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Abstract. We show how to leverage the RKA (Related-Key Attack)
security of blockciphers to provide RKA security for a suite of high-level
primitives. This motivates a more general theoretical question, namely,
when is it possible to transfer RKA security from a primitive P; to
a primitive P»? We provide both positive and negative answers. What
emerges is a broad and high level picture of the way achievability of
RKA security varies across primitives, showing, in particular, that some
primitives resist “more” RKAs than others. A technical challenge was to
achieve RKA security even for the practical classes of related-key deriving
(RKD) functions underlying fault injection attacks that fail to satisfy the
“claw-freeness” assumption made in previous works. We surmount this
barrier for the first time based on the construction of PRGs that are not
only RKA secure but satisfy a new notion of identity-collision-resistance.

1 Introduction

By fault injection [16, 10] or other means, it is possible for an attacker to induce
modifications in a hardware-stored key. When the attacker can subsequently
observe the outcome of the cryptographic primitive under this modified key, we
have a related-key attack (RKA) [5,19].

The key might be a signing key of a certificate authority or SSL server, a
master key for an IBE system, or someone’s decryption key. Once viewed merely
as a way to study the security of blockciphers [9,27,5], RKAs emerge as real
threats in practice and of interest for primitives beyond blockciphers.

It becomes of interest, accordingly, to achieve (provable) RKA security for
popular high-level primitives. How can we do this?

PRACTICAL CONTRIBUTIONS. One approach to building RKA-secure high-level
primitives is to do so directly, based, say, on standard number-theoretic assump-
tions. This, however, is likely to yield ad hoc results providing security against
classes of attacks that are tied to the scheme algebra and may not reflect attacks
in practice.

We take a different approach. RKA security is broadly accepted in practice as
a requirement for blockciphers; in fact, AES was designed with the explicit goal
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of resisting RKAs. We currently have blockciphers whose resistance to RKAs is
backed by fifteen years of cryptanalytic and design effort. We propose to leverage
these efforts.

We will provide a general and systematic way to immunize any given in-
stance of a high-level primitive against RKAs with the aid of an RKA-secure
blockcipher, modeling the latter, for the purpose of proofs, as a RKA-secure
PRF [5]. We will do this not only for symmetric primitives that are “close” to
PRFs like symmetric encryption, but even for public-key encryption, signatures
and identity-based encryption. Our methods are cheap, non-intrusive from the
software perspective, and able to completely transfer all the RKA security of the
blockcipher so that the high-level primitive resists attacks of the sort that arise
in practice.

THEORETICAL CONTRIBUTIONS. The ability to transfer RKA security from PRF's
to other primitives lead us to ask a broader theoretical question, namely, when
is it possible to transfer RKA security from a primitive P; to a primitive P?
We provide positive results across a diverse set of primitives, showing, for exam-
ple, that RKA-secure IBE implies RKA-secure IND-CCA PKE. We also provide
negative results showing, for example, that RKA-secure signatures do not imply
RKA-secure PRFs.

All our results are expressed in a compact set-based framework. For any
primitive P and class @ of related-key deriving functions —functions the ad-
versary is allowed to apply to the target key to get a related key— we define
what it means for an instance of P to be #-RKA secure. We let RKA[P] be the
set of all @ such that there exists a @-RKA secure instance of primitive P. A
transfer of RKA security from P; to Py, expressed compactly as a set contain-
ment RKA[P;] C RKAIP,], is a construction of a $-RKA secure instance of P
given both a normal-secure instance of P, and a #-RKA secure instance of P;.
Complementing this are non-containments of the form RKA[P,] € RKAI[P4],
which show the existence of @ such that there exists a $-RKA instance of P,
yet no instance of P; can be #-RKA secure, indicating, in particular, that RKA
security cannot be transferred from P, to P;.

As Fig. 1 shows, we pick and then focus on a collection of central and
representative cryptographic primitives. We then establish these containment
and non-containment relations in a comprehensive and systematic way. What
emerges is a broad and high level picture of the way achievability of RKA secu-
rity varies across primitives, showing, in particular, that some primitives resist
“more” RKAs than others.

We view these relations between RKA|[P] sets as an analog of complexity
theory, where we study relations between complexity classes in order to better
understand the computational complexity of particular problems. Let us now
look at all this more closely.

BACKGROUND. Related-key attacks were conceived in the context of blockci-
phers [9, 27]. The first definitions were accordingly for PRFs [5]; for F: K xD —
R they consider the game that picks a random challenge bit b and random target
key K € K. For each L € K the game picks a random function G(L,-): D — R,
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and next allows the adversary multiple queries to an oracle that given a pair
(¢, ) with ¢: K — K and = € D returns F(¢(K),z) if b =1 and G(¢(K),z) if
b = 0. They say that F' is ?-RKA secure, where @ is a class of functions mapping
K to IC, if the adversary has low advantage in predicting b when it is only allowed
in its queries to use functions ¢ from .

Let RKA[PRF] be the set of all ¢ for which there exists a $-RKA secure
PRF. Which @ are in this set? All the evidence so far is that this question
has no simple answer. Bellare and Kohno [5] gave natural examples of @ not
in RKA[PRF], showing the set is not universal. Membership of certain specific
& in RKA[PRF] have been shown by explicit constructions of $-RKA PRFs,
first under novel assumptions [28] and then under standard assumptions [3].
Beyond this we must rely on cryptanalysis. Modern blockciphers including AES
are designed with the stated goal of RKA security. Accordingly we are willing to
assume their &-RKA security —meaning that & € RKA[PRF]— for whatever
@ cryptanalysts have been unable to find an attack.

BEvYonD PRFs. Consideration of RKAs is now expanding to primitives beyond
PRFs [20,2, 22]. This is viewed partly as a natural extension of the questions on
PRFs, and partly as motivated by the view of RKAs as a class of sidechannel
attacks [19]. An RKA results when the attacker alters a hardware-stored key via
tampering or fault injection [16,10] and subsequently observes the result of the
evaluation of the primitive on the modified key. The concern that such attacks
could be mounted on a signing key of a certificate authority or SSL server, a
master key for an IBE system, or decryption keys of users makes achieving RKA
security interesting for a wide range of high-level primitives.

DEFINITIONS. We focus on a small but representative set of primitives for which
interesting variations in achievability of RKA security emerge. These are PRF
(pseudorandom functions), Sig (Signatures), PKE-CCA (CCA-secure public-key
encryption), SE-CCA (CCA-secure symmetric encryption), SE-CPA (CPA-secure
symmetric encryption), IBE (identity-based encryption) and wPRF (weak PRF's
[29]). We define what it means for an instance of P to be #-RKA secure for
each P € {wPRF,IBE,Sig, SE-CCA,SE-CPA, PKE-CCA}. We follow the defini-
tional paradigm of [5], but there are some delicate primitive-dependent choices
that significantly affect the strength of the definitions and the challenge of achiev-
ing them (cf. Section 2). We let RKA[P] be the set of all @ for which there exists
a @-RKA secure instance of P. These sets are all non-trivial.

RELATIONS. We establish two kinds of relations between sets RKAI[P;] and
RKA[P;]:

e Containment: A proof that RKA[P1] C RKA[P,], established by construct-
ing a #-RKA secure instance of P, from a ®-RKA secure instance of Py, usu-
ally under the (minimal) additional assumption that one is given a normal-
secure instance of P,. Containments yield constructions of #-RKA secure
instances of Ps.

e Non-containment: A proof that RKA[P,] € RKA[P;]. Here we exhibit a
particular ¢ for which we (1) construct a &-RKA secure instance of P; under
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Fig. 1. Relations between RKA[P] classes. A containment RKA[P:] C RKA[P,]
is represented in the picture by an arrow P; — P2 and in the table by a “C” in the
row Pi, column P, entry. A non-containment RKA[P;] € RKAIP,] is represented in
the table by a “Z” in the row P, column P, entry. The picture does not show non-
containments. The picture sometimes shows a redundant containment (for example
the arrow PRF — Sig when there is already a path PRF — IBE — Sig) because it
corresponds to an interesting direct construction. A blank entry in the table means we
do not know.

some reasonable assumption, and (2) show, via attack, that any instance of

P, is ®-RKA insecure.

We show that RKA-secure PRFs are powerful enablers of RKA-security: Given
a &-RKA PRF and a normal-secure instance of P, we construct a #-RKA secure
instance of P for all P € {wPRF,IBE, Sig, SE-CCA, SE-CPA, PKE-CCA}. This is
represented by the string of containments in the first row of the table in Fig. 1.
On the practical side, instantiating the PRF with a blockcipher yields a cheap
way to immunize the other primitives against RKAs. On the theoretical side,
instantiating the PRF with the construct of [3] yields -RKA secure instances
of the other primitives based on standard assumptions.

The separations shown in the first column of the table of Fig. 1, however,
also show that RKA-PRFs are overkill: all the other primitives admit ¢-RKA
secure instances for a @ for which no ®-RKA PRF exists. This leads one to ask
whether there are alternative routes to RKA-secure constructions of beyond-
PRF primitives.

We show that IBE is a particularly powerful starting point. We observe that
Naor’s transform preserves RKA-security, allowing us to turn a $-RKA secure
IBE scheme into a ®-RKA secure Sig scheme. Similarly, we show that the trans-
form of Boneh, Canetti, Halevi and Katz (BCHK) [15] turns a ¢-RKA secure
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IBE scheme into a ?-RKA secure PKE-CCA scheme. What lends these transforms
well to RKA-security is that they do not change the secret key. We also show
that given a #-RKA secure wPRF we can build a $-RKA secure SE-CPA scheme.
(A wPRF is like a PRF except that is only required to be secure on random in-
puts [29].) These results motivate finding new #-RKA secure IBE schemes and
wPRFs.

As the table of Fig. 1 indicates, we show a number of other non-containments.
Sig emerges as a very “RKA-resilient” primitive in the sense that it can be
secure against strictly more RKAs than most other primitives. Some of the
non-containments, such as RKA[PKE-CCA] Z RKA[SE-CPA] might seem odd;
doesn’t PKE always imply SE? What we are saying is that the trivial trans-
formation of a PKE scheme to an SE one does not preserve RKA-security and,
moreover, there are @ for which no transform exists that can do this.

CLAaws OK. All previous constructions of #-RKA secure primitives [5, 28, 3, 20,
2,22,23] assume @ is claw-free (distinct functions in ¢ disagree on all inputs)
because it is hard to do the proofs otherwise, but the @ underlying practical
fault injection attacks are not claw-free, making it desirable to get constructions
avoiding this assumption. For the first time, we are able to do this. In Section 2
we explain the technical difficulties and sketch our solution, which is based on
the construction of a ®-RKA PRG that has a novel property we call identity-
collision-resistance (ICR), a variant of the collision-resistance property from [24].

RELATED WORK. The first theoretical treatment of RKAs was by Bellare and
Kohno [5]; being inspired by blockciphers, the work addressed PRFs and PRPs.
They showed examples of classes not in RKA[PRF], gave conditions on @ for
ideal ciphers to be ®-RKA secure, and provided standard model constructs for
some limited classes. Subsequently, constructions of ®-RKA secure PRFs and
PRPs for more interesting @ were found, first under novel assumptions [28]
and then under standard assumptions [3], and the results on ideal ciphers were
extended in [1].

We are seeing growing interest in RKA security for primitives other than
PRFs. Goldenberg and Liskov [20] study related-secret security of lower-level
primitives, namely one-way functions, hardcore bits and pseudorandom gener-
ators. Applebaum, Harnik and Ishai [2] define RKA security for (randomized)
symmetric encryption, gave several constructions achieving that definition for in-
teresting @ and then presented numerous applications. Connections with point
obfuscation are made by Bitansky and Canetti [11].

Gennaro, Lysyanskaya, Malkin, Micali and Rabin [19] suggest that RKAs
may arise by tampering. They show that one can achieve security when re-
lated keys are derived via arbitrary key modification, but assume an external
trusted authority signs the original secret key and installs the signature on the
device together with its own public key, the latter being “off limits” to the at-
tacker. (Meaning, the related-key deriving functions may not modify them.) In
our case, no such authority is assumed. The off-limit quantities are confined to
pre-installed public parameters. No information that is a function of the param-
eters and the key is installed on the chip.
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Ishai, Prabhakaran, Sahai and Wagner [25] are concerned with tampering of
wires in the computation of a circuit while we are concerned with tampering
with hardware-stored keys. Dziembowski, Pietrzak and Wichs [18] develop an
information theoretic method for preventing tampering and show that a wide
class of limited, but non-trivial, & can be achieved (unconditionally) for any
so-called “interactive stateful system.”

INDEPENDENT WORK. Interest in RKA security for higher-level primitives is
evidenced by Goyal, O’Neill and Rao [22,23], who define correlated-input (CI)
hash functions, show how to construct them from the ¢-DHI assumption based
on Boneh-Boyen signatures [13,14] and the Dodis-Yampolskiy PRF [17], and
apply this to get ®-RKA secure signatures from ¢-DHI for a class ¢ consisting of
polynomials over a field of prime order. (They indicate their approach would also
work for other primitives.) Their construction is similar to ours. Their definitions
and results, unlike ours, are restricted to claw-free @. Also, we start from &-RKA-
PRFs and thus get in-practice security for any class @ for which blockciphers
provide them, while they start from a number-theoretic assumption and get
security for a specific class @, related to the scheme algebra. Their work and
ours are concurrent and independent. (Ours was submitted to, and rejected
from, Eurocrypt 2011, while theirs was submitted to, and accepted at, TCC
2011.)

Kalai, Kanukurthi and Sahai [26] provide encryption and signature schemes
that protect against both tampering and leakage via the idea of key-updates
that originated in forward-secure signatures [7]. They allow arbitrary tampering
functions but only allow a bounded number of tampering queries within each
time period. Their work and ours are again concurrent and independent.

2 Technical approach

Before providing formal definitions, constructions and proofs of our many posi-
tive and negative results, we would like to illustrate one technical issue, namely
the challenges created by @ that are not claw-free and how we resolve them.
For concreteness, our discussion is restricted to the design of #-RKA signatures
based on #-RKA PRFs.

THE CLAW-FREENESS ASSUMPTION. All known constructions of ®-RKA-secure
primitives [5, 28, 3, 20, 2,22, 23] are restricted to ¢ that are claw-free. This means
that any two distinct functions in @ disagree on all inputs. This assumption is
made for technical reasons; it seems hard to do simulations and proofs without
it. Yet the assumption is undesirable, for many natural and practical classes of
functions are not claw-free. For example, fault injection might be able to set
a certain bit of the key to zero, and if @ contains the corresponding function
and the identity function then it is not claw-free. Any @ that can set the key to
a constant value is also not claw-free. Accordingly it is desirable to avoid this
assumption. For the first time we are able to do so, via a new technical approach.
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DEFINITIONS AND ISSUES. The degree to which claw-freeness is embedded in
current approaches is made manifest by the fact that the very definition of @-
RKA secure signatures of [22, 23] assumes it and is unachievable without it. Let
us take a closer look to see how.

The signature RKA-security game of [22,23] picks secret signing key sk and
associated public verification key vk. It gives the adversary a signing oracle
SIGN that takes m and ¢ € @, and returns the signature of message m under
key ¢(sk). The adversary eventually outputs m, o. Besides validity of m, o under
vk, winning requires that m be “new,” meaning not “previously signed.” The
delicate question is, how do we define this? The choice of [22,23] is to disallow
signing query id, m, where id is the identity function. But the adversary can
easily define a function ¢ that is the identity on all but a negligible fraction of
its inputs. A query ¢, m is then valid since ¢ # id, but almost always returns
the signature o of m under sk, so the adversary can output m,oc and win. By
assuming @ is claw-free and contains id, [22, 23] ensure that such a ¢ is not in ¢
and the attack is ruled out.

Our altered definition of m being “new” is that there was no signing query
¢, m with ¢(sk) = sk. This seems, indeed, the natural requirement, ruling out
nothing more than that m was signed under sk.

We now have a much more general definition that is meaningful even for the
non claw-free @ that arise in practice, but it has a subtle feature that makes
achieving it a challenge. Namely, checking whether the adversary won apparently
requires knowing sk for we have to test whether or not ¢(sk) = sk. In the
reduction proving security, we will be designing an adversary B attempting to
distinguish “real” or “random” instances of some problem given an adversary A
breaking the signature scheme; B will see if A won, declaring “real” if so and
“random” otherwise. But B will be simulating A and will not know sk, so the
difficulty is how it can test that A won.

OVERVIEW OF SOLUTION. We start from a #-RKA secure PRF F: K x D —
R that has what we call a key fingerprint for the identity function. This is a
relaxation of the notion of a key fingerprint of [3]. It consists of a vector w
over D such that for all K and all ¢ € & with ¢(K) # K there is some i such
that F(K,wli]) # F(¢(K),w][i]). This allows statistical disambiguation of the
original key K from other keys. Such fingerprints exist for the &-RKA PRF's
of [3] and for blockciphers and are thus a mild assumption.

We now turn F' into a PRG (Pseudorandom Generator) G that has two
properties. First, it is @-RKA secure; this means the adversary has low advantage
in determining the challenge bit b in the game that picks a random target key
K and random function R, and then gives the adversary an oracle GEN that
on input ¢ returns G(¢(K)) if b = 1 and R(¢(K)) if b = 0. This is of course
easily obtained from a ®-RKA PRF. We call the new second property #-ICR
(Identity-Collision-Resistant); this means that for a hidden key K, it is hard
for the adversary to find ¢ € @ such that ¢(K) # K yet G(¢(K)) = G(K). At
first it might seem this follows from #-RKA security but Proposition 2 shows it
does not. However Proposition 3 shows how to build a PRG that is both -RKA
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and @-ICR secure from a ¢-RKA PRF with an identity key fingerprint, without
assuming @ is claw-free.

We build our #-RKA secure signature scheme from this PRG G and a base
(normal secure) signature scheme, as follows. The secret key of our new signature
scheme is a key K for the PRG. The output of the PRG on input K, G(K), is
used as randomness to run the key-generation algorithm /C of the base signature
scheme, yielding a public key pk which becomes the public key of our scheme,
and the corresponding secret key which is discarded. (Recall the secret key of
the new scheme is the PRG key K.) To sign a message m under K, run G on K
to get coins for I, run the latter with these coins to get pk, sk and finally sign
m under sk with the base signature scheme. Verification is just as in the base
signature scheme.

For the proof we must construct an adversary B breaking the ®-RKA security
of G given an adversary A breaking the #-RKA security of our signature scheme.
B thinks of the key K underlying its game as the secret key for our signature
scheme and then runs A. When A makes SIGN query ¢, m, adversary B will
call its GEN oracle on ¢ and use the result as coins for K to get a secret key
under which it then signs m for A. Eventually A outputs a forgery attempt m, o.
The assumed security of the base signature scheme will make it unlikely that
A’s forgery is a winning one when GEN is underlain by a random function. So
B would like to test if A’s forgery was a winning one, outputting 1 if so and
0 otherwise, to win its game. The difficulty is that it cannot test this because,
not knowing K, it cannot test whether or not A made a SIGN query ¢, m with
¢(K) = K. The ¢-ICR property of G comes to the rescue, telling us that whether
or not ¢(K) = K may be determined by whether or not the outputs of G on
these two inputs, which B does have, are the same.

This sketch still pushes under the rug several subtle details which are dealt
with in the full proof of Theorem 5, to be found in the full version of this

paper [4].

3 Preliminaries

NOTATION. For sets X, Y, Z let Fun(X,Y") be the set of all functions mapping X
to Y, and let FF(X,Y, Z) = Fun(X x Y, Z). The empty string is denoted ¢. If v is
a vector then |v| denotes the number of its coordinates and v[i] denotes its i-th

coordinate, meaning v = (v[1],...,v[|v|]). A (binary) string z is identified with
a vector over {0,1} so that |z| is its length and =z[i] is its é-th bit. If aq,..., ay
are strings then a; || - -+ || @, denotes their concatenation. If S is a set then |S|

denotes its size and s <—s S the operation of picking a random element of S and
calling it s. We say that a real-valued function on the integers is negligible if it
vanishes faster than the inverse of any polynomial.

ALGORITHMS. Unless otherwise indicated, an algorithm is PT (Polynomial Time)
and may be randomized. An adversary is an algorithm. If A is an algorithm
and x is a vector then A(x) denotes the vector (A(x[1]),...,A(x[|x]])). By
y < A(x1,x9,...;7) we denote the operation of running A on inputs x1, z2, . ..
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and coins r € {0,1}*. We denote by y <—s A(x1, 22, ...) the operation of picking
r at random and letting y < A(z1,x2,...;7). We denote by [A(z1,z2,...)] the
set of all possible outputs of A on inputs x1,x9,.... We denote by k € N the
security parameter and by 1* its unary encoding. It is assumed that the length
of the output of any algorithm A depends only on the lengths of its inputs. In
particular we can associate to single-input algorithm A its output length £ sat-
isfying |A(x)| = £(]z|) for all z. If A, B are algorithms then A || B denotes the
algorithm that on any input x returns A(z) || B(x).

GAMES. Some of our definitions and proofs are expressed via code-based games [8].
Recall that such a game consists of an INITIALIZE procedure, procedures to re-
spond to adversary oracle queries and a FINALIZE procedure. A game G is exe-
cuted with an adversary A as follows. First, INITIALIZE executes on input 1* and
its output is the input to A. Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its output becomes
the input to the FINALIZE procedure. The output of the latter, denoted G4, is
called the output of the game. We let “GA = d” denote the event that this game
output takes value d. If FINALIZE is absent it is understood to be the identity
function, so the game output is the adversary output. Boolean flags are assumed
initialized to false.

4 Classes of RKDFs and RKA-PRFs

Crasses OF RKDFs. In [5], a class @ of related-key deriving functions (RKDF's)
is a finite set of functions, all with the same domain and range. Our more general,
asymptotic treatment requires extending this, in particular to allow the func-
tions to depend on public parameters of the scheme. For us a class & = (P, Q)
of RKDFs, also called a RKA specification, is a pair of algorithms, the second
deterministic. On input 1¥, parameter generation algorithm P produces param-
eters w. On input 7, a key K and a description ¢ of an RKD function, the
evaluation algorithm Q returns either a modified key or 1. We require that for
all ¢, , either Q(m, K, ¢) = L for all K or for no K. We let &, 4(-) = Q(m, -, ¢).
We require that @ always includes the identity function. (Formally, there is a
special symbol id such that @ iq(K) = K for all K, 7. This is to ensure that &-
RKA security always implies normal security.) We let ID be the class consisting
of only the identity function, so that ID-RKA security will be normal security.

A scheme (regardless of the primitive) is a tuple (P, --) of algorithms, the
first of which is a parameter generation algorithm that on input 1* returns a
string. If ¢ is the output length of P, we say that & = (P, Q) is compatible with
the scheme if the string formed by the first £(k) bits of the output of P(1%)
is distributed identically to the output of P(1¥) for all k € N. This is done so
that, in constructing one @-RKA primitive from another, we can extend the
parameters of the constructed scheme beyond those of the original one without
changing the class of RKDFs.

We say that & = (P, Q) is claw-free if ¢ # ¢' implies Q(r, K, ¢) # Q(w, K, ¢')
(or both values are L) for all 7, K. This property has been assumed almost
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proc INITIALIZE / PRF proc INITIALIZE / IDFP

s P(1%); K <5 K(m) 7 s P(1%)

b s {071} K +s /C(W)

Return 7 w s IKfp(m)

proc FN(¢,z) / PRF Return 7, w

K' « &, 4(K) proc FN(¢) / IDFP

If K’ = 1 then return L K' + &, 4(K)

If b =1 then If (K" = 1) then return L
TK' z] + F(m,K' x) If (K' # K) then

Ifb=0and T[K',z] = L then| If (F(K',w)=F(K,w)) then
T[K', x] < Rng(m) WIN « true

Return T[K', z] Return F(K', w)

proc FINALIZE(Y) / PRF proc FiNaLIZE() J IDFP

Return (b =1b") Return WIN

Fig. 2. Games defining -RKA PRF security and @-IDFP security of function family
FF = (P,K,F) having range Rng(-).

ubiquitously in previous work [5,28,20,3] because of the technical difficulties
created by its absence, but its assumption is in fact quite restrictive since many
natural classes do not have it. We are able to remove this assumption and provide
constructs secure even for non-claw-free classes via new technical approaches. We
let CF be the set of all @ that are claw-free.

The class "t = (P, Q™) of constant functions associated to class ¢ =
(P, Q) is defined by &0 (K) = a for all K,a € {0,1}* and all 7. The union
Pl UP? = (P, Q) of classes &' = (P, Q') and &2 = (P, Q?) is defined by having
Q(m, K, ¢) parse ¢ as i || ¢* for i € {1,2} and return Q*(m, K, ¢*).

DiscussioN. In a non-asymptotic treatment, there is no formal line between
“secure” and “insecure.” This makes it unclear how to rigorously define the sets
RKA|[P]. Lead, accordingly, to pursue an asymptotic treatment, we introduce
parameter dependence; this allows us to capture constructs in the literature [28,
3] where RKDFs are defined over a group that is now parameter-dependent
rather than fixed. (We note that even in the non-asymptotic case, a treatment
like ours is needed to capture constructs in [28] relying on a RSA group defined
by random primes. This issue is glossed over in [28].) A dividend of our treatment
is a separation between an RKDF and its encoding, the latter being what an
adversary actually queries, another issue glossed over in previous work.

FUNCTION FAMILIES. A function family FF = (P,K,F) consists of a param-
eter generator, a key generator, and an evaluator, the last deterministic. For
each k € N and 7 € [P(1%)], the scheme also defines PT decidable and sam-
pleable sets Dom(7) and Rng(w) such that F(, K, ) maps elements of Dom(7)
to Rng(w). We assume there are polynomials d, [, called the input and output
lengths, respectively, such that Dom(w) C {0,1}%*) and Rng(m) C {0,1}k).
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Unless otherwise indicated we assume Rng(r) = {0, 1}'®*) and (k) = w(log(k))
and |Dom(7)| > 2F for all 7 € [P(1¥)] and all k € N.

RKA-PRFs. Let FF = (P, K, F) be a function family as above. Game PRF of
Fig. 2 is associated to FF and a RKA specification @ that is compatible with

FF. Let Advfj’f;f;;(k) equal 2 Pr[PRF# = true] — 1 when the game has input

1%, We say FF is #-RKA secure if this advantage function is negligible.

IDENTITY KEY FINGERPRINTS. An identity key fingerprint function with vector
length v(-) for FF = (P, K, F) is an algorithm IKfp that for every 7 € [P(1%)]
and every k € N returns, on input m, a v(k)-vector over Dom(w) all of whose
coordinates are distinct. Game IDFP of Fig. 2 is associated to F# and a RKA
specification @ = (P, Q) that is compatible with FF . Let Advljf;{’ A.0(k) equal
Pr[IDFP# = true] when the game has input 1*. We say FF is -IDFP secure if
this advantage function is negligible.

The key fingerprint notion of [3] can be seen as allowing statistical disam-
biguation of any pair of keys. They showed that the Naor-Reingold PRF NR
had such a fingerprint, but in general, it does not seem common. Interestingly,
their own @-RKA PRFs, which build on NR, are not known to have such a fin-
gerprint. Our relaxation can be seen as asking for computational disambiguation
of the original key from other keys, and ends up being much easier to achieve.
In particular, such fingerprints exist for the constructs of [3]. This is a conse-
quence of something more general, namely that any #-RKA secure PRF with
large enough range is @-IDFP secure if @ is claw-free, using any point in the
domain functioning as the fingerprint. This is formalized by Proposition 1 below,
with a proof in [4]. #-IDFP security for the constructs of [3] follows as the @
they use is claw-free.

Proposition 1. Suppose @ is claw-free and FF is a P-RKA secure PRF with
associated domain Dom(-) and super-polynomial size range Rng(-). Let IKfp be
any algorithm that on input ™ returns a I1-vector over Dom(w). Then FF is
D-IDFP secure.

In practice @-IDFP security seems like a mild assumption even when @ is not
claw-free. A vector of a few, distinct domain points ought to be a suitable fin-
gerprint for any practical blockcipher. This does not follow from a standard
assumption on it such as PRF, but is consistent with properties assumed by
cryptanalysts and can be proved in the ideal cipher model.

@-IDFP security of given &-RKA PRFs, even for non-claw-free @, will be
important in the constructions underlying our containment results, and we make
it a default assumption on a ®-RKA PRF. The above shows that this is a mild
and reasonable assumption.

RKA sETS. We say that an RKA specification @ = (P, Q) is achievable for
the primitive PRF if there exists a #-RKA and @-IDFP secure PRF that is
compatible with @. We let RKA[PRF] be the set of all ¢ that are achievable for
PRF.
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WHAT CAN ATTACKS MODIFY? We view the system as a whole as having the
following components: algorithms (code), parameters, public keys (if any) and
secret keys. Of these, our convention is that only secret keys are subject to RKAs.
This is not the only possible model, nor is it necessarily the most realistic if con-
sidering tampering attacks in practice, but it is a clear and interesting one with
some justification. Parameters are systemwide, meaning fixed beforehand and
independent of users, and may, in an implementation, be part of the algorithm
code. Public keys are accompanied by certificates under a CA public key that
is in the parameters, so if parameters are safe, so are public keys. This leaves
secret keys as the main target. One consequence of this is that in a public key
setting the attack is only on the holder of the secret key, meaning the signer for
signatures and the receiver for encryption, while in the symmetric setting, both
sender and receiver are under attack, making this setting more complicated.

We could consider attacks on public keys, but these are effectively attacks
on parameters. Furthermore the only way for them to succeed is to modify the
CA public key in the parameters in a rather special way, replacing it by some
other key under which the attack produces signatures for the modified public
key. “Natural” attacks caused by fault-injection are unlikely to do this, further
supporting our convention of confining attacks to secret keys.

5 ICR PRGs: A tool in our constructions

We will be using -RKA PRFs to build #-RKA instances of many other primi-
tives. An important technical difficulty will be to avoid assuming @ is claw-free.
A tool we introduce and use for this purpose is a $-RKA PRG satisfying a weak
form of collision-resistance under RKA that we call @-ICR. In this section we
define this primitive and show how to achieve it based on a ®-RKA and ¢-IDFP
secure PRF.

RKA PRGs. A PRG PRG = (P,K, G, r) is specified by a parameter generation
algorithm, a key generation algorithm, an evaluation algorithm and an output
length r(-). Game PRG of Fig. 3 is associated to PRG and an RKA specification

& that is compatible with PRG. Let Advg,;fg7A7¢(k) = 2Pr[PRG? = true] — 1

when the game has input 1*. We say PRG is P-RKA secure if this advantage
function is negligible for all A.

We clarify that unlike a normal PRG [12], we don’t require a $-RKA PRG
to be length extending, meaning that outputs need not be longer than inputs.
If one does want a length extending #-RKA PRG (we won’t) one can get it by
applying a normal-secure PRG to the output of a given ®-RKA PRG.

ICR. We define and use a weak form of collision-resistance for PRGs which
requires that the adversary be unable to find ¢ so that &, 4(K) # K yet
G(Pr,4(K)) = G(K). Game ICR of Fig. 3 is associated to PRG and a RKA spec-
ification @ that is compatible with PRG. Let Adviifgr{g’a(p(k) equal 2 Pr[ICRC =
true] — 1 when the game has input 1¥. We say PRG is ¢-ICR (Identity-Collision-
Resistant) secure if this advantage function is negligible.
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proc INITIALIZE / PRG proc INITIALIZE / ICR

T8 P(lk) %
) s P(1%)

K s K5 b {0.1) K s K(n); To « G(m, K)
Return 7

Return 7

P

W / PRG proc GEN(¢) / ICR
K' + &, 4(K) —
If K' = J_ then return L K’ &r9(K)

If K’ = 1 then return L

If T[K'] = L then

It b= 1 then T[K'] « G(r, K[> ¢ 900 K)

Else T[K'] <5 {0 1}T(k) If ((S=1To) A (K # K')) then WIN + true
Return T[K’] Return S
proc FINALIZE(D) / PRG proc FINaLIZE() / ICR
PO Return WIN

Return (b =)

Fig.3. Games defining #-RKA security and identity-collision-resistance for PRG
PRG = (P,K,G,r).

DorEs RKA secuRITY IMPLY ICR SECURITY? At first glance it would seem
that if a PRG PRG = (P,K,G,r) is $-RKA secure then it is also $-ICR secure.
Indeed, suppose an adversary has ¢ such that @, 4(K) # K yet G(Pr »(K)) =
G(K). Let it query Ry < GEN(id) and Ry < GEN(¢) and return 1 if Ry = Ry
and 0 otherwise. In the real (b = 1) case Ro, R; are equal but in the random
(b = 0) case they would appear very unlikely to be equal, so that that this
strategy would appear to have high advantage in breaking the #-RKA security
of PRG. The catch is in our starting assumption, which made it appear that
Pro(K) # K yet G(Pr¢(K)) = G(K) was an absolute fact, true both for
b=0and b=1.1If &, 4(K) and K are different in the real game but equal in
the random game, the adversary sees an output collision in both cases and its
advantage disappears. Can this actually happen? It can, and indeed the claim
(that ®-RKA security implies @-ICR, security) is actually false:

Proposition 2. Suppose there exists a normal-secure PRG PRG = (P,K,G,r)
with rv(-) = w(log(+)). Then there exists a PRG PRG = (P,K,G,r) and a class
@ such that PRG is P-RKA secure but PRG is not P-ICR secure.

A proof is in [4]. Briefly, the constructed PRG PRG adds a redundant bit to the
seed of % so that seeds differing only in their first bits yield the same outputs,
meaning create non-trivial collisions. But @ is crafted so that that its members
deviate from the identity function only in the real game, so that output collisions
appear just as often in both cases but in the real game they are non-trivial while
in the random game they are trivial.

CONSTRUCTION. We saw above that not all -RKA PRGs are ¢-ICR secure.
Our containments will rely crucially on ones that are. We obtain them from
®-RKA PRFs that have key fingerprints for the identity function:
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proc INITIALIZE / IBE

7 s P(1%); (mpk, msk) <s M(x)
b<s{0,1};4d* + L; S+ 0
Return (7, mpk)

proc INITIALIZE / Sig
s P(1"); M+ 0
(vk, sk) s K(m)
Return (m, vk) proc KD(¢,id) / IBE
/ Sig msk’ < &, 45(msk)
If msk’ = L then return L
If msk’ = msk then S + S U {id}
If (msk’ = msk) A (id = id*) then return L
Return dk <s KC(m, mpk, msk', id)
proc FINALIZE(m, o) / Sig ffr])c L[l;(Z'd’T(;’}lml) t// IBE
o mo mi1 en return
Return ((V(r, vk, m, o) =1) A (m & M)) id* < id ; If id* € S then return L
proc FINALIZE(Y) / IBE Return C s E(m, mpk, id, myp)
Return (b = b') proc FiNaALIZE(D') / IBE
Return ((b=10b") A (id* ¢ S))

proc SIGN(¢, m)
sk + P 4 (sk)
If sk’ = L then return L

If sk’ = sk then M + M U {m}
Return o <s S(m, sk’,m)

Fig. 4. Games defining &-RKA security for primitives Sig, IBE.

Proposition 3. Let FF = (P,K,F) be a ®-RKA PRF with output length .
Let IKfp be a @-IDFP secure identity key fingerprint function for FF with vector
length v. Let r = lv and let K, on input 7 || w, return K(r). Define PRG PRG =
(P || 1Kfp, K, G, 7) via

G(mllw, K) = F(m, K, w]) || - || F(x, K, w(lwl]) .
Then PRG is P-RKA secure and ®-ICR secure.

6 Relations

We first present a containment and a non-containment related to Sig. Then we
turn to IBE-related results. Other results can be found in [4].

SIGNATURES. A signature scheme DS = (P, K, S, V) is specified as usual by its
parameter generation, key generation, signing and verifying algorithms. Game
Sig of Fig. 4 is associated to DS and an RKA specification & that is compatible
with DS. Let Adv%ﬁjﬁ%(k) = Pr[Sig" = true] when the game has input 1.
We say DS is &-RKA secure if this advantage function is negligible. Normal
security of a signature scheme is recovered by considering @ that contains only
the identity function. One feature of the definition worth highlighting is the way
we decide which messages are not legitimate forgeries. They are the ones signed
with the real key sk, which means that oracle SIGN needs to check when a related
key equals the real one and record the corresponding message, which is a source
of challenges in reduction-based proofs.

ATTACKS. In [4] we present an attack, adapted from [6,19], that shows that
there are some (quite simple) @ such that no signature scheme is #-RKA secure,
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meaning ¢ ¢ RKA[Sig]. This indicates that the set RKA[Sig] is non-trivial.
Similar attacks can be presented for other primitives.

FroM &-RKA PRGs TO ¢-RKA SIGNATURES. We will prove containments
of the form RKA[PRF] C RKAIP] by proving RKA[PRG] C RKA[P] and
exploiting the fact that RKA[PRF] C RKA[PRG].

We start with a &-RKA PRG PRG = (P,K,G,r) and a normal-secure sig-
nature scheme DS = (P, K, S, V) such that 7(-) is the number of coins used by
K. We now build another signature scheme DS = (P || P,K’, S, V) as follows:

1. Parameters: Parameters for DS are the concatenation 7 || 7 of independently
generated parameters for PRG and DS.

2. Keys: Pick a random seed K <s k() and let (vk, sk) + K(7;G(K)) be the
result of generating verifying and signing keys with coins G(K). The new
signing key is K and the verifying key remains vk. (Key sk is discarded.)

3. Signing: To sign message m with signing key K, recompute (vk, sk) « K(;
G(K)) and then sign m under S using sk.

4. Verifying: Verify that o is a base scheme signature of m under vk using V.

Signature scheme DS remains compatible with @ since the parameters of PRG
prefix those of DS.

We want DS to inherit the @-RKA security of PRG. In fact we will show
more, namely that DS is (¢ UP.)-RKA secure where &, is the class of constant
RKDFs associated to @. The intuition is deceptively simple. A signing query
¢, m of an adversary A attacking DS results in a signature of m under what
is effectively a fresh signing key, since it is generated using coins G(¢(K)) that
are computationally independent of G(K) due to the assumed #-RKA security
of the PRG. These can accordingly be simulated without access to K. On the
other hand, signing queries in which ¢ is a constant function may be directly
simulated. The first difficulty is that the adversary attacking the ?-RKA security
of PRG that we must build needs to know when A succeeds, and for this it needs
to know when a derived seed equals the real one, and it is unclear how to do this
without knowing the real seed. The second difficulty is that a queried constant
might equal the key. We take an incremental approach to showing how these
difficulties are resolved, beginning by assuming @ is claw-free, which makes the
first difficulty vanish:

Theorem 4. Let signature scheme DS = (P||P,K',S,V) be constructed as
a_b(we from ®-RKA PRG PRG = (P, K, G,r) and normal-secure signature scheme
DS = (P,K,S,V) and assume ® is claw-free. Then DS is (PUD.)-RKA secure.

A proof of Theorem 4 is in [4], and the intuition was discussed in Section 2.
This result, however, is weaker than we would like, for, as we have already
said, many interesting classes are not claw-free. Also, this result fails to prove
RKA[PRF] C RKA[Sig] since the first set may contain @ that are not claw-free.
To address this we show that the claw-freeness assumption on @ can be replaced
by the assumption that PRG is -ICR secure:
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Theorem 5. Let signature scheme DS = (P||P,K',S,V) be constructed as
above from ®-RKA secure and $-ICR secure PRG PRG = (P,K,G,r) and
normal-secure signature scheme DS = (P,K,S,V). Then DS is (& U P.)-RKA

SECUTE.

A proof of Theorem 5 is in [4]. Proposition 3 says we can get the PRGs we want
from #-RKA PRFs so Theorem 5 establishes the containment RKA[PRF] C
RKA[Sig]. (Theorem 4 only established RKA[PRF] N CF C RKA([Sig] N CF.)

Our construction has the advantage that the verification process as well as the
form of the signatures and public key are unchanged. This means it has minimal
impact on software, making it easier to deploy than a totally new scheme. Signing
in the scheme now involves evaluation of a #-RKA-PRG but this can be made
cheap via an AES-based instantiation. However, signing also involves running
the key-generation algorithm K of the base scheme which might be expensive.

This construction also meets a stronger notion of ®-RKA security where the
adversary cannot even forge a signature relative to the public keys associated
with the derived secret keys. We elaborate on this in [4].

Some base signature schemes lend themselves naturally and directly to im-
munization against RKAs via &-RKA PRFs. This is true for the binary-tree,
one-time signature based scheme discussed in [21], where the secret key is al-
ready that of a PRF. If the latter is ®-RKA secure we can show the signature
scheme (unmodified) is too, and moreover also meets the strong version of the
definition alluded to above. See [4].

SEPARATING ¢-RKA PRFs FrROM #-RKA SIGNATURES. Having just shown
that RKA[PRF] C RKA|Sig] it is natural to ask whether the converse is true
as well, meaning whether the sets are equal. The answer is no, so RKA[Sig]
RKA[PRF]. The interpretation is that there exist ¢ such that there exist $-RKA
secure signatures, but there are no ®-RKA PRFs. An example is when ¢ = &,
is the set of constant functions. Theorem 4 implies that there exists a &.-RKA
secure signature scheme by setting ¢ = ) in the theorem, so that PRG need only
be a normal-secure PRG. But attacks from [5] show that no PRF can be $.-RKA
secure. Thus, this separation is quite easily obtained. In [4] we present others
which are more interesting. This separation motivates finding other avenues to
&-RKA signatures. Below we will show that IBE is one such avenue.

IBE. Our specification of an IBE scheme I'BE = (P, M, K, &, D) adds a param-
eter generation algorithm P that given 1* returns parameters 7 on which the
masterkey generation algorithm M runs to produce the master public key mpk
and master secret key msk. The rest is as usual except that algorithms get 7 as an
additional input. Game IBE of Fig. 4 is associated to I'BE and an RKA specifica-
tion @ = (P, Q) that is compatible with I'BE. An adversary is allowed only one
query to LR. Let Adv%%fﬁ‘@(k) equal 2 Pr[IBE? = true] —1 when the game has
input 1%. We say IBE is &-RKA secure if this advantage function is negligible.
Here the feature of the definition worth remarking on is that the adversary loses if
it ever issues a query to KD that contains the challenge identity and derives the
same master secret key. In [4] we show (1) that the standard Naor transform pre-
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serves RKA security and thus RKA[IBE] C RKA|Sig], and (2) that the BCHK
transform [15] preserves RKA security and thus RKA[IBE] C RKA[PKE-CCA].

OTHER RELATIONS. The remaining results and definitions from Fig. 1 are pre-
sented in [4].
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