0ifie [Q,m], and
— B1 N B; # () for every i € [2,m], and
— B; N B; =0 for every i, j € [2,m] with ¢ # j.

Let Z’ be the Boolean polymatroid with ground set J' = [0, m] defined from this
family of subsets, and consider the IT-partite access structure I' = I'h(2', IT).
Take t; = |B1| and t; = |B; \ By|, and s; = |B; N By| for i € [2,m]. Then a
vector z € P is in the access structure I" if and only if there exist a vector u € P
such that

—u<uz,

— Lesupp(u) = X, |ul = > x b,
— for every Y C X, |u(Y)] < 3°,cy (ti + 8;), where 51 = 0.

Clearly, ¢ <X p if p € II; and ¢ € II; for some i € [2,m]. On the other hand,
any two participants in two different parts II;, II; with 4,5 € [2,m] are not
hierarchically related.

5.3 Compartmented Access Structures with Hierarchical
Compartments

We can consider as well compartmented access structures with hierarchical com-
partments. Take J = [1,m] x [1,n] and a partition IT = (II;;)(; jyes of the set
P of participants. Consider a finite set B and a family of subsets (B;;)i j)es
such that B;, C --- C Bjs C B;j for every i € [1,m], and B1; U---U By = B,
and Bj; N Bj; = 0 if i # j. Let Z be the t-truncation of the Boolean poly-
matroid defined by this family of subsets. If I" is a II-partite access structure
such that its minimal vectors coincide with the bases of Z, then I is a vector
space access structure over every large enough finite field. We now describe I'.
For (i,j) € J, take b;; = |B;j|. Consider the vector b = (b11,...,bm1) € ZT. Of
course, |b| = |B|. Suppose b;; <t < |b| for every i € [1,m]. It is not difficult to
check that a vector x € Zi is a basis of Z, and hence a minimal vector of I'; if
and only if [z| =t and "),z < by; for every (i,j) € J. Observe that I" can
be seen as a compartmented access structure with compartments I, = U?Zl I1;;
for ¢ € [1,m], because every minimal qualified subset has exactly ¢ participants,
and at most b;; of them in compartment II;. In addition, we have a hierarchy
within every compartment. Actually, ¢ < p if p € II;; and q € II;;, with j < k.
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6 Ideal Uniform Multipartite Access Structures

Herranz and Séez [16, Section 3.2] introduced a family of ideal multipartite access
structures that can be seen as a variant of the compartmented ones. Specifically,
given integers 1 < k < ¢, consider the IT-partite access structure defined by

I'={ze€P : |z| >t and |supp(z)| > k}. (2)

It is proved in [16] that I" is a vector space access structure over every large
enough finite field. Observe that the parts in the partition IT = (II;);cs are
symmetrical in I'. That is, the minimal vectors of I' are invariant under any
permutation on J. In the following, we characterize all ideal multipartite access
structures with this property. We prove that all of them are vector space access
structures over every large enough finite field.

A IT-partite access structure I is said to be uniform if the set min I" C Z_{_
of its minimal vectors is symmetric, that is, if w = (u;);es € min I, then ou =
(Ugi)ics € min I" for every permutation o on J. In this section, we characterize
the uniform multipartite access structures that admit an ideal secret sharing
scheme. Moreover, we prove that all such access structures are vector space
access structures over every large enough finite field. This is done by using the
uniform integer polymatroids described in Section 3.2 to construct a family of
uniform multipartite access structures that admit a vector space secret sharing
scheme over every large enough finite field. Then we prove in Theorem 6.2 that
every ideal uniform multipartite access structure is a member of this family.

Let Z be a uniform integer polymatroid with increment vector § on a ground
set J with |J| = m. For i € [0,m], consider h; = 37%_, d;, the values of the rank
function of Z. Recall that the (k, m)-threshold access structure on J consists of
all subsets of J with at least k elements.

Lemma 6.1. For an integer k € [1,m], there exists an integer polymatroid Z;,
on J' = JU{po} with h({po}) =1 and Z = Z||J such that I,,(Z}.) is the (k, m)-
threshold access structure on J if and only if 1 <k <m —1 and §; > dp41, or
k=m and 6,, > 0.

Proof. If there exists a polymatroid Z’ with the required properties, then the first
condition in Proposition 3.3 implies that hy_1 < hg, while hg11 + hg—1 < 2hy if
1 < k < m—1 by the second one. Therefore, our condition is necessary. We prove
now sufficiency. Let A be the (k,m)-threshold access structure on J. Observe
that hy > hg—1 because d; > 0, and hence h(X) < h(Y) if X CY C J and
X ¢ A while Y € A. Consider now two subsets X,Y € A such that X NY ¢ A.
This implies in particular that k¥ < m. Take r; = |X| > k, 7o = |Y| > k, and
s=|XNY|<k. Then hy,yr,—s — hp, = ZZL? Oryti < Z;;;b Os+i = hyy — hs.
The inequality holds because k = s+ig for some ig € [1,71—s], and hence §54;, >
Ory+io- Therefore, A(XUY)+h(XNY) < h(X)+h(Y). By Proposition 3.3, this
concludes the proof. ad

Consider an integer k € [1,m] in the conditions of Lemma 6.1 and the cor-
responding integer polymatroid Zj,. For a partition II = (II;);c; of a set P of
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participants, consider the II-partite access structure I = I, (2}, IT). A vector
v € P isin I' if and only if there exists a vector u with 0 < u < v such that

— s =|supp(u)| > k and |u| = hs, and
— |u(Y)] < h; for every i € [1,m] and for every Y C J with |Y| = 4.

As a consequence of the next lemma, I" = I, (2], II) is a vector space access
structure over every large enough finite field. Moreover, every ideal uniform
multipartite access structure is of this form. Due to space limitations, we skip
the proof of this result, which will be given in the full version of this paper.

Theorem 6.2. Let IT = (II;);cy with |J| = m be a partition of a set P of
participants and let I' be a uniform II-partite access structure. Then I is ideal
if and only if there exist a uniform integer polymatroid Z on J and an integer k €
[1,m] in the conditions of Lemma 6.1 such that I' = I, (2}, II). In particular,
every ideal uniform multipartite access structure is a vector space access structure
over every large enough finite field.

The uniform multipartite access structures of the form (2) were proved to be
ideal in [16]. By using the previous characterization, we obtain a shorter proof
for this fact. Consider the uniform integer polymatroid Z on J with increment
vector ¢ defined by 67 = t—k+ 1, and §; = 1 if i € [2,k], and 6; = 0 if
i € [k+ 1,m]. Consider the integer polymatroid Z; whose existence is given by
Lemma 6.1. We claim that every II-partite access structure I" of the form (2)
is equal to I'(Z}, IT). Indeed, a vector v € P is in I'(Z}, II) if and only if there
exists a vector v with 0 < uw < v such that

— s=|supp(u)| > k and |u| = hs =t, and
— |u(Y)] < h; for every i € [1,m] and for every Y C J with |Y| = 4.

Since h; = t — k + ¢ for every i € [1,k], it is clear that every vector u € P
satisfying the first condition satisfies as well the second one.

7 Efficiency of the Constructions of Ideal Multipartite
Secret Sharing Schemes

Several families of ideal multipartite access structures have been presented in the
previous sections. We proved that every one of these structures admits a vector
space secret sharing scheme over every large enough finite field. Our proofs are
not constructive, but a general method to construct vector space secret sharing
schemes for multipartite access structures that are associated to representable
integer polymatroids was given in [12]. Unfortunately, this method is not efficient,
and no general efficient method is known.

Some issues related to the efficiency of the constructions of ideal schemes
for several particular families of multipartite access structures have been consid-
ered [8,5,15,31, 32]. We describe in the following a unified framework, derived
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from the general results in [12], in which those open problems can be more
precisely stated.

Take J = [1,m] and J' = [0,m], and let (II;);cs be a partition of the set P
of participants, where |II;| = n; and |P| = n. Consider an integer polymatroid
2" = (J',h) with k; = h({i}) < n; for every i € J and kg = h({0}) = 1, and
take k = h(J'). Consider as well a finite field K and a K-representation (V;);e s/
of Z’. In this situation, one has to find a matrix M = (My|M;|---|M,) over K
with the following properties:

1. M; is a k x n; matrix (ng = 1) whose columns are vectors in V;.
2. If u = (up,u1,. .., uy) is a basis of Z’, every k x k submatrix of M formed
by u; columns in every M, is nonsingular.

As a consequence of the results in [12], every such a matrix M defines a vector
space secret sharing scheme for the multipartite access structure I'y(Z’, IT).

One of the unsolved questions is to determine the minimum size of the fields
over which there exists a vector space secret sharing scheme for I'h(Z’, IT). An
upper bound can be derived from [12, Corollary 6.7]. Namely, such a matrix M
exists if |K| > ("1'). The best known lower bounds on |K| are linear on the
number of participants, and they can be derived from [1, Lemma 1.2] and other
known results about arcs in projective spaces. Even though very large fields
are required in general to find such a matrix by using the known methods, the
number of bits to represent the elements in the base field is polynomial on the
number of participants, and hence the computation of the shares and the the
reconstruction of the secret value can be efficiently performed in such a vector
space secret sharing scheme.

Another open problem is the existence of efficient methods to construct a
vector space secret sharing scheme for I' = I, (Z’,II), that is, the existence of
polynomial-time algorithms to compute a matrix M with the properties above.
One important drawback is that no efficient method is known to check whether
a matrix M satisfying Property 1 satisfies as well Property 2. Moreover, this
seems to be related to some problems about representability of matroids that
have been proved to be co-NP-hard [26].

We discuss in the following some general construction methods that can be
derived from the techniques introduced in previous works [8,5, 15, 25, 31, 32] for
particular families of multipartite access structures.

The first method, which was used in [8, 25] and other works, consists basically
in constructing the matrix M column by column, checking at every step that
all submatrices that must be nonsingular are so. Arbitrary vectors from the
subspaces V; can be selected at every step, but maybe a wiser procedure is to take
vectors of some special form as, for instance, Vandermonde linear combinations
of some basis of V;. In any case, an exponential number of determinants have to
be computed.

A probabilistic algorithm was proposed in [31,32] for multilevel and com-
partmented access structures. Namely, the vectors from the subspaces V; are
selected at random. This method applies as well to the general case and the suc-

cess probability is at least 1— (”;gl)N|K|_1, where N = 3. kin;. By using this
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method, a matrix M that, with high probability, defines a secret sharing scheme
for the given access structure can be obtained in polynomial time. Nevertheless,
no efficient methods to check the validity of the output matrix are known.

Finally, we survey two different methods proposed by Brickell [8] and by
Tassa [31] for the hierarchical threshold access structures. Other related solu-
tions appeared in [5, 15] for very particular cases of hierarchical threshold access
structures. To better understand these methods, let us consider first the case
of the threshold access structures. If the field |K| is very large, n + 1 randomly
chosen vectors from K* will define with high probability an ideal (k, n)-threshold
scheme. Nevertheless, no efficient algorithm to check the validity of the output
is available. One can instead choose n+ 1 vectors of the Vandermonde form, and
in this case an ideal (k,n)-threshold scheme is obtained, and of course we can
check its validity in polynomial time. The solutions proposed in those works are
based on the same idea. Namely, the vectors from the subspaces V; have to be
of some special form such that a matrix with the required properties is obtained
and, in addition, the validity of the output can be efficiently checked. The so-
lution proposed by Brickell [8] is not efficient because it requires to compute a
primitive element in an extension field whose extension degree increases with
the number of participants. The one proposed by Tassa [31, Section 3.3], which
works only for prime fields, provides a polynomial time algorithm to construct a
vector space secret sharing scheme for every hierarchical threshold access struc-
ture. The existence of similar efficient methods for other families of multipartite
access structures is an open problem.
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