
Constant-Round Private Function Evaluation
with Linear Complexity

Jonathan Katz1? and Lior Malka2??

1 Dept. of Computer Science
University of Maryland
jkatz@cs.umd.edu

2 Intel
lior34@gmail.com

Abstract. We consider the problem of private function evaluation (PFE)
in the two-party setting. Here, informally, one party holds an input x
while the other holds a (circuit describing a) function f ; the goal is for
one (or both) of the parties to learn f(x) while revealing nothing more
to either party. In contrast to the usual setting of secure computation,
where the function being computed is known to both parties, PFE is
useful in settings where the function (i.e., algorithm) itself must remain
secret, e.g., because it is proprietary or classified.

It is known that PFE can be reduced to standard secure computation
by having the parties evaluate a universal circuit, and this is the ap-
proach taken in most prior work. Using a universal circuit, however,
introduces additional overhead and results in a more complex imple-
mentation. We show here a completely new technique for PFE that
avoids universal circuits, and results in constant-round protocols with
communication/computational complexity linear in the size of the cir-
cuit computing f . This gives the first constant-round protocol for PFE
with linear complexity (without using fully homomorphic encryption),
even restricted to semi-honest adversaries.

1 Introduction

In the setting of two-party private function evaluation (PFE), a party P1 holds
an input x while another party P2 holds a (circuit Cf describing a) function f ;
the goal is for one (or both) of the parties to learn the result f(x) while not
revealing to either party any information beyond this. (The parties do agree in
advance on the size of the circuit being computed, as well as the input/output
length. See Section 2.1 for further discussion.) PFE is useful when the function
being computed must remain private, say because the function is classified, be-
cause revealing the function would lead to security vulnerabilities, or because the
implementation of the function (e.g., the circuit Cf itself) is proprietary even if
the function f is known [34, 6, 8, 9, 11–13, 19, 5, 33, 31, 3].
? Work supported by DARPA and NSF award #1111599.

?? Work done while at the University of Maryland.

PFE stands in contrast to the standard setting of secure two-party compu-
tation [37, 14], where the parties hold inputs x and y, respectively, and wish to
compute the result f(x, y) for some mutually known function f using an agreed-
upon circuit Cf for computing f . On the other hand, it is well known that the
problem of PFE can be reduced to the problem of secure computation using
universal circuits. In more detail, let Un be some (fixed) universal circuit such
that Un(x,C) = C(x) for every circuit C having at most n gates. (We implicitly
assume here some fixed representation for circuits.) Then if Cn is the class of cir-
cuits having at most n gates, PFE for this class is solved by having the parties
run a (standard) secure computation of Un.

There are, however, drawbacks to using universal circuits to implement PFE.
First is the resulting complexity: although PFE using universal circuits has
been implemented [35], it is fair to say that it is more challenging, tedious,
and error-prone to write code involving universal circuits than it is to imple-
ment secure computation “directly” using Yao’s garbled circuit approach (as
done, e.g., in [27, 26, 32, 16, 17]). Using universal circuits also impacts efficiency.
Valiant [36] showed a construction of a universal circuit achieving (optimal)
|Un| = O(n log n); the construction is complex, however, and the constant terms
(as well as the low-order terms) are significant. Kolesnikov and Schneider [23, 35]
gave a simpler construction of universal circuits: they obtain the worse asymp-
totic bound |Un| = O(n log2 n), but their techniques are claimed to yield smaller
universal circuits than Valiant’s construction for “reasonable” values of n. (The
exact improvement depends also on the number of inputs and outputs. We refer
the reader to their work for a detailed comparison.) Even so, as secure two-party
computation is used for ever-larger circuits (secure computation of circuits with
up to 1 billion gates has been reported [17]), the overhead introduced by universal
circuits becomes prohibitive. Indeed, the implementation of PFE by Kolesnikov
and Schneider [23, 35] can handle circuits of only a few thousand gates [31].

Another approach to PFE is given by Abadi and Feigenbaum [1], who show
a PFE protocol with complexity O(n) but using O(d) rounds, where d is (an
upper bound on) the depth of the circuit being computed.

1.1 Contributions of our Work

We show the first constant-round PFE protocols with linear complexity, with-
out relying on fully homomorphic public-key encryption.1 We begin by showing
a protocol in the semi-honest setting; this illustrates our core techniques and
represents what we consider to be our main contribution. (Semi-honest security
was the focus of all prior work on PFE [34, 6, 8, 9, 11–13, 19, 5, 33, 31, 3].) Zero-
knowledge proofs can be used in the standard way [15] to obtain security against
malicious parties, still in constant rounds and with linear complexity; however,
the resulting protocol is unlikely in practice to out-perform secure computation

1 It is easy to construct constant-round, linear-complexity PFE from fully homomor-
phic encryption. But it is of theoretical interest to reduce the assumptions used, and
of practical importance to avoid the overhead of fully homomorphic encryption.

of universal circuits using efficient protocols for the malicious setting (e.g., [24]).
We sketch a more efficient construction for achieving security against a mali-
cious P1.

Our protocols rely on (singly) homomorphic public-key encryption as well as
a symmetric-key encryption scheme secure against linear related-key attacks; see
Definition 2. The former can be instantiated using various standard cryptosys-
tems (e.g., [10, 30]); the latter can be instantiated in the random oracle model,
or in a provable sense [2] based on the decisional Diffie-Hellman assumption.

In addition to the theoretical improvement, our approach should yield bet-
ter performance in practice for PFE of large circuits and/or in certain settings.
Specifically, although our protocol uses O(n) public-key operations — in con-
trast to universal-circuit-based approaches that use O(n log n) or O(n log2 n)
symmetric-key operations2 — our protocol has linear communication complexity,
making it advantageous when network communication is expensive. Moreover,
there are several ways our protocol can be improved (e.g., using elliptic-curve
cryptography along with fast algorithms for performing multiple fixed-base ex-
ponentiations) to reduce its computational cost.

1.2 Overview of our Techniques

Our main technical contribution, as noted above, is our idea for achieving PFE
with linear complexity in the semi-honest setting; we describe this here. Our
description is fairly detailed and we will refer to it in the formal description
of our protocol later; it should also be possible to skim this section so as to
obtain the main ideas. Our approach adapts Yao’s garbled-circuit technique.
At a very high level, our idea is to have P1 generate a sequence of gates; P2

then connects these gates together, using (singly) homomorphic encryption, in
a manner that is oblivious to P1, while still enabling P1 to prepare a garbled
circuit corresponding to the circuit Cf held by P2. This idea of having one party
connect gates of the circuit together is vaguely reminiscent of the “soldering”
approach taken in [29]; our setting, however, is different than theirs (in [29]
it was required that both parties know the circuit being computed), as is our
implementation of the “soldering” step.

Say x ∈ {0, 1}`, and assume that f outputs a single bit and that Cf is known
to contain exactly n nand gates. (Neither of these assumptions is necessary, but
we avoid complications for now.) It will be useful to distinguish between outgoing
wires and ingoing wires of a circuit. Outgoing wires include the ` input wires
of the circuit, along with the wire that exits each gate of the circuit; thus, in
a circuit with ` inputs and n gates there are exactly ` + n outgoing wires. The
ingoing wires are exactly the input wires to each gate of the circuit; thus, in a
circuit with n two-input gates there are exactly 2n ingoing wires. A circuit is
defined by specifying the output wires, and by giving a correspondence between

2 This does not account for any oblivious transfers performed in the universal-circuit-
based approaches. However the number of oblivious transfers scales linearly in the
input length, not the circuit size.

outgoing wires and ingoing wires; e.g., specifying that outgoing wire i (which
may be an input wire or a wire exiting some gate) connects to ingoing wires j, k,
and `. We stress that even though we speak of each internal gate as having only
a single outgoing wire, we handle arbitrary fan-out since a single outgoing wire
can be connected to several ingoing wires.

In our description below, we assume for concreteness that P2 learns the out-
put f(x). However, it is trivial to modify our protocol (with no additional cost)
so that only P1 learns the output. See the remark at the end of this section.

The protocol begins by having P1 generate and send a public key pk for a
(singly) homomorphic encryption scheme Enc. Similar to Yao’s garbled-circuit
technique, P1 then chooses ` + n pairs of random keys that will be assigned to
each of the outgoing wires. Let sb

i denote the key corresponding to bit b on wire i.
Then P1 sends

[
Encpk(s0

1),Encpk(s1
1)

]
, . . . ,

[
Encpk(s0

`+n), Encpk(s1
`+n)

]

to P2. (It will become clear from what follows that P1 need not send the final
encrypted pair

[
Encpk(s0

`+n), Encpk(s1
`+n)

]
. We include it above for clarity.)

P2, in turn, obliviously defines keys for each of the 2n ingoing wires. P2 sorts
the gates of Cf topologically, so that if the outgoing wire from some gate i
connects to an ingoing wire of some gate j then i < j. This defines a natural
enumeration of the outgoing wires in the circuit: outgoing wires numbered from
1 to ` correspond to the input wires of the circuit, and outgoing wire ` + i (for
i ∈ {1, . . . , n}) corresponds to the wire exiting gate i. The output wire of the
circuit corresponds to outgoing wire ` + n. (Recall that here we assume f is
boolean; in Section 3.1 we relax this.)

For each ingoing wire of the circuit, P2 does as follows. Say the ingoing wire
of some gate i is connected to outgoing wire j. Then P2 chooses random ai, bi

and defines the (encrypted) keys for this ingoing wire to be
[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
,

where the above is computed using the homomorphic properties of the encryp-
tion scheme. (In the above, the ciphertexts are re-randomized in the usual
way.) Two observations are in order: first, the (unencrypted) keys (r0, r1) def=(
ai ·s0

j + bi, ai ·s1
j + bi

)
are random and independent of j. Second, given sb

j it is
possible for P2 to compute rb (using ai, bi); without s1−b

j , however, P2 learns no
information about r1−b. (Recall we are in the semi-honest setting, so ai, bi are
chosen at random.)

Expanding upon the above, say gate i of the circuit has its left ingoing wire
connected to outgoing wire j and right ingoing wire connected to outgoing wire k.
(As always, the outgoing wire from this gate is numbered `+ i.) Then P2 defines
the encrypted “garbled gate”

encGGi =

[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
[
Encpk(a′i · s0

k + b′i), Encpk(a′i · s1
k + b′i)

]
[
Encpk(s0

`+i), Encpk(s1
`+i)

]

 ,

where ai, bi, a
′
i, b

′
i are chosen uniformly at random. Finally, P2 sends

encGG1, . . . , encGGn

to P1. (In fact P2 need not transmit the final pair
[
Encpk(s0

`+i), Encpk(s1
`+i)

]
of

each encrypted garbled gate, since P1 knows it. We include it above for clarity.)
Upon receiving this message, P1 decrypts each encGG to obtain, for each

gate i, the three pairs of keys
(
[L0

i , L
1
i], [R

0
i , R

1
i], [s

0
`+i, s

1
`+i]

)
. It then prepares a

garbled version GGi of this gate in the usual way: namely, it computes the four
ciphertexts

C ′b,c ← sEncLb
i

(
sEncRc

i

(
s
nand(b,c)
`+i

))
, b, c ∈ {0, 1}

(where sEnc denotes a symmetric-key encryption scheme), and sets GGi to be
the four ciphertexts

(
C ′0,0, . . . , C

′
1,1

)
in random permuted order. P1 then sends

GG1, . . . , GGn to P2. In addition, P1 sends the appropriate input-wire keys sx1
1 ,

. . . , sx`

` , as well as both output-wire keys
(
s0

`+n, s1
`+n

)
.

P2 now has enough information to compute the result, using a procedure
analogous (but not identical) to what is done in a standard application of
Yao’s garbled-circuit methodology. P2 begins knowing a key si for each out-
going wire i ∈ {1, . . . , `}. (Recall these are the input wires of the circuit that
correspond to P1’s input.) Inductively, P2 can compute a key for every outgoing
wire as follows: Consider the (` + i)th outgoing wire exiting from gate i, where
the left ingoing wire to this gate is connected to outgoing wire j < i and the
right ingoing wire to this gate is connected to outgoing wire k < i. Assume P2

has already determined keys sj , sk for outgoing wires j, k, respectively. P2 com-
putes keys Li = aisj + bi and Ri = a′isk + b′i for the left and right ingoing wires
to gate i. Then P2 tries to decrypt each of the four ciphertexts in GGi. With
overwhelming probability, only one of these decryptions will be successful; the
result of this successful decryption defines the key s`+i for outgoing wire ` + i.
Once P2 has determined key s`+n, it can check whether this corresponds to an
output of ‘0’ or ‘1’ using the ordered pair

(
s0

`+n, s1
`+n

)
sent by P1.

Further details, intuition for security of the above, proofs of security, and
extensions to handle malicious behavior of P1 are described in the sections that
follow. A more efficient variant of the above protocol is described in Section 3.2.

Remark 1: It is trivial to modify the above protocol, at no additional cost, so
that only P1 learns the output (and P2 learns nothing): first, change round 3 so
that P1 does not send the output-wire keys

(
s0

`+n, s1
`+n

)
. Then when P2 learns

the final key s`+n it simply sends this key back to P1, who can then check
whether it is equal to s0

`+n or s1
`+n.

1.3 Other Related Work

Several works have explored weaker variants of PFE. Paus et al. [31] consider
semi-private function evaluation where the circuit topology (i.e., the connections
between gates) is assumed to be known to both parties, but the boolean function

computed by each gate can be hidden. Here we treat the more difficult case where
everything about the circuit (except an upper bound on its size and the number
of inputs/outputs) is hidden. Another direction has been to consider PFE for
limited classes of functions: e.g., functions defined by low-depth circuits [34,
4], branching programs [19, 3], or polynomials [9, 28]. Here we handle functions
defined by arbitrary (polynomial-size) circuits.

2 Definitions

Let k be the security parameter. A distribution ensemble X = {X(1k, a)}k∈N, a∈D
is an infinite sequence of random variables indexed by k ∈ N and a ∈ D, for
D some specified set. The two ensembles X = {X(1k, a)}k∈N, a∈D and Y =
{Y (1k, a)}k∈N, a∈D are computationally indistinguishable, denoted X

c≡ Y , if for
every non-uniform polynomial-time algorithm D there exists a negligible function
µ(·) such that for every k and every a ∈ D

∣∣∣ Pr[D(X(1k, a)) = 1]− Pr[D(Y (1k, a)) = 1]
∣∣∣ ≤ µ(k).

2.1 Private Function Evaluation

Our definitions of security are standard, but we include them here for complete-
ness. For simplicity, we treat the case where P1 holds some value x ∈ {0, 1}` as
input while P2 holds a circuit Cf computing some deterministic function f ; the
goal of the protocol is for P2 to learn f(x). The definitions we provide here, as well
as our protocols, extend easily to handle, e.g., additional input provided by P2

(this can simply be incorporated into the circuit Cf), randomized functions f ,
or the case where P1 receives output (see Remark 1 at the end of Section 1.2).

The problem of PFE is meaningless in practice if P2 learns the output and
f (resp., Cf) is allowed to be completely arbitrary: in that case P2 could take
f(x) = x and learn P1’s entire input! It is thus reasonable to impose some
restrictions on Cf . The most general formulation to assume that both parties
fix some class C of circuits, and require that Cf ∈ C; in that case we refer to the
problem as C-PFE. This encompasses both the case when P1 knows some partial
information about f (as in [31]), as well as the case where Cf is restricted in
some way (e.g., to have low depth). In this work, we assume only that P1 knows
the input length `, and upper bounds on the output length m and the number
of gates n (i.e., C contains only circuits satisfying those constraints). Note that
if m ¿ ` then meaningful privacy of P1’s input is maintained regardless of what
circuit Cf ∈ C is used by P2.

There are two ways one could incorporate a security parameter k into the
definition of the problem. The usual way, which we find less natural in our setting,
is to allow the sizes of the inputs to grow and to set the security parameter equal
to the input size(s). We prefer instead to treat the input domains (namely, {0, 1}`

and some class of circuits C) as fixed, and to treat k as an additional input.

A two-party protocol for C-PFE is a protocol running in polynomial time
and satisfying the following correctness requirement: if party P1, holding input
1k and x, and party P2, holding input 1k and Cf ∈ C, run the protocol honestly,
then (except with probability negligible in k) the output of P2 is Cf (x).

Security in the semi-honest case. In the semi-honest case we assume both
parties follow the protocol honestly but may each try to learn some additional
information from their (respective) view. Fix C and let Π be a protocol for C-
PFE. The view of the ith party during an execution of Π when the parties begin
holding inputs x and Cf , respectively, and security parameter 1k is denoted by
viewΠ

i (1k, x, Cf). The view of Pi contains Pi’s input and random tape, along
with the sequence of messages received from the other party P3−i.

When f is deterministic it suffices to consider the views of the parties in
isolation, rather than their joint distribution [14, Sect. 7.2.2.1]. We thus have:

Definition 1. Protocol Π is a secure C-PFE protocol for semi-honest adversaries
if there exist probabilistic polynomial-time simulators S1,S2 such that

{S1

(
1k, x

)}
k∈N, x∈{0,1}`, Cf∈C

c≡ {
viewΠ

1

(
1k, x, Cf

)}
k∈N, x∈{0,1}`, Cf∈C

{S2

(
1k, Cf , Cf (x)

)}
k∈N, x∈{0,1}`, Cf∈C

c≡ {
viewΠ

2

(
1k, x, Cf

)}
k∈N, x∈{0,1}`, Cf∈C .

Security against malicious behavior. We refer to the full version of this
paper [21] for a definition of security against malicious adversaries within the
usual real/ideal framework [14].

2.2 Tools

We use a (singly) homomorphic public-key encryption scheme (Gen,Enc,Dec).
The actual property we need is the ability to evaluate a pairwise-independent
function on the plaintext space. If the plaintext space is a group G of prime
order p, written additively, this can be achieved by mapping a ∈ Zp, b ∈ G, and
Encpk(m) to a (random) encryption of Encpk(am + b). Thus, e.g., standard El
Gamal encryption [10] can be used (though G in that case is usually written
multiplicatively). In fact, the plaintext space is not required to have prime or-
der, as we only require “almost” pairwise-independence. In particular, Paillier
encryption [30] could also be used.

We also use a symmetric-key encryption scheme (sEnc, sDec) whose key space
is viewed as a group G(k) of order p = p(k) that is, for simplicity, the same as
the plaintext space of the public-key encryption scheme being used. (In practice,
this can be achieved for any desired G by implementing encryption with key
g ∈ G using AES with key SHA-1(g), truncated to 128 bits.) We impose the
same requirements on (sEnc, sDec) as in [25]: namely, that it have elusive and
efficiently verifiable range. (These properties are easily satisfied.) In addition,
we require (sEnc, sDec) to satisfy a weak form of related-key security where,
roughly, encryption remains secure even when performed using linearly related
keys (where the linear relations are chosen at random). That is:

Definition 2. Encryption scheme (sEnc, sDec) is secure against linear related-key
attacks if the following is negligibly close (in k) to 1/2 for all polynomials d and
all ppt adversaries A:

Pr

s ← G(k); c ← {0, 1};
a1, . . . ad ← Zp(k)

b1, . . . , bd ← G(k)
: AsEncc

a1s+b1
(·,·),...,sEncc

ads+bd
(·,·)(a1, b1, . . . , ad, bd) = c

 ,

where sEncc
s(m0, m1)

def= sEncs(mc).

We remark that a weaker definition (where A queries each sEncc
ais+bi

(·, ·) only on
two inputs, chosen nonadaptively) suffices for our proof. It is easy to construct an
encryption scheme satisfying the above definition using a (non-programmable)
random oracle, and it would be surprising if standard encryption schemes based
on AES could be shown not to satisfy the above definition. Moreover, recent work
of Applebaum et al. [2] can be used to construct a scheme satisfying the above
definition in a provable sense, based on the decisional Diffie-Hellman assumption.

3 A C-PFE Protocol for Semi-Honest Adversaries

3.1 Description of the Protocol

We now formally define our C-PFE protocol for semi-honest adversaries. In our
description here, we assume the reader is familiar with the protocol overview
provided in Section 1.2.

We assume that all circuits in C are composed solely of nand gates. This is
for simplicity only, and our protocol can be easily modified to handle circuits
over an arbitrary basis of 2-to-1 gates with only a small impact on the efficiency.
Let n be an upper bound on the size of any circuit in C, and let m be an upper
bound on the number of outputs. By adjusting n appropriately, we may assume
that every circuit in C has exactly m outputs (P2 can always add “dummy”
outputs that are fixed to some constant); that the output wires of the circuit
do not connect to any other gates (this can be achieved by adding at most m
gates to the circuit); and that every circuit in C contains exactly n gates (P2 can
add “dummy” gates whose output wires are connected to nothing). We make all
these assumptions in what follows. We also assume that P2 learns the output;
however, it is trivial to modify the protocol so that P1 learns the output; see
Remark 1 in Section 1.2.

Recall from Section 1.2 that we distinguish between outgoing wires and ingo-
ing wires of Cf . (Recall also that although each gate has only a single outgoing
wire, we handle circuits with arbitrary fan-out since a single outgoing wire can
be connected to several ingoing wires.) As in Section 1.2, party P2 sorts the gates
of Cf topologically and this defines an enumeration of the N

def= ` + n outgoing
wires. The outgoing wires numbered from 1 to ` correspond to the ` input wires
of the circuit, and outgoing wire ` + i (for i ∈ {1, . . . , n}) corresponds to the

output wire from gate i. The output wires of the circuit correspond to the m
outgoing wires N −m + 1, . . . , N .

We first define an algorithm encYao that prepares garbled gates as in Yao’s
protocol: encYao takes as input three pairs of keys and outputs four ciphertexts,
and is defined as

encYao
(
[L0, L1], [R0, R1], [s0, s1]

) def=
{

sEncLb

(
sEncRc

(
snand(b,c)

))}
b,c∈{0,1}

,

where the four ciphertexts are in random permuted order. We analogously define
an algorithm decYao that takes as input two keys (for each of two ingoing wires)
and a garbled gate, and outputs a key for the outgoing wire; this algorithm, given
keys L,R and four ciphertexts {C ′0, C ′1, C ′2, C ′3}, computes sDecL(sDecR(C ′i)) for
all i and outputs the unique non-⊥ value that is obtained. (If more than one
non-⊥ value results, this algorithm outputs ⊥.)

Our protocol is described in Figure 1. Correctness holds with all but negligible
probability, via an argument similar to the one in [25].

In our description of the protocol we aimed for clarity rather than effi-
ciency, and several improvements are possible. For one, P2 need not include[
Encpk(s0

`+i), Encpk(s1
`+i)

]
as part of encGGi since P1 already knows these val-

ues. Furthermore, P1 need not send
[
Encpk(s0

N−m+1), Encpk(s1
N−m+1)

]
, . . . ,

[
Encpk(s0

N), Encpk(s1
N)

]

in round 1 (since these outgoing wires do not connect to any ingoing wires).
Moreover, P1 can set s0

N−m+1 = · · · = s0
N = 0 and s1

N−m+1 = · · · = s1
N = 1 (and

then there is no need to send the output-wires message in the third round); that
is, for gates whose outgoing wires are the output of the circuit, P1 can encrypt
the wire value itself rather than encrypting a key that encodes the wire value.

Security against a semi-honest P1 is easy to see. In fact, security in that
case holds in a statistical sense. Indeed, with all but negligible probability it
holds that s0

i 6= s1
i for all i ∈ {1, . . . , N}. Assuming this to be the case, the top

two rows of each encGGi sent by P2 to P1 in round 2 consist only of (random)
encryptions of the four independent, uniform values

ai · s0
j + bi, ai · s1

j + bi, a′i · s0
k + b′i, a′i · s1

k + b′i.

In particular, these values are independent of the interconnections between gates
of Cf , and thus the view of P1 is independent of the circuit held by P2.

Security against a semi-honest P2 holds computationally, assuming seman-
tic security of the homomorphic encryption scheme and security against linear
related-key attacks for the symmetric-key encryption scheme. Roughly, the ini-
tial encryptions sent to P2 in round 1 do not reveal anything about the values
s0

i , s
1
i that P1 assigns to each outgoing wire in the circuit. Thus, the information

sent to P2 in round 3 is essentially equivalent to the information sent to P2 in a
standard application of Yao’s garbled-circuit methodology, with the only differ-
ence being that here ingoing wires and outgoing wires have different keys, and

Inputs: The security parameter is k. The input of P1 is a value x ∈ {0, 1}`,
and the input of P2 is a circuit Cf with `, n, m as described in the text.

Round 1 P1 computes (pk, sk) ← Gen(1k) and sends pk to P2. In addition,
P1 chooses N = ` + n pairs of random keys s0

i , s
1
i for i ∈ {1, . . . , N}. It

then sends to P2 the ciphertexts

[
Encpk(s0

1), Encpk(s1
1)

]
, . . . ,

[
Encpk(s0

N), Encpk(s1
N)

]
.

Round 2 For each gate i ∈ {1, . . . , n} of Cf , with left ingoing wire connected
to outgoing wire j, right ingoing wire connected to outgoing wire k, and
outgoing wire ` + i, party P2 chooses ai, bi, a

′
i, b

′
i uniformly (from the ap-

propriate domains) and computes

encGGi =

[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
[
Encpk(a′i · s0

k + b′i), Encpk(a′i · s1
k + b′i)

]
[
Encpk(s0

`+i), Encpk(s1
`+i)

]

using the homomorphic properties of Enc. (In the above, each ciphertext
is re-randomized.) Then P2 sends encGG1, . . . , encGGn to P1.

Round 3 For i ∈ {1, . . . , n}, party P1 decrypts encGGi using sk to obtain

the three pairs of keys keysi
def
=

(
[L0

i , L
1
i], [R

0
i , R

1
i], [s

0
`+i, s

1
`+i]

)
. It then

computes GGi ← encYao(keysi), and sends GG1, . . . , GGn to P2. Finally,
P1 sends

input-wires: sx1
1 , . . . , s

x`
` ; output-wires:

(
s0

N−m+1, s
1
N−m+1

)
, . . . ,

(
s0

N , s1
N

)
.

Output determination Say P1 sent input-wires: s1, . . . , s` to P2 in the pre-
vious round. Then for all i ∈ {` + 1, . . . , ` + n}, party P2 does: If the left
ingoing wire of gate i is connected to outgoing wire j < i and the right in-
going wire of gate i is connected to outgoing wire k < i, then (1) compute
Li = aisj+bi and Ri = a′isk+b′i, and then (2) set si = decYao(Li, Ri, GGi).

Once P2 has computed s1, . . . , s`+n, it sets the jth output bit oj (for
j ∈ {N −m + 1, . . . , N}) to be the (unique) bit for which sj = s

oj

j .

Fig. 1. A C-PFE protocol for semi-honest adversaries.

P2 must compute a key Li on some ingoing wire by “translating” one of the keys
sj on the outgoing wire connected to that ingoing wire.

We have:

Theorem 1. Assume the homomorphic encryption scheme is semantically se-
cure, and the symmetric-key encryption scheme is secure against linear related-
key attacks and has elusive and efficiently verifiable range. Then the protocol of
Figure 1 is a secure C-PFE protocol for semi-honest adversaries.

Due to space limitations, a proof appears in the full version [21].

3.2 A More Efficient Variant

In this section we describe a more efficient variant of our protocol in which the
wire labels are chosen in a coordinated fashion, as in [22]. Unfortunately, we are
only able to prove security of the resulting protocol in the random oracle model;
see further discussion at the end of this section.

We merely sketch the basic idea. Now, in round 1, P1 chooses a global random
shift r and ` + n outgoing-wire keys {s0

i }; it then sets s1
i = s0

i + r for all i.
The first-round message from P1 now contains pk and the ` + n ciphertexts
Encpk(s0

1), . . . , Encpk(s0
`+n).

For each ingoing wire of the circuit, P2 does as follows. Say this wire is con-
nected to outgoing wire j. Then P2 chooses random a and defines the (encrypted)
0-key for this ingoing wire to be (a re-randomization of) Encpk(s0

j + a), where
this is computed using the homomorphic properties of the encryption scheme.
Thus, if gate i of the circuit has its left ingoing wire connected to outgoing wire j
and right ingoing wire connected to outgoing wire k, party P2 defines the ith
encrypted “garbled gate” via

encGGi =

Encpk(s0
j + ai)

Encpk(s0
k + a′i)

Encpk(s0
`+i)

 ,

where ai, a
′
i are chosen uniformly at random. P2 sends encGG1, . . . , encGGn to P1.

Upon receiving this message, P1 decrypts each encGG to obtain, for each
gate i, the keys

(
L0

i , R
0
i , s

0
`+i,

)
. It defines L1

i = L0
i + r and R1

i = R0
i + r, and

then prepares a garbled version GGi of this gate as in the previous sections. P2

can then compute the result as usual. The entire protocol is roughly twice as
efficient as the original.

As we have mentioned, however, we are only able to prove security of this
modified protocol in the (non-programmable) random oracle model. Although it
may appear possible to prove security in the standard model if the symmetric-
key encryption scheme satisfies a strong enough definition of security, we were
not able to isolate any suitable definition. In particular, correlation robust-
ness [18] does not appear to suffice, since there is a circularity when, e.g., keys
s, s + r, s′, s′ + r are used to encrypt keys s′′ and s′′ + r. (Some combination of
correlation robustness and circular security appears necessary.) The same issue
seems to be present in the works of [22, 29] as well.

4 Security for Malicious Adversaries

As noted in the Introduction, we can apply zero-knowledge proofs in the stan-
dard way [15] to obtain a protocol with linear complexity (and constant round
complexity) that is secure against malicious adversaries. However, the resulting
protocol is unlikely in practice to out-perform secure computation of universal
circuits using efficient protocols for the malicious setting (e.g., [24]). Here, we

sketch a more efficient construction that achieves security against a malicious P1

only. As in the previous section, our goal here is not to optimize the efficiency
of the resulting protocol but rather to illustrate the main ideas.

We continue to assume that P2 learns the output, however Remark 1 of
Section 1.2 applies here as well and so the protocol is easily modified so that
only P1 learns the output.

4.1 Protocol Modifications

We introduce the following changes to the protocol described in Section 3.1:

Proof of well-formedness of pk. We require P1 to prove that the public key
pk it sends in round 1 was output by the specified key-generation algorithm Gen.
(This step is not necessary if it is possible to efficiently verify whether a given
pk could have been output by Gen, as is the case with, e.g., El Gamal encryp-
tion.) We remark further that it suffices for the proof to be honest-verifier zero
knowledge (since we only require security against a semi-honest P2), and we do
not require it to be a proof of knowledge.

The complexity of this step is independent of n.

Validity of outgoing-wire keys. Let
[
C0

1 , C1
1

]
, . . . ,

[
C0

N , C1
N

]
denote the ci-

phertexts sent by P1 in round 1. (Recall that it is supposed to be the case that
Cb

i = Encpk(sb
i).) We now require P1 to prove that (1) each Cb

i is a well-formed
ciphertext with respect to the public key pk (once again, this step is unnecessary
if it is possible to efficiently verify validity of ciphertexts, as is the case with El
Gamal encryption), and (2) for each i, the ciphertexts C0

i , C1
i are encryptions of

distinct values. If the encryption scheme is additively homomorphic, and we let
s0

i (resp., s1
i) denote the plaintext corresponding to C0

i (resp., C1
i), then P2 can

compute Encpk(s0
i−s1

i) and the latter step is equivalent to proving that this is not
an encryption of 0. Once again, it suffices for these proofs to be honest-verifier
zero knowledge and they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved
can be written as a conjunction of n statements, each of size independent of n.

Correctness of garbled-circuit construction. We require P1 to prove cor-
rectness of the garbled gates it sends to P2 in the final round. This amounts to
proving, for each i ∈ {1, . . . , n}, that GGi was correctly constructed from encGGi.
As before, it suffices for these proofs to be honest-verifier zero knowledge and
they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved
is a conjunction of n statements, each of which has size independent of n. We
also note that by using an appropriate homomorphic encryption scheme and
symmetric-key encryption scheme, these proofs can be made (reasonably) ef-
ficient using the techniques of Jarecki and Shmatikov [20] (who show efficient
proofs for exactly this purpose, assuming a common reference string, using a
variant of the Camenisch-Shoup encryption scheme [7]).

Correctness of input-wire and output-wire keys. Finally, P1 is required
to prove that the input-wire and output-wire keys it sends in the final round
are correct. Let

[
C0

1 , C1
1

]
, . . . ,

[
C0

N , C1
N

]
denote the ciphertexts sent by P1 in

round 1 (recall it is supposed to be the case that Cb
i = Encpk(sb

i)), and let

input-wires: s1, . . . , s` and output-wires:
(
s0

N−m+1, s
1
N−m+1

)
, . . . ,

(
s0

N , s1
N

)

be the values sent by P1 in the last round. Then P1 must prove that: (1) that
for each index i ∈ {1, . . . , `}, one of the ciphertexts C0

i , C1
i is an encryption

of the plaintext si, and (2) that for each index i ∈ {N − m + 1, . . . , N}, the
ciphertext C0

i (resp., C1
i) is an encryption of s0

i (resp., s1
i). It suffices for each of

these proofs to be honest-verifier zero knowledge; the first set of proofs (proving
correctness of the input-wire keys) must be proofs of knowledge to allow for
input extraction. (Alternately, if the proof of well-formedness of the public key
is a proof of knowledge then proofs of knowledge are not needed here.)

The complexity of this step is linear in ` + m.

We remark that most of the above proofs can be implemented efficiently
for any homomorphic encryption scheme. The main exception is the proof of
correctness of the garbled-circuit construction; however, as noted above, there
exists at least one specific homomorphic encryption scheme for which this step
can be done reasonably efficiently [20]. A proof of the following appears in [21].

Theorem 2. Under the same assumptions as in Theorem 1, the protocol of
Figure 1 with the modifications described in the previous section is a secure C-
PFE protocol for a malicious P1.

5 Conclusions and Future Work

We have shown the first constant-round protocol for PFE with complexity linear
in the size of the circuit being computed (without relying on fully homomorphic
encryption). Our results leave several interesting open questions:

– In addition to its theoretical importance, we believe our work is also of prac-
tical relevance: specifically, we expect that our approach to PFE will be both
easier to implement and more efficient (for large circuits) than approaches
relying on universal circuits. It remains to experimentally validate this claim.

– Our work leaves open the question of designing a fully secure protocol for
PFE (i.e., PFE with security against a malicious P1 and a malicious P2) with
linear complexity that would have better performance than what results from
running a secure computation of universal circuits using efficient protocols
for the malicious setting (e.g., [24]).

– It would also be interesting to further improve on the cryptographic as-
sumptions needed for our results: e.g., to construct a protocol based on se-
mantically secure symmetric-key encryption (without requiring related-key
security), or to avoid the use of homomorphic public-key encryption.

The contents of this paper do not necessarily reflect the position or the policy of the

US Government, and no official endorsement should be inferred.

References

1. M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2(1):1–12, 1990.

2. B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key
attacks and applications. In 2nd Symp. on Innovations in Computer Science (ICS),
2011. Available at http://eprint.iacr.org/2010/544.

3. M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider.
Secure evaluation of private linear branching programs with medical applications.
In 14th European Symposium on Research in Computer Security (ESORICS), vol-
ume 5789 of LNCS, pages 424–439. Springer, 2009.

4. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In 2nd Theory of Cryptography Conference — TCC 2005, volume 3378 of LNCS,
pages 325–341. Springer, 2005.

5. J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving re-
mote diagnostics. In 14th ACM Conf. on Computer and Communications Secu-
rity (CCS), pages 498–507. ACM Press, 2007.

6. C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation
and secure autonomous mobile agents. In 27th Intl. Colloquium on Automata,
Languages, and Programming (ICALP), volume 1853 of LNCS, pages 512–523.
Springer, 2000.

7. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology — Crypto 2003, volume 2729 of
LNCS, pages 126–144. Springer, 2003.

8. R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and R. N. Wright.
Selective private function evaluation with applications to private statistics. In 20th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
293–304. ACM Press, 2001.

9. Y.-C. Chang and C.-J. Lu. Oblivious polynomial evaluation and oblivious neural
learning. In Advances in Cryptology — Asiacrypt 2001, volume 2248 of LNCS,
pages 369–384. Springer, 2001.

10. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31:469–472, 1985.

11. K. Frikken, M. Atallah, and J. Li. Hidden access control policies with hidden
credentials. In Proc. ACM Workshop on Privacy in the Electronic Society (WPES),
page 27. ACM, 2004.

12. K. Frikken, M. Attallah, and C. Zhang. Privacy-preserving credit checking. In
ACM Conf. on Electronic Commerce (EC), pages 147–154. ACM, 2005.

13. K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In Network and Distributed System Security
Symposium (NDSS), pages 157–172. The Internet Society, 2006.

14. O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

15. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

16. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY:
Tool for automating secure two-party computations. In 17th ACM Conf. on Com-
puter and Communications Security (CCS), pages 451–462. ACM Press, 2010.

17. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In 20th USENIX Security Symposium, 2011.

18. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology — Crypto 2003, volume 2729 of LNCS,
pages 145–161. Springer, 2003.

19. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In 4th
Theory of Cryptography Conference — TCC 2007, volume 4392 of LNCS, pages
575–594. Springer, 2007.

20. S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed
inputs. In Advances in Cryptology — Eurocrypt 2007, volume 4515 of LNCS, pages
97–114. Springer, 2007.

21. J. Katz and L. Malka. Constant-round private function evaluation with linear
complexity. Available at http://eprint.iacr.org/2010/528.

22. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In 35th Intl. Colloquium on Automata, Languages, and Programming
(ICALP), Part II, volume 5126 of LNCS, pages 486–498. Springer, 2008.

23. V. Kolesnikov and T. Schneider. A practical universal circuit construction and se-
cure evaluation of private functions. In Financial Cryptography and Data Security,
volume 5143 of LNCS, pages 83–97. Springer, 2008.

24. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Advances in Cryptology — Eurocrypt 2007,
volume 4515 of LNCS, pages 52–78. Springer, 2007.

25. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

26. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation effi-
ciently with security against malicious adversaries. In 6th Intl. Conf. on Security
and Cryptography for Networks (SCN ’08), volume 5229 of LNCS, pages 2–20.
Springer, 2008.

27. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system. In Proc. 13th USENIX Security Symposium, pages 287–302.
USENIX Association, 2004.

28. M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM Journal on Com-
puting, 35(5):1254–1281, 2006.

29. J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In 6th
Theory of Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages
368–386. Springer, 2009.

30. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology — Eurocrypt ’99, volume 1592 of LNCS, pages 223–238.
Springer, 1999.

31. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-
private functions. In 7th Intl. Conference on Applied Cryptography and Network
Security (ACNS), volume 5536 of LNCS, pages 89–106. Springer, 2009.

32. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation
is practical. In Advances in Cryptology — Asiacrypt 2009, volume 5912 of LNCS,
pages 250–267. Springer, 2009.

33. A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation
of private functions with application to data classification. In 11th Intl. Conf. on
Information Security and Cryptology (ICISC), volume 5461 of LNCS, pages 336–
353. Springer, 2008.

34. T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1.
In 40th Annual Symposium on Foundations of Computer Science (FOCS), pages
554–567. IEEE, 1999.

35. T. Schneider. Practical secure function evaluation. Mas-
ter’s thesis, University Erlangen-Nürnberg, 2008. Available from
http://thomaschneider.de/FairplayPF.

36. L. Valiant. Universal circuits. In 8th Annual ACM Symposium on Theory of
Computing (STOC), pages 196–203. ACM Press, 1976.

37. A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

