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Abstract. In this paper we solve the problem of secure communication
in multicast graphs, which has been open for over a decade. At Euro-
crypt ’98, Franklin and Wright initiated the study of secure communica-
tion against a Byzantine adversary on multicast channels in a neighbor
network setting. Their model requires node-disjoint and neighbor-disjoint
paths between a sender and a receiver. This requirement is too strong
and hence not necessary in the general multicast graph setting. The
research to find the lower and upper bounds on network connectivity
for secure communication in multicast graphs has been carried out ever
since. However, up until this day, there is no tight bound found for any
level of security.
We study this problem from a new direction, i.e., we find the necessary
and sufficient conditions (tight lower and upper bounds) for secure com-
munication in the general adversary model with adversary structures,
and then apply the results to the threshold model. Our solution uses
an extended characterization of the multicast graphs, which is based on
our observation on the eavesdropping and separating activities of the
Byzantine adversary.
Keywords: secure communication, reliable communication, multicast,
privacy, reliability, adversary structure.

1 Introduction

In most communication networks, a sender S and a receiver R are connected
by unreliable and distrusted channels. The distrust of the channels is because of
the assumption that there exists an adversary who, with unbounded computa-
tional power, can control some nodes on these channels. The interplay of network
connectivity and secure communication between S and R has been studied ex-
tensively (see, e.g., [2, 3, 6, 4, 13]).

Secure communication is based on the problem of secure message transmis-
sion (SMT) between S and R. The aim of SMT is to enable a message to be
transmitted from S to R privately (i.e., the adversary does not learn the mes-
sage) and reliably (i.e., R can output the message correctly). In particular, reli-
able message transmission (RMT) is essential for all transmission protocols, and
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hence it has been studied exclusively. Normally there are two different measures
of security or reliability: perfect (i.e., zero probability that the protocol fails to
be secure or reliable) and almost perfect (i.e., an arbitrarily small probability
that the protocol fails to be secure or reliable) [7].

The traditional studies of RMT and SMT consider a point-to-point network
setting, where a sending node can transmit a message to a receiving node through
a channel they choose. In the threshold model (t-bounded), the adversary is able
to control up to t nodes in a network graph. The result by Dolev et al. [6] shows
that n > 2t node-disjoint paths are required for RMT and SMT between S and
R. In [7], Franklin and Wright showed that the connectivity for almost perfect
security can be reduced by using multicast channels.

A multicast channel allows a sending node to transmit a message to multiple
receiving nodes. The study of secure multicast was initiated by Franklin and
Yung in [9]. They used hypergraphs to model multicast networks, and studied
privacy against a passive adversary (eavesdropper). Goldreich et al. [10] also
studied multicast networks, but their work is in the full information model,
which is different to the partial broadcast model in which we are interested. At
Eurocrypt ’98, Franklin and Wright [7] (see also [8]) first studied a Byzantine
(active) adversary on multicast channels in neighbor networks (defined in [9]), in
which a message multicast by a node is received—simultaneously and privately—
by all its neighbors, where a neighbor is a node that shares a common edge
with the sending node.1 They found that with some properties of the multicast
channels, only n > t node-disjoint paths are needed for almost perfectly RMT
and SMT. However, their setting is based on a strong assumption, that is, all
paths between S and R must be neighbor-disjoint (i.e., there do not exist two
paths that have a common neighbor node). Indeed, such a strong assumption
may not be necessary in general multicast networks, and hence they gave the
following open problem:

. . . if these n disjoint paths do not have disjoint neighborhood, then an adver-
sary may be able to foil our protocols with t < n faults by using one fault to
eavesdrop on two disjoint lines. An obvious direction of further research is to
characterize secure communication fully in this more general (multicast graph)
setting.

Wang and Desmedt [14] further investigated the problem of secure communica-
tion in a more general multicast graph setting. They conjectured that a general
connectivity (weaker than n > t neighbor-disjoint) is the upper bound for achiev-
ing perfect privacy and almost perfect reliability (see Section 6 for more details).
In another study, Desmedt and Wang [4] (see also [15]) extended this result. By
using examples, they showed that the previously conjectured connectivity of [14]
is not necessary, and they also proposed a lower bound for SMT and conjectured
its tightness. Since it is very difficult to apply the threshold model in general mul-

1 For example, in Fig 1(a) in Section 3, when a message is multicast by node 2, it will
be simultaneously received by nodes 1, 3 and 4. A multicast channel does not allow
node 2 to send a message to node 1 and 3 without node 4 receiving it.



ticast graphs, up until this day, there has been no result that gives the necessary
and sufficient conditions for RMT and SMT in multicast graphs.

Our contributions. We completely solve the problem of secure communication
in multicast graphs (neighbor network setting), which has been open and studied
for over a decade. We view this problem from a new direction. That is, our
solution is based on two basic ideas: (1) a general graph setting can be applied
naturally in the general adversary model with adversary structures (see, e.g., [11,
13, 5, 17]); (2) a threshold corresponds to a special adversary structure. Thus we
study multicast graphs in the general adversary model, and then apply the results
to the threshold model.

We found that the current adversary structure model is not enough to char-
acterize multicast graphs. Therefore, in Section 3, we give an extended character-
ization of the multicast graphs, which is based on our observation on the eaves-
dropping and separating activities of the adversary on the multicast channels.
This characterization gives a clearer view on how the message can be securely
transmitted over multicast graphs.

With the new characterization, we give the necessary and sufficient conditions
for RMT and SMT respectively in Section 4 and Section 5. Besides proving that
our conditions imply the lower bounds on network connectivity, we also provide
message transmission protocols to show that these bounds are tight.

Finally in Section 6, we use our results in the general adversary model to
find the necessary and sufficient conditions for RMT and SMT in the threshold
model. Also by analyzing the previous results, we show how our results explain
all the examples and prove all the conjectures in the previous work. Our final
result regarding the tight bounds on network connectivity for RMT and SMT
in multicast graphs is presented at the end of this paper.

2 Model

We abstract away the concrete network structure and model a multicast com-
munication neighbor network by an undirected graph G(V,E), whose nodes are
the parties in the network and edges are private and authenticated multicast
channels. Let S,R ∈ V , the paths between S and R are not necessarily node-
disjoint.2

Let F be a sufficiently large finite field, we assume that M ⊆ F is the message
space from which S chooses messages. Let A be a set, we use |A| to denote the
number of elements in A, and we write a ∈R A to indicate that a is chosen from
A with respect to uniform distribution.

In the threshold model, an adversary can control up to t nodes in a graph,
and hence control up to t node-disjoint paths. In the general adversary model, an
adversary is characterized by an adversary structure, which is defined as follows
(see [12, 11]): Given a party set P , an adversary structure A on P is a subset

2 Throughout the paper we consider only the simple paths. A simple path is a path
with no repeated nodes.



of 2P such that for any A ∈ 2P , if A ∈ A and A ⊇ A′, then A′ ∈ A. The
adversary is able to choose one set A ∈ A to control. It is straightforward that
the threshold model is a special case of the general adversary model, because
a threshold t can be seen as a special adversary structure A such that any set
A ∈ 2P that has t parties or less is in A.

In this paper we consider a Byzantine adversary who can exhibit an active
behavior. A Byzantine adversary has unlimited resources and computational
power. Not only can the adversary read the traffic through the parties it controls,
but it can also decide, whether to deny or to modify the message, whether to
follow the protocol or not, etc.

We use the security model given by Franklin and Wright [7]. Let Π be an
SMT protocol. S starts with a message mS drawn from a message space M. At
the end of Π, R outputs a message mR. For any execution of the protocol Π,
let adv be the adversary’s view of the entire protocol, i.e., the behavior of the
faulty nodes, the initial state of the adversary, and the coin flips of the adversary
during the execution. We write adv(m, r) to denote the adversary’s view when
mS = m and when the coin flips of the adversary are r.

Privacy. Π is ε-private if, for any two messages m1,m2 ∈ M and any r, we
have

∑
c |Pr[adv(m1, r) = c] − Pr[adv(m2, r) = c]| ≤ 2ε. The probabilities

are taken over the coin flips of the honest parties, and the sum is over all
possible values of the adversary’s view.

Reliability. Π is δ-reliable if, with probability at least 1− δ, R outputs mR =
mS at the end of the protocol. The probability is over the choice of mS and
the coin flips of all parties.

Security. Π is (ε, δ)-secure if it is ε-private and δ-reliable.

We say Π is perfectly secure (PSMT) if it is a (0, 0)-SMT protocol. In this
paper, we also discuss reliability (without requirement for privacy): δ-RMT, 0-
RMT, and almost perfect security: (ε, δ)-SMT and (0, δ)-SMT. Note that in the
rest of the paper, ε and δ only appear when studying almost perfect security,
thus we let ε > 0 and 0 < δ < 1

2 .
We employ the authentication code auth(m; a, b) = am + b for information-

theoretically secure authentication. An authentication key (a, b) ∈R F2 can be
used to authenticate one message m without revealing any information about
the key itself.

3 Characterization of Multicast Graphs

In this section we characterize multicast graphs based on the adversary struc-
tures. We give an extended characterization which is essential for obtaining the
necessary and sufficient conditions in the multicast model. This should give a
clearer insight to the problems we are dealing with.

We let P be the set of all paths between S and R in a given graph G(V,E).
The adversary chooses a set of nodes A ∈ A to control, where A is an adversary
structure on V \ {S,R}. For each path p ∈ P , we define eavesdropping and
separating as follows.



Definition 1 We say that the adversary can eavesdrop on p if it cannot control
any node on p but can control some neighbors of p.3 Suppose that the adversary
can eavesdrop on p and there is an element a to be transmitted between S and R
on p. We say that the adversary can completely eavesdrop on p if, despite what
protocol is executed, the adversary can learn a by eavesdropping.

Definition 2 We say that the adversary can separate S and R on p if it can
control some nodes on p. Suppose that the adversary can separate S and R on
p and there are k elements (a1, . . . , ak) ∈ Fk to be transmitted on p. We let
(aS1 , . . . , a

S
k ) and (aR1 , . . . , a

R
k ) be the views of S and R respectively on these k

elements at the end of any protocol. We say that the adversary can completely
separate S and R if, despite what protocol is executed and how large k is, there
exists a strategy of the adversary that causes ∀i (1 ≤ i ≤ k) : aSi 6= aRi .

Next we show two lemmas regarding the eavesdropping and separating ac-
tivities of the adversary on a single path p ∈ P . We assume that the path p is
placed in a left-to-right direction, with S at the left end and R at the right end.

Lemma 1 The adversary can completely eavesdrop on a path p ∈ P if and only
if it can eavesdrop on two adjacent nodes4 on p.

Proof. We first prove the “if” direction. The privacy problem has been studied
by Franklin and Yung in [9]. They showed that private communication on p is
possible only if, by removing all the faulty nodes and the hyperedges on which the
faulty nodes are, path p remains.5 Evidently, this necessary condition for privacy
is satisfied if and only if the adversary cannot eavesdrop on two adjacent nodes
on p (See Example 1 following this proof). Thus if the adversary can eavesdrop
on two adjacent nodes on p, then it can completely eavesdrop on p.

Next we prove the “only if” direction. We give the following protocol, which
allows S to send an element aS to R with perfect privacy, when the adversary
cannot eavesdrop on two adjacent nodes on p. First we assume that including S
and R, there are k+ 2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node
vk+1, and v1, . . . , vk be the other k nodes from left to right.

Single Path Private Propagation Protocol

1. For each 1 ≤ i ≤ k + 1, vi initiates an element ai ∈R F and multicasts it.
Thus for each 0 ≤ i ≤ k, vi receives element ai+1 from its right side neighbor
node vi+1.

3 Obviously, if the adversary can control some nodes on p, then it can learn everything
passing through those controlled nodes. However, for the purpose of our observation,
we do not consider this activity as “eavesdropping”, instead, we characterize it as
“separating”, which we describe in Definition 2.

4 Two nodes u, v ∈ V are said to be adjacent to one another if there is an edge
{u, v} ∈ E between them.

5 In the threshold model where any t nodes can be the faulty, such connectivity is
called the weak thyper-connectivity. We discuss this connectivity in more detail in
Section 6.
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Fig. 1. Eavesdropping activities on a single path p.

2. S sets i := 1 and multicasts b0 = aS+a1. While i ≤ k, vi receives element bi−1
from its left side neighbor node vi−1, vi then multicasts bi = bi−1−ai+ai+1

and sets i := i+ 1.
3. When i = k+ 1, R receives element bk from vk, R then sets aR := bk−ak+1.

End.

Obviously, for each 0 ≤ i ≤ k, the element that vi multicasts is an encrypted
ciphertext bi = aS +ai+1. In order to decrypt aS , the adversary needs to learn a
pair (bi, ai+1) for some 0 ≤ i ≤ k. Since bi is multicast by vi and ai+1 is multicast
by vi+1, the adversary who cannot eavesdrop on two adjacent nodes is not able
to learn aS by eavesdropping. ut

Single Path Eavesdropping Examples.

(a) If the adversary can eavesdrop on two adjacent nodes on path p, then the
necessary condition of [9] is not satisfied. For example, in Fig 1(a), the faulty
node is node 4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3, 4}), (3, {2, R}), (4, {1, 2}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges
are

(S, {1}), (3, {2, R}) and (R, {3}).

Thus p does not remain because edge {1, 2} is removed, and hence the con-
dition of [9] is not satisfied.

(b) If the adversary cannot eavesdrop on two adjacent nodes on path p, then the
necessary condition of [9] is satisfied. For example, in Fig 1(b), the faulty
node is node 4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3}), (3, {2, 4, R}), (4, {1, 3}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges
are

(S, {1}), (2, {1, 3}) and (R, {3}).

Thus p remains because all edges on p remain, and hence the condition of [9]
is satisfied.

The different separating activities were observed by Franklin and Wright
in [7], but here we extend their result and upgrade their protocol.



Lemma 2 (following [7]) The adversary can completely separate S and R on a
path p ∈ P if and only if it can control two or more nodes on p.

Proof. We refer the proof of the “if” direction to [8].
Next we prove the “only if” direction. We assume that including S and R,

there are k + 2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node vk+1,
and v1, . . . , vk be the other k nodes from left to right. We show that with the
following protocol, the adversary cannot completely separate S and R when k
elements (a1, . . . , ak) are transmitted on p if the adversary can control no more
than one node on p.

Single Path Distribution Protocol

1. For each 1 ≤ i ≤ k, vi initiates an element ai ∈R F and multicasts it.
2. For each 1 ≤ i ≤ k, the nodes on the left side of vi execute an instance

of the Single Path Private Propagation Protocol from vi−1 to S in which
vi−1 sends ai, and the nodes on the right side of vi execute an instance of
the Single Path Private Propagation Protocol from vi+1 to R in which vi+1

sends ai.
3. At the end of the protocol, for each 1 ≤ i ≤ k, S receives an element aSi and
R receives an element aRi . If S (or R) receives nothing regarding element ai
for some 1 ≤ i ≤ k, then S (or R) sets aSi = 1 (or aRi = 1). End.

Let ve (1 ≤ e ≤ k) be the only faulty node on p. It is straightforward that at
the end of the protocol, aSe = aRe , even if ve does not initiate and multicast any
element (in this case aSe = aRe = 1). ut

Next, we give the following two lemmas, which are trivial so we omit the
proofs.

Lemma 3 If the adversary can only control one node v on a path p ∈ P , then
despite what protocol is executed on p, there exists a strategy of the adversary
that causes the views of S and R to be different except for their views on the
elements multicast by v.

Lemma 4 Given a node v on a path p ∈ P , if the adversary cannot separate S
and R on p, completely eavesdrop on p, or control a neighbor of v, then during
the execution of the Single Path Distribution Protocol on p, the adversary cannot
learn the elements multicast by v.

Having these lemmas, we now present an extended characterization ζA of a
multicast graph G(V,E) given an adversary structure A on V \ {S,R}.

Definition 3 Given a graph G(V,E), let A = {A1, . . . , Az} be an adversary
structure on V \ {S,R} and P be the set of all paths between S and R. An
Extended Characterization of G given A is ζA = {ζA1 , . . . , ζAz} where for each

1 ≤ i ≤ z, we have ζAi
= (P

(+)
i , P

(1)
i , P

(∗)
i , Pi) where



– P
(+)
i is the set of all paths on each of which there are at least two nodes

in Ai,

– P
(1)
i is the set of all paths on each of which there is exactly one node in Ai,

– P
(∗)
i is the set of all paths on each of which there is no node in Ai, but on

each path in P
(∗)
i , there are two adjacent nodes that both have neighbors in

Ai, and

– Pi = P
(+)
i ∪P (1)

i is the set of all paths on each of which there is at least one
node in Ai.

With the extended characterization ζA, we know that during the execution
of any protocol, by choosing a set Ai ∈ A to control, the adversary can separate

S and R on Pi, completely separate S and R on P
(+)
i and completely eavesdrop

on P
(∗)
i .

Given any set Ai ∈ A, we are particularly interested in the nodes of Ai on

the paths of P
(1)
i . For each path p ∈ P (1)

i , we use Ai u p to denote the single
node v ∈ Ai that is on path p; i.e., v = Ai u p. Note that this notation is only

used for the paths in P
(1)
i .

Definition 4 Given a graph G(V,E) and an adversary structure A on V \
{S,R}, we say that S and R are highly A-connected if for any set Ai ∈ A,

we have Pi ∪ P (∗)
i 6= P .

Definition 5 Given a graph G(V,E) and an adversary structure A on V \
{S,R}, we say that S and R are lowly 2A-separated if there exist two (not
necessarily distinct) sets A1, A2 ∈ A such that

(a) P1 ∪ P2 = P , and

(b) P
(1)
1 = ∅, or for each path p ∈ P (1)

1 , we have that p ∈ P2 ∪ P (∗)
2 or A1 u p

has a neighbor in A2, and

(c) P
(1)
2 = ∅, or for each path p ∈ P (1)

2 , we have that p ∈ P1 ∪ P (∗)
1 or A2 u p

has a neighbor in A1.

We say that S and R are lowly 2A-connected if they are not lowly 2A-separated.

Lemma 5 Given a graph G(V,E) and an adversary structure A on V \ {S,R},
if S and R are lowly 2A-connected, then for any set Ai ∈ A, we have Pi 6= P .

Proof. Assume there exits a set Ai ∈ A such that Pi = P , if we let both the sets
A1, A2 of Definition 5 be Ai, then it is straightforward that S and R are lowly
2A-separated. Thus we have a contradiction. ut

4 Reliable Communication

In this section, we discuss reliable communication with no requirement for pri-
vacy. We study almost perfect reliability (δ-RMT) in Section 4.1 and perfect
reliability (0-RMT) in Section 4.2.



4.1 Almost Perfect Reliability

We give the necessary and sufficient condition for δ-RMT in multicast graphs.

Theorem 1 Given a graph G(V,E) and an adversary structure A on V \{S,R}.
The necessary and sufficient condition for δ-RMT from S to R is that S and R
are lowly 2A-connected.

Next, we use Lemma 7 and Lemma 8 to show the necessity and sufficiency
of the condition respectively. Before we present these two lemmas, we first give
the following Lemma 6, which is a key ingredient for proving the necessity.

Lemma 6 If there exists two sets A1, A2 ∈ A such that P
(+)
1 ∪ P (+)

2 = P , and
δ < 1

2 (1− 1
|M| ), then δ-RMT from S to R is impossible.

Proof. This lemma can be easily proven using a similar technique as that in [8,
Theorem 5.1] and [5, Theorem 3]. See the full version of this paper [1]. ut

Lemma 7 The condition of Theorem 1 is necessary.

Proof. It is straightforward that in order to achieve δ-reliability, it is necessary
to have Pi 6= P for any Ai ∈ A; i.e., P \ Pi 6= ∅.

Next we prove the necessity of the condition by contradiction. We assume
that S and R are lowly 2A-separated (i.e., there exist two sets A1, A2 ∈ A as
they are in Definition 5) and there exists a δ-RMT protocol Π that transmits a
message m ∈M from S to R. Without loss of generality, we let P1∩P2 = ∅. Now

if P
(1)
1 = ∅ and P

(1)
2 = ∅, then we have P

(+)
1 = P1 and P

(+)
2 = P2, and hence

P
(+)
1 ∪ P (+)

2 = P (following Definition 5(a)), thus due to Lemma 6, δ-RMT is

impossible in the case. In the rest of our proof we let P
(1)
1 6= ∅ and/or P

(1)
2 6= ∅.

We make an observation on how protocol Π can achieve δ-reliability. Given
a node v on a path p ∈ P , we use (v ∼ p) to denote the tuple of the elements
that are multicast by v and received (in any way) by both S and R on p, and
let (v ∼ p)S and (v ∼ p)R be the views of S and R respectively on (v ∼ p).

The strategy of the adversary is to choose an e ∈R {1, 2} and control the
set Ae. Let d ∈ {1, 2} such that d 6= e, then R should be able to recover the
actual message from the elements received on Pd. If, despite whether e = 1 or
e = 2, (v ∼ p)S 6= (v ∼ p)R for any v on any p ∈ Pe (i.e., the views of S and R
are completely different on Pe), then following Lemma 6, δ-RMT is impossible.
Therefore, there must exist an e ∈ {1, 2} such that (v ∼ p)S = (v ∼ p)R

is guaranteed for some v on some p ∈ Pe. We say that the tuple of elements
(v ∼ p) where p ∈ Pe such that (v ∼ p)S = (v ∼ p)R supports the actual
message. Following Lemma 2, the adversary can completely separate S and R

on P
(+)
e and cause ∀(p ∈ P

(+)
e , v on p) : (v ∼ p)S 6= (v ∼ p)R. Following

Lemma 3, for any path p ∈ P (1)
e (if P

(1)
e 6= ∅), (v ∼ p)S = (v ∼ p)R can only

be guaranteed if v = Ae u p. Therefore, there must exist an e ∈ {1, 2} such that
the actual message received on Pd is supported by some ((Ae u p) ∼ p) where



p ∈ P (1)
e . Next, following Definition 5(b,c), for each path p ∈ P (1)

d (if P
(1)
d 6= ∅),

we have case 1: p ∈ Pe ∪ P (∗)
e , or case 2: Ad u p has a neighbor in Ae. In case 1:

p ∈ Pe ∪ P (∗)
e , due to Lemma 1, there is no private transmission on path p

whatsoever, so the adversary can learn ((Ad u p) ∼ p). In case 2: Ad u p has a
neighbor in Ae, it is trivial that the adversary can learn ((Ad u p) ∼ p).

To sum up, we can conclude that when the adversary chooses Ae to control,
then the actual message, which can be recovered from the elements received on

Pd, should be supported by some ((Ae u p) ∼ p) where p ∈ P (1)
e (if P

(1)
e 6= ∅),

and the adversary can learn ((Ad u p) ∼ p) for each p ∈ P (1)
d (if P

(1)
d 6= ∅).

Now during the execution of the protocol Π, the adversary corrupts Pe and

causes (v ∼ p)S 6= (v ∼ p)R for all nodes v on all paths p ∈ Pe except for p ∈ P (1)
e

and v = Aeup. This is possible due to Lemma 2 and Lemma 3. As we concluded

above, the adversary can always learn ((Ad u p) ∼ p) for each p ∈ P (1)
d . Thus on

Pe, the adversary simulates the protocol as S sent a message m′ ∈ M, and m′

can be supported by ((Ad u p) ∼ p), where p ∈ P (1)
d .

Therefore, at the end of the protocol Π, despite whether e = 1 or e = 2, the
view of R always consists of the following:

– on P1, a message is recovered which can be supported by ((A2 u p) ∼ p) for

any p ∈ P (1)
2 (if P

(1)
2 6= ∅), but may not be supported by any other elements

received on P2;
– on P2, a different message is recovered which can be supported by ((A1up) ∼
p) for any p ∈ P (1)

1 (if P
(1)
1 6= ∅), but may not be supported by any other

elements received on P1.

Thus as we showed in Lemma 6, with probability δ ≥ 1
2 (1− 1

|M| ), R recovers the

wrong message m′. We have a contradiction, which proves the necessity of the
low 2A-connectivity. ut

Let P = {p1, . . . , pn}, we first generalize some of Franklin and Wright’s
protocols in multicast graphs.

Full Distribution Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the Single
Path Distribution Protocol for each node vi on pj to distribute an element
ai,j . The nodes not on pj do not multicast anything.

2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), S and R receive
aSi,j and aRi,j respectively as the element initiated by node vi on pj . End.

Private Propagation Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the Single
Path Private Propagation Protocol from S to R in which S sends an element
aSj , and the nodes not on pj do not multicast anything.

2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), R receives aRj as
the element that S initiated and propagated on pj . End.



Now we present the following protocol, which achieves δ-RMT for a message
m ∈M in a graph G(V,E).

Reliable Transmission Protocol

1. The nodes of V execute an instance of the Full Distribution Protocol in
which for each 1 ≤ j ≤ n, the elements that node vi on path pj initiates
are (ai,j , bi,j) ∈R F2. Let (aSi,j , b

S
i,j) and (aRi,j , b

R
i,j) be what S and R receive

respectively regarding (ai,j , bi,j).
2. The nodes of V execute an instance of the Private Propagation Protocol

from S to R in which S sends the same vector on all paths in P :

(m, 〈auth(m; aSi,j , b
S
i,j)〉),

where 〈auth(m; aSi,j , b
S
i,j)〉 is an ordered set of the authenticated m with all

keys (aSi,j , b
S
i,j) that S receives in Step 1. At the end of the instance, R receives

a vector (mk, 〈ui,j,k〉) on each path pk ∈ P .
3. Given the vector (mk, 〈ui,j,k〉) that R receives on pk, if ∃(i, j) : ui,j,k =

auth(mk; aRi,j , b
R
i,j), then we say that mk is qualified on (vi ∼ pj). R finds an

Af ∈ A that satisfies the following three α-conditions:
α-1 all vectors received on P \ Pf are the same, say vector (ml, 〈ui,j,l〉);
α-2 P

(1)
f = ∅, or for each pj ∈ P (1)

f , ml is qualified on ((Af u pj) ∼ pj);
α-3 Pf ∪P (∗)

f = P , or for any vector (mk, 〈ui,j,k〉) received on path pk ∈ Pf
such that mk 6= ml, we have that mk is not qualified on any (vi ∼ pj)

where pj ∈ P \ (Pf ∪ P (∗)
f ) and vi does not have a neighbor in Af .

R then outputs the message ml. End.

Lemma 8 The Reliable Transmission Protocol is a δ-RMT protocol under the
condition of Theorem 1.

Proof. It is straightforward that if the adversary cannot learn some (ai,j , bi,j)
(initiated by vi and multicast on pj) but a corrupted mk is qualified on (vi ∼ pj),
then the Reliable Transmission Protocol fails. We use RT to denote the event
when the above failure occurs and RT to denote the event otherwise. Let n be
the total number of paths between S and R and y be the maximum number of
nodes on any path, following the proof of [8, Theorem 3.4], the probability that

the protocol fails is Pr[RT ] < yn2

|F| . This probability is negligible in the security

parameter (given F is sufficiently large). Next in our proof, we assume that the
above failure does not happen. That is, we analyze the protocol in the event RT .

In the following, we first show that R can always find an Af ∈ A that satisfies
the three α-conditions, then we prove, by contradiction, that in the event RT ,
the message output by R is correct.

Now we show that there always exists an Af that satisfies all three α-
conditions, at least when the adversary chooses Af to control so that Pf is
corrupted. Since Pf 6= P (following Lemma 5), we immediately have that condi-

tion α-1 is satisfied and ml received on P \Pf is the actual message. If P
(1)
f 6= ∅,



then as shown in the proof of Lemma 2, on each pj ∈ P (1)
f , S and R always have

the same view on the key initiated by Af upj . Thus it is clear that ml is qualified

on ((Af u pj) ∼ pj), and hence condition α-2 is satisfied. If Pf ∪ P (∗)
f 6= P , then

the adversary cannot learn the key initiated by any node vi which is on a path

pj ∈ P \ (Pf ∪ P (∗)
f ) if vi does not have a neighbor in Af . Thus without the

above mentioned failure RT , any faulty message mk 6= ml cannot be qualified
on such (vi ∼ pj), and hence condition α-3 is satisfied.

Next, using contradiction, we show that in the event RT , the message ml

that S outputs is the actual message. For contradiction, we assume that ml is
modified by the adversary who chooses a set Ae ∈ A to control, and all three
α-conditions are satisfied. We now show that the three α-conditions imply the
three properties of A1, A2 in Definition 5.

– From condition α-1, since all vectors received on P \ Pf are modified, we
have Pe ∪ Pf = P (i.e., corresponding to Definition 5(a)).

– Condition α-2 indicates that either P
(1)
f = ∅, or the adversary can learn the

key initiated by node Af u pj on any path pj ∈ P
(1)
f to make the faulty

message ml qualified on ((Af u pj) ∼ pj). Due to Lemma 4, this means that
the adversary can separate S and R on pj , completely eavesdrop on pj or
control a neighbor of Af upj . Thus from condition α-2 we can conclude that

P
(1)
f = ∅, or for each path pj ∈ P (1)

f , we have that pj ∈ Pe ∪ P (∗)
e or Af u pj

has a neighbor in Ae (i.e., corresponding to Definition 5(c)).

– Finally, since Pe 6= P and Pe ∪ Pf = P , there exists at least one path
pk ∈ Pf such that the message mk received on pk is the actual message. Due
to condition α-3, there are two cases:

case 1 Pf ∪ P (∗)
f = P , thus we have P

(1)
e ⊆ Pf ∪ P (∗)

f = P ;

case 2 The actual message mk is not qualified on any (vi ∼ pj) where pj ∈
P \ (Pf ∪ P (∗)

f ) and vi does not have a neighbor in Af . This implies

that either pj ∈ P (+)
e , or pj ∈ P (1)

e but any vi on pj that does not
have a neighbor in Af is not Ae u pj (because otherwise the actual
message mk should be qualified on (vi ∼ pj), due to the proof of

Lemma 2). That is, if such pj ∈ P (1)
e exists, then all the nodes on pj

that do not have a neighbor in Af are not Ae u pj . This implies that
Ae u pj has a neighbor in Af .

It is easy to conclude that in either case, P
(1)
e = ∅, or for each path pj ∈ P (1)

e ,

we have pj ∈ Pf ∪ P (∗)
f or Ae u pj has a neighbor in Af (i.e., corresponding

to Definition 5(b)).

To sum up, Ae, Af are as A1, A2 in Definition 5. This means S and R are lowly
2A-separated, which contradicts the condition of Theorem 1.

Therefore, at the end of the Reliable Transmission Protocol, R can recover

ml = m with an arbitrarily small probability of failure (i.e., Pr[RT ] < yn2

|F| ).

Thus the Reliable Transmission Protocol is a δ-RMT protocol. ut



4.2 Perfect Reliability

Here we study 0-RMT in multicast graphs. Similar to the result in [7], we show
that the necessary and sufficient condition for 0-RMT in the multicast setting
is the same as that in the point-to-point setting. The following theorem can be
easily proven following some previous results in [8, 5].

Theorem 2 Given a graph G(V,E) and an adversary structure A on V \{S,R}.
The necessary and sufficient condition for 0-RMT from S to R is that Pi∪Pj 6= P
for any two sets Ai, Aj ∈ A.

Proof. See the full version of this paper [1]. ut

5 Secure Communication

In this section we take the problem of achieving privacy into consideration. We
study almost perfect security in Section 5.1; i.e., we discuss both (ε, δ)-SMT and
(0, δ)-SMT. In Section 5.2, we study (0, 0)-SMT that enables perfect security.

5.1 Almost Perfect Security

First we give the necessary and sufficient condition for (ε, δ)-SMT in multicast
graphs. Unlike the setting in [7] in which the conditions for both δ-RMT and
(ε, δ)-SMT are the same (i.e., n > t), in multicast graphs, (ε, δ)-SMT requires
stronger connectivity than that for δ-RMT.

Theorem 3 Given a graph G(V,E) and an adversary structure A on V \{S,R}.
The necessary and sufficient condition for (ε, δ)-SMT from S to R is that S and
R are highly A-connected and lowly 2A-connected.

Proof. We first prove the necessity of the condition. It is straightforward that

the high A-connectivity, i.e., Pi ∪P (∗)
i 6= P , is necessary for achieving ε-privacy,

because otherwise there is no private transmission between S and R on any path
in P . Moreover, as proven in Lemma 7, the low 2A-connectivity is necessary for
achieving δ-reliability. Thus the condition is necessary for (ε, δ)-SMT.

Next we show that the condition is sufficient. Let P = {p1, . . . , pn}, we give
the following protocol (similar to [8, 15]) for S to send a message m ∈M to R.

Private Transmission Protocol

1. The nodes of V execute an instance of the Private Propagation Protocol
from S to R in which for each 1 ≤ j ≤ n, S sends a pair (aSj , b

S
j ) ∈R F on

path pj ∈ P . At the end of the instance, R receives a pair (aRj , b
R
j ) on each

path pj ∈ P .
2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes sRj =

auth(rR; aRj , b
R
j ). The nodes of V executes an instance of the Reliable Trans-

mission Protocol from R to S in which R sends a vector (rR, sR1 , . . . , s
R
n ). At

the end of the instance, S outputs a vector (rS , sS1 , . . . , s
S
n).



3. S computes an index set I = {j|sSj = auth(rS ; aSj , b
S
j )} and an encryption

key key =
∑
j∈I a

S
j , and encrypts the message c = m+ key. The nodes of V

executes an instance of the Reliable Transmission Protocol from S to R in
which S sends a vector (I, c). At the end of the instance, R outputs a vector
(I ′, c′).

4. R computes a decryption key key′ =
∑
j∈I′ a

R
j and decrypts the message

m′ = c′ − key′. End.

First we show that this protocol achieves ε-privacy. Suppose that the ad-

versary chooses a set Ae to control. Since Pe ∪ P (∗)
e 6= P , there exists a path

pd ∈ P \ (Pe ∪ P (∗)
e ). As shown in the proof of Lemma 1, the adversary can-

not learn (aSd , b
S
d ) in Step 1. Because pd /∈ Pe, we have (aRd , b

R
d ) = (aSd , b

S
d ). Let

RT denote the event that the instance of the Reliable Transmission Protocol in
Step 2 succeeds and RT denote the event otherwise. In the event RT , rS = rR

and for each 1 ≤ j ≤ n, we have sSj = sRj . This implies that d ∈ I. The adver-

sary who cannot learn aSd by eavesdropping or by decoding sRd will not be able
to compute key to decrypt m. That is, for any two messages m1,m2 ∈ M and
any coin flips r, using the adversary’s view adv, we have the following:∑

c |Pr[adv(m1, r) = c|RT ]− Pr[adv(m2, r) = c|RT ]| = 0 (1)∑
c |Pr[adv(m1, r) = c|RT ]− Pr[adv(m2, r) = c|RT ]| ≤ |+ 1|+ | − 1| = 2 (2)

Let Pr[RT ] = ε, which is arbitrarily small as we discussed in the proof of
Lemma 8, by combining Eq. 1 and Eq. 2, we have the following:∑

c |Pr[adv(m1, r) = c]− Pr[adv(m2, r) = c]| ≤ 0 · Pr[RT ] + 2 · Pr[RT ] = 2ε.

Thus the Private Transmission Protocol achieves ε-privacy.
Next we show that the protocol achieves δ-reliability. Let δ1 be the prob-

ability that the instance of the Reliable Transmission Protocol in Step 2 fails
and δ2 be the probability that the instance in Step 3 fails. As we showed in
the proof of Lemma 8, δ1 and δ2 are negligible in the security parameter. Let
δ3 be the probability that both the above mentioned instances succeed, but R
outputs m′ 6= m. This can only happen if there exists at least one j ∈ I such
that aSj 6= aRj . Since both reliable protocols succeed, the fact j ∈ I implies

auth(rR; aSj , b
S
j ) = auth(rR; aRj , b

R
j ). That is,

aSj r
R + bSj = aRj r

R + bRj ⇒ rR =
bRj − bSj
aSj − aRj

∈ F, (3)

where aSj 6= aRj . Since rR is chosen with respect to the uniform distribution,

if the adversary modifies (aSj , b
S
j ) to (aRj , b

R
j ) on path pj in Step 1, then the

probability that Eq. 3 is fulfilled is 1
|F| . Since the adversary can corrupt |Pe|

paths, it is straightforward that δ3 = |Pe|
|F| <

n
|F| , which is much smaller than δ1

and δ2. Thus the final probability that the protocol fails to be reliable is

δ = δ1 + (1− δ1)δ2 + (1− (δ1 + (1− δ1)δ2))δ3 < δ1 + δ2 + δ3.



To sum up, the Private Transmission Protocol is an (ε, δ)-SMT protocol. ut

Note that the condition of Theorem 3 can be seen as it consists of two parts,
with the high A-connectivity enables private communication and the low 2A-
connectivity enables δ-reliable communication. These two types of connectivity
are independent. Indeed, with some examples in Section 6, we can show that
they do not imply each other.

In [16], Yang and Desmedt proved that reducing the requirement for privacy
does not weaken the minimal connectivity. In the following theorem, we show
that the condition for (ε, δ)-SMT is also necessary and sufficient for (0, δ)-SMT.

Theorem 4 Given a graph G(V,E) and an adversary structure A on V \{S,R}.
The necessary and sufficient condition for (0, δ)-SMT from S to R is that S and
R are highly A-connected and lowly 2A-connected.

Proof. It is straightforward that the condition is necessary. Next we show that
the condition is sufficient by slightly amending the Private Transmission Protocol
to the following protocol which achieves perfect privacy.

Perfectly Private Transmission Protocol

1. Same as Step 1 in the Private Transmission Protocol.
2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes sRj =

auth(rR; aRj , b
R
j ). The nodes of V executes an instance of the Reliable Trans-

mission Protocol from R to S in which R sends a vector (rR, sR1 , . . . , s
R
n ). At

the end of the instance, S distinguishes the following two cases:
Case 1 If there exist two sets Af1 , Af2 ∈ A that satisfy all three α-conditions

of the Reliable Transmission Protocol, and the two vectors (both
regarding the vector (rR, sR1 , . . . , s

R
n )) that S receives respectively

on P \Pf1 and P \Pf2 are different, then S terminates the protocol.
Case 2 Otherwise, S outputs a vector (rS , sS1 , . . . , s

S
n) and goes to Step 3.

3. Same as Step 3 in the Private Transmission Protocol.
4. Same as Step 4 in the Private Transmission Protocol. End.

Now we show that this protocol achieves 0-privacy. Following the proof of
Theorem 3, the privacy of the message transmission can only be breached in
the event RT . It is clear that the instance of the Reliable Transmission Protocol
in Step 2 allows S to distinguish the events RT and RT . As we showed in
the proof of Lemma 8, in the event RT , only the correct vector can be output
after the Reliable Transmission Protocol. This means if two different vectors can
be output, then the event RT occurs. Thus in Step 2, Case 1 indicates RT and
Case 2 indicates RT . In the event RT , S terminates the protocol so the adversary
learns nothing about the message. Thus the protocol achieves 0-privacy.6 Next,
using a similar proof as that for Theorem 3, we can prove that the Perfectly
Private Transmission Protocol is also δ-reliable, which concludes the proof. ut
6 A more formal proof is available in the full version of this paper [1].



5.2 Perfect Security

In [6], Dolev et al. showed that if σ is the maximum number of channels that
a listening (passive) adversary can control and ρ is the maximum number of
channels that a disrupting (active) adversary can control, then there must be
at least max{σ + ρ + 1, 2ρ + 1} channels between S and R for PSMT (i.e.,
(0, 0)-SMT). This setting can be generalized in our model as follows: given an

adversary structure A = {A1, . . . , Az}, then {P1∪P (∗)
1 , . . . , Pz∪P (∗)

z } consists of
the subsets of paths a listening adversary can control and {P1, . . . , Pz} consists
of the subsets of paths a disrupting adversary can control. Thus we give the
following theorem for (0, 0)-SMT in multicast graphs.

Theorem 5 Given a graph G(V,E) and an adversary structure A on V \{S,R}.
The necessary and sufficient condition for (0,0)-SMT from S to R is that

(Pi ∪ P (∗)
i ) ∪ Pj 6= P for any Ai, Aj ∈ A.

Proof. See the full version of this paper [1]. ut

6 Corresponding Threshold Model

In this section we use our results in the general adversary model to find the
necessary and sufficient conditions for RMT and SMT in the threshold model.
Because a threshold is a special case of an adversary structure, we re-define the
threshold model in the adversary structure context.

Definition 6 Given a graph G(V,E), a threshold t is an adversary structure
AT ⊆ 2V \{S,R} such that ∀(A ⊆ V \ {S,R}, |A| ≤ t) : A ∈ AT . Furthermore,

– we say that S and R are tζ-private-connected if they are highly AT -connected;
– we say that S and R are tζ-reliable-connected if they are lowly 2AT -connected.

It is easy to show that our results correspond to Franklin and Wright’s [7] if
the multicast graph only consists of n node-disjoint and neighbor-disjoint paths.
For more details see the full version of this paper [1].

Next we discuss the connectivity in the general multicast graph setting with
some previous results. In [4], Desmedt and Wang looked at four different types
of connectivity. With slight changes, we show them in our model as follows.

– t-connectivity. For any A ∈ AT , after removing all nodes in A from G, there
remains a path between S and R.

– weak thyper-connectivity. For any A ∈ AT , after removing from the hyper-
graph HG(V,EH) all nodes in A and all hyperedges on each of which there
is at least one node in A, there remains a path between S and R (see [9]).

– tneighbor-connectivity. For any A ∈ AT , after removing all nodes in A and
all their neighbors from G, there remains a path between S and R.

– weak (n, t)-connectivity. There are n node-disjoint paths p1, . . . , pn between
S and R, and for any A ∈ AT , after removing all nodes in A and all their
neighbors from G, there remains a path pi (1 ≤ i ≤ n) between S and R.
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Fig. 2. Private and reliable connectivity.

As we showed in the proof of Lemma 1, Franklin and Yung’s weak thyper-
connectivity [9] in a hypergraph HG is essentially our tζ-private-connectivity in
a multicast graph G. Thus we use the tζ-private-connectivity to replace the weak
thyper-connectivity in the rest of the paper for a simpler presentation. Desmedt
and Wang [4] showed that the following implications are strict:

weak (n, t)-connectivity ⇒ tneighbor-connectivity ⇒ tζ-private-connectivity
⇒ t-connectivity.

In [14], Wang and Desmedt claimed that the weak (n, t)-connectivity is suf-
ficient for (0, δ)-SMT. Since weak (n, t)-connectivity ⇒ tζ-private-connectivity,
it is clear that 0-privacy can be achieved. However, δ-reliability is only achiev-
able under their condition if weak (n, t)-connectivity ⇒ tζ-reliable-connectivity.
In [14], there is not a proper proof showing this implication. Thus their claim is
only a conjecture. We leave this as an open problem.

Later study by Desmedt and Wang [4] showed that the conjectured upper
bound, i.e., the weak (n, t)-connectivity, is not necessary for (0, δ)-SMT, by show-
ing an example, as Fig. 2(a), in which S and R are not weakly (2, 1)-connected
but (0, δ)-SMT is possible. We observe that their protocol (appeared in [15])
is actually an (ε, δ)-SMT protocol but the claim is correct, because S and R
are obviously 1ζ-private-connected and 1ζ-reliable-connected in Fig. 2(a). They
also showed that the weak thyper-connectivity (i.e., the tζ-private-connectivity)
is the lower bound for (0, δ)-SMT but not necessary for δ-RMT, as in Fig. 2(b)
where S and R are not 1ζ-private-connected but δ-RMT is possible. This claim
is obvious under our condition because S and R are clearly 1ζ-reliable-connected.
Finally they conjectured that the weak thyper-connectivity (i.e., the tζ-private-
connectivity) is not sufficient for (0, δ)-SMT, by asking whether (0, δ)-SMT is
possible in Fig. 2(c) such that S and R are 1ζ-private-connected. Our condition
proves their conjecture. Indeed, not only is (0, δ)-SMT impossible in Fig. 2(c),
but δ-RMT is also impossible, because S and R are not 1ζ-reliable-connected.
Therefore, our result explains all the examples and proves all the conjectures in
the previous work.

Note that the examples of Fig. 2(b) and Fig. 2(c) also show that the tζ-private-
connectivity (or, the high A-connectivity) and the tζ-reliable-connectivity (or,
the low 2A-connectivity) do not imply each other, because in Fig. 2(b), S and R
are 1ζ-reliable-connected but not 1ζ-private-connected, and in Fig. 2(c), they are
1ζ-private-connected but not 1ζ-reliable-connected.

At the end, we present the following corollary as the final result of this paper.



Corollary 1 Given a graph G(V,E) and an adversary who can control up to t
nodes in V \ {S,R}.
– δ-RMT is possible if and only if S and R are tζ-reliable-connected in G.
– 0-RMT is possible if and only if S and R are 2t-connected in G.
– (ε, δ)-SMT or (0, δ)-SMT is possible if and only if S and R are tζ-private-

connected and tζ-reliable-connected in G.
– (0,0)-SMT is possible if and only if S and R are (tζ-private + t)-connected

in G. The (tζ-private + t)-connectivity means that for any Ai, Aj ∈ AT , we

have (Pi ∪ P (∗)
i ) ∪ Pj 6= P .
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