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Abstract. We revisit the Two-Prover Bit Commitment Scheme of BenOr, Goldwasser, Kilian and
Wigderson [BGKW88]. First, we introduce Two-Prover Bit Commitment Schemes similar to theirs
and demonstrate that although they are classically secure using their proof technique, we also show
that if the provers are allowed to share quantum entanglement, they are able to successfully break the
binding condition. Secondly, we translate this result in a purely classical setting and investigate the
possibility of using this Bit Commitment scheme in applications. We observe that the security claim of
[BGKW88] based on the assumption that the provers cannot communicate is not a sufficient criteria to
obtain soundness. We develop a set of conditions, called isolation, that must be satisfied by any third
party interacting with the provers to guarantee the binding property of the Bit Commitment.

1 Introduction

The notion of Multi-Prover Interactive Proofs was introduced by BenOr, Goldwasser, Kilian and Wigderson
[BGKW88]. In the Two-Prover scenario, we have two provers, Peggy and Patty, that are allowed to share
arbitrary information before the proof, but they become physically separated from each other during the
execution of the proof, in order to prevent them from communicating. It was demonstrated by Babai,
Fortnow, and Lund [BFL91] that Two-Prover Interactive Proofs (with a polynomial-time verifier) exist for
all languages in NEXP-time. A fully parallel amalog was achieved by Lapidot and Shamir [LS97].

A quantum mechanical version of this scenario was considered by Kobayashi, Matsumoto, Yamakami
and Yao [KM03,KMY03,Yao03]. To this day, it is still an open problem to establish the exact power of
Multi-Prover Quantum Interactive Proofs. A rather vast litterature now exists on this topic (see [BHOP08],
[CSUU07], [DLTW08], [IKM09], [IKPSY08], [KKMV08], [Weh06]). However, it is still not even clear whether
two provers are as powerful as more-than-two provers.

The Two-Prover Zero-Knowledge Interactive Proofs of [BGKW88] rely on the construction of a Bit
Commitment scheme, information theoretically secure under the assumption that the provers cannot com-
municate. We refer the reader to their paper to understand the application of this Bit Commitment scheme
to the construction of Two-Prover Zero-Knowledge Proofs. We solely focus on their Bit Commitment scheme
for the rest of our work. In this paper, we consider several important questions regarding Two-Prover Bit
Commitment schemes. We do not limit our interest of Two-Prover Bit Commitment to the context of Zero-
Knowledge proofs; as already discussed in [BGKW88] similar techniques lead them to a secure Oblivious
Transfer under the same assumption. Given that any two-party computation may be achieved from Oblivious
Transfer [Kil88], we consider the security of such Bit Commitment scheme in a very general context. We
discuss at length the security in a very general composability situation.

In order to argue the security of their Bit Commitment scheme, the authors of [BGKW88] asserted the
following assumption:

"there is no communication between the two provers while interacting with the verifier".

⋆ An earlier version of this work was presented under the title “Classical and Quantum Strategies for Two-Prover Bit
Commitments”, at QIP ’06, The 9th Workshop on Quantum Information Processing, January 16-20, 2006, Paris.
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The current paper is concerned with the sufficiency of this assertion. We show is Section 3.2 that, although
this assumption must be made, it is however considerably too weak, because we exhibit variations of the
scheme that are equally binding classically but that are not at all binding if the provers were allowed to
share entanglement. It is however a very well known fact that entanglement does not allow communication.
Although it is true that they can cheat if they can communicate, it is also true that they can cheat without
communicating. Therefore the assumption that the provers cannot communicate is too weak.

This observation can be turned into a purely classical argument by exhibiting a black-box two-party
computation, that does not allow them to communicate, but that allows them to cheat the binding condition
of the Bit Commitment scheme. This peculiar source of randomness may replace the entanglement used by
the attack. Furthermore, the above assertion of BGKW can be interpreted as a prescription to the verifier
that he should make sure not to help the provers to communicate while interacting with him. Again, this
prescription would not prevent him from acting like the black-box we exhibit. Thus, a stronger prescription
is mandatory in order to assert security.

We carefully define a notion of isolation by which the two provers may not communicate nor perform any
non-local sampling beyond what is possible via quantum mechanics. We finally formalize a set of conditions
that any third party involved in a Two-Prover Bit Commitment scheme may satisfy to make sure he does
not break the assumption that the provers are in isolation. In particular, we make sure that if such a Bit
Commitment scheme is used in another larger cryptographic protocol, its security properties will carry over
to the larger context.

1.1 Related work

The starting point of this research is clearly the Bit Commitment scheme introduced by BenOr, Goldwasser,
Kilian and Wigderson [BGKW88]. The security of a Two-Prover Bit Commitment scheme against quantum
adversaries has been considered in the past in the work of Brassard, Crépeau, Mayers and Salvail [BCMS98].
They showed that if such a Bit Commitment scheme is used in combination to the Quantum Oblivious
Transfer protocol of [BCMS98] it is not sufficient to guarantee the security of the resulting QOT if the two
provers can get back together at the end of the protocol. In the current work, we consider only the situation
while the provers are isolated.

The research by Cleve, Høyer, Toner and Watrous [CHTW04] is the main inspiration of the current paper.
They have established some relations between Two-Prover Interactive Proofs and so called “non-locality
games”. More precisely, they showed that certain languages have a classical Two-Prover Interactive Proof
that looses soundness if the provers are allowed to share entanglement. Some of our results are very similar
to this. However, our new contributions are numerous. While [CHTW04] focuses on languages, we focus on
the tool known as Bit Commitment. This tool is used in many contexts other than proofs of membership to a
language: proofs of knowledge, Oblivious Transfer, Zero-Knowledge proofs, general two-party computations.
Moreover inspired by the observations of [CHTW04], we analyze the security of such Two-Prover tools in a
completely classical situation. We conclude that proving security of such protocols is very subtle when used
in combination with other such tools. We also argue that the claim of security of the protocols of [BGKW88]
requires a lot more assumptions than the mere “no communication” assumption (even in the purely classical
situation).

Despite the impossibility theorems of Mayers [May96] and Lo & Chau [LC97], the possibility of informa-
tion theoretically secure Bit Commitment schemes in the Two-Prover model is not excluded in the classical
and quantum models. Indeed, the computations sufficient to cheat the binding condition of a Quantum Bit
Commitment scheme in the above “no-go” theorems cannot, in general, be performed by the two provers
when they are isolated from each other. This is the reason why these theorems do not apply.

In a closely related piece of work, Kent [Ken05] showed how impossibility of communication, implemented
through relativistic assumptions, may be used to obtain a Bit Commitment scheme similar to BGKW that
can be constantly updated to avoid cheating. Kent proves the classical security of his scheme while remaining
elusive about its quantum security. However, he claims security of one round (see [Ken05], Lemma 3, p. 329)
of his protocol which is more or less the same as our Lemma 1. Unfortunately, his proof is incomplete as
pointed out in our proof of the Lemma. But we clearly recongnized that he was first to address this question.
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A very different set of results [BCU+06] relates non-locality boxes and two-party protocols such as Bit
Commitment and Oblivious Transfer. These are only marginally connected to the current research. They
showed how these cryptographic protocols may be securily implemented from those non-locality boxes. On
the cotrary, we show how to break such protocols using non-locality boxes...

2 Preliminaries

2.1 Isolation

First let us define the condition imposed on the two provers: we use the word isolation to describe the
relation between Peggy and Patty during the protocol. The intuitive meaning of this term is that Peggy and
Patty cannot communicate with each other, since this condition is explicitly imposed by the Two-Prover
model. However, we introduce this new terminology instead of the traditional “cannot communicate with
one another” because we noticed that the meaning of “no-communication” is too weak and must be very
clearly defined to produce valid security proofs. This isolation will be formally defined in Section 4. For now,
the reader may follow his intuition and picture Peggy and Patty as restricted to compute their messages
using only local variables.

2.2 Bit Commitment

The primitive known as “Bit Commitment” is a protocol in which a player Alice first sends some informa-
tion to another player Bob, such that this information binds her to a particular bit value b. However, the
information sent by Alice is not enough for Bob to learn b (b is concealed). At a later time, Alice sends the
rest of the information to unveil the bit b, and she cannot change her mind to reveal b̄ and convince Bob
that this was the value to which she was committed in the first step. The following definitions will be used
to characterize the security of a Bit Commitment scheme. Note that the function µ(n) always refers to a
negligible function in n.

Definition 1. A Bit Commitment scheme is statistically concealing if only a negligible amount of informa-
tion on the committed bit can leak to the verifier before the unveiling stage.

Definition 2. A Bit Commitment scheme is statistically binding if, for b ∈ {0, 1}, the probability pb that
Alice successfully unveils for b satisfies

p0 + p1 ≤ 1 + µ(n). (1)

This binding condition was first proposed by Dumais, Mayers, and Salvail [DMS00], as a weaker substitute
to the traditional definition pb ≤ µ(n) for either b = 0 or 1. This definition has been henceforward used
to show security of many Bit Commitment schemes against quantum adversaries in various models, e.g.
[DMS00,CLS01,DFSS05].

More recent definitions have been introduced since then ([DFRSS07]) that appear to be better charac-
terization of Bit Commitment security in a quantum setting. However, we have not been able, so far, to find
protocols that satisfy these definitions. This, we hope, will be part of future work in this area.

3 Two-Prover Bit Commitment scheme

For simplicity reasons, we replace the original scheme of [BGKW88] by a far simpler and compact version,
which we call “simplified-BGKW” (or sBGKW as a short-hand). Still, we strongly recommend the reader to
[BGKW88] for the details of the original construction. For an n-bit string r and a bit b, we define the n-bit
string b · r := b ∧ r1||b ∧ r2|| . . . ||b ∧ rn. The scheme is as follows:

Peggy and Patty agree on a uniform n-bit string w and a random bit d. They are then isolated from one
another.
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Protocol 31 ( sBGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x := (d · r) ⊕ w,

3: Peggy announces z := b⊕ d.

Protocol 32 ( sBGKW - Unveil b )

1: Peggy announces bit b and the n-bit string w,

2: Vic accepts iff w = ((b⊕ z) · r) ⊕ x.

Note that at the unveiling stage, as in the original scheme it is not required that Peggy be the one
announcing b. It is as good to let Vic deduce b: Vic computes y := w ⊕ x, if y = 0n he sets b := z and if
y = r he sets b := z̄, and otherwise rejects. Indeed, Peggy may not even know b!

3.1 BGKW’s notion of isolation

The assumption made in [BGKW88] is that Peggy and Patty are not allowed to communicate with each
other. Based solely on that constraint, the following seems a “valid” security proof (it is more or less the
same proof as in [BGKW88]).

Theorem 1. Constraining the provers as in [BGKW88], the sBGKW protocol is secure classically.

Proof. Vic does not know w, and w is uniformly distributed among all possible n-bit strings for both values
of z. It follows that the two strings w and r⊕w have the exact same uniform distribution and are perfectly
indistinguishable from one another. We can say the same for the pairs (z, w) and (z, r ⊕ w). Hence sBGKW

is concealing.
Now suppose that Peggy and Patty would like to be able to unveil a certain instance of b both as 0 and

as 1. To do so, Peggy would like to announce ŵb such that ŵb = (b · r)⊕x. We note that this models the two
possible dishonest behaviors for Peggy and Patty: honestly commit to b̄ and try to change to b afterwards,
and commit to nothing by sending some x and decide which b they want to unveil only at the unveiling stage.
It follows that in both scenarios, a successful cheating strategy would allow to produce the two strings ŵ0

and ŵ1, such that {ŵ0, ŵ1} = {x, r⊕x}. However, the string ŵ0⊕ ŵ1 = x⊕ r⊕x = r is completely unknown
to Peggy by the no-communication assumption. Therefore, even using unlimited computational power, her
probability of issuing a valid pair ŵ0, ŵ1 is at most 1/2n. Hence sBGKW is binding.

Nevertheless, this result is incomplete4! Indeed, we show next how a correlated random variable can be used
to invalidate the result of Theorem 1 while not violating the “no-communication” assumption. This suggest
that the conventional wording “no-communication” is insufficient as it is not explicit enough to cover any
kind of cheating mechanism Peggy and Patty can employ.

3.2 Cheating sBGKW with an NL-box

An NL-box, short-hand for “Non-Locality box” introduced by Popescu and Rohrlich [PR94,PR97], is a
device with two inputs s and t, and two output bits u and v such that u and v are individually uniformly
distributed and satisfy the relation f(s, t) = u⊕v for some function f . The pair (s, u) is on Peggy’s side while
the pair (t, v) is on Patty’s side. Because u and v are individually uniformly distributed, no NL-box allow
Peggy and Patty to communicate, in either direction. The NL-boxes are usually assumed as asynchronous
devices, that is, feeding in the input s is sufficient to obtain u even if t has not been input yet, and likewise for

4 The broad explanation is that we implicitly assumed the provers had only access to local variable. We’ll see we
need to guarantee this restriction for the proof to hold.
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t. Such a particular box, known as the PR-box, is defined for f(s, t) = s∧ t, where s and t are binary inputs.
It is known that two classical players can simulate the PR-box with success probability5 at most 75% for all
s, t, while quantum players sharing an entangled state can achieve a success probability of cos2(π/8) ≈ 85%
(consult [CHTW04] for details).

s //

PR
too

u := v ⊕ (s ∧ t) //oo v

Fig. 1. the cheating PR-box

Let the two provers be given a black-box access to this PR-box. The following shows how this PR-box
allows Peggy and Patty to unveil the bits committed through sBGKW in either way, at Peggy’s will. For
each position i, 1 ≤ i ≤ n, Patty inputs in the PR-box the bit s := ri received from Vic and obtains output
xi := u from the PR-box, which corresponds to the i-th bit of the commitment string. Patty sends x to
Vic. Peggy discloses z a random bit to Vic. To unveil bit b, Peggy inputs t := d := b⊕ z in the PR-box and
obtains the output ŵi := v from the PR-box, which she sends to Vic together with b.

d //

PR
rioo

bwi := xi ⊕ (ri ∧ d) //oo xi

Fig. 2. using the PR-box

If d = 0 then d ∧ ri = 0 and thus ŵi = xi which is the right value she must disclose. If d = 1 then
d ∧ ri = ri and thus ŵi ⊕ xi = ri or ŵi = xi ⊕ ri which is again the right value she must disclose.

Indeed, we can view an arbitrary cheat on the sBGKW as a non-local computation between the provers
as in Fig. 3. Essentially we have just demonstrated that an sBGKW-box can be emulated perfectly by perfect

d //
sBG

KW

roo

w := x⊕ (d · r) //oo x

Fig. 3. the cheating sBGKW-box

PR-boxes. However, a valid cheating strategy might not succeed 100% of the time, so an sBGKW-box that is
correct 80% of the time, for instance, would be enough to break the binding property. It seems quite obvious,
nevertheless, that a PR-box that is correct 80% of the time will not help implementing an sBGKW-box that
is correct 80% of the time. For that matter, any PR-box that is correct a constant fraction p < 1 of the time
will not help either...

It is not obvious that a sBGKW-box with error probability greater than zero is equivalent to the
PR-box, but it would be very interesting to prove either way.

3.3 quantumly insecure - Two-Prover Bit Commitments

We exhibit an intermediate scheme to emphasize how shared entanglement can be used to cheat with prob-
ability almost one a classically “secure” Two-Prover Bit Commitment. The protocol is a weaker version of
the sBGKW scheme, called wBGKW, where the acceptance criteria of the unveiling stage is loosen to tolerate
some errors. A second protocol (available in Sub-Section 3.7) is also a modified version of the sBGKW scheme
where the acceptance criteria is based on a game described later, called the Magic Square game.

5 This result is shown optimal by enumerating every possible classical strategies.
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A weaker acceptance criteria: the wBGKW scheme Consider a weaker acceptance criteria where the
string ŵ sent by Peggy can differ in at most n/5 positions from what it should be. Formally the verifier Vic
is to accept b if d(ŵ, ((b ⊕ z) · r) ⊕ x) < n/5, where d(·) is the binary Hamming distance. The interest of
such a modification is that now a cheating quantum pair Peggy and Patty can use the non-local property
of entanglement to approximate the PR-box and successfully cheat wBGKW, while, as we show next, the
Bit Commitment is “secure” classically. To facilitate notation we add an index b to the string ŵ, since ŵ is
different whether we unveil zero or one. Also, define as B the random variable corresponding to the value
they unveil.

Theorem 2. For any classical strategy, the probability that it outputs a string ŵ0 when B = 0 and ŵ1 when
B = 1 s.t. E[d(ŵb, ((b⊕ z) · r) ⊕ x)] < n/5 for both values of b, is exponentially small in n.

Proof (of Theorem 2).
Wlog, we can assume the provers use a deterministic strategy that may produce such a ŵ0 when B = 0,

and ŵ1 when B = 1, so they can in fact output both ŵ0 and ŵ1. Hence, Peggy can compute the string
ŵ0 ⊕ ŵ1. Recall that when d(ŵb, ((b⊕ z) · r) ⊕ x) = 0 then ŵ0 ⊕ ŵ1 = r. We want to determine the distance
between ŵ0 ⊕ ŵ1 and r in our situation. From the theorem’s assumption, there exists a classical strategy
that outputs ŵ0 and ŵ1 such that E[d(ŵb, ((b ⊕ z) · r) ⊕ x)] < n/5, for b = 0, 1. We easily obtain that for
such a strategy, the expected distance from r is

E[d(ŵ0 ⊕ ŵ1, r)] = E[d(ŵ0 ⊕ ŵ1, x⊕ (x⊕ r))] ≤ E[d(ŵ0, x)] + E[d(ŵ1, x⊕ r)] < 2n/5

by the triangular inequality. Using a standard Chernoff bound argument, and since r is absolutely unknown
to Peggy, her probability of outputting a string y = ŵ0⊕ŵ1 such that E[d(y, r)] < (1/2−ǫ)·n is exponentially
small in n for any 0 < ǫ ≤ 1/4. Hence, because 1/4 < 2/5 < 1/2, we conclude that such a strategy cannot
exist except with exponentially small probability, and so unveiling must fail for one of the two possibilities.

Conversely, this scheme is almost totally insecure against quantum adversaries.

Theorem 3. There exists a quantum strategy that successfully cheats the wBGKW scheme with probability
1 − µ(n).

Proof (of Theorem 3). We saw in Section 3.2 that the PR-box, taken as a black box, correctly produces the
needed ŵb to unveil as b. Using the well-known result [e.g. [CHTW04]] that through entanglement, Peggy
and Patty can optimally simulate the PR-box such that for each i taken independently, 1 ≤ i ≤ n, the PR-
box produces correlated outputs with probability cos2(π/8) ≈ 0.85. Therefore, using the standard Chernoff
bound, this independent quantum strategy yields that for both values of b,

E[d(ŵb, ((b⊕ z) · r) ⊕ x)] = (1 − cos2(π/8)) · n

with probability exponentially close to one. Having that (1 − cos2(π/8)) · n < 0.15 · n < n/5, we conclude
that a pair of quantum provers defeats the binding condition of the scheme with probability 1 − µ(n).

3.4 Discussion

The limitation of Theorem 1 (and Theorem 2) is that it claims that the following non-local computation,
named sBGKW2-box (see Fig. 4) , is a communication device (which is obvious) assuming that any imple-

r //
sBG

KW2x //oo w0, w1 := x, x⊕ r

Fig. 4. the cheating sBGKW2-box
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mentation of an sBGKW-box is sufficient to implement it (which is false, since the sBGKW-box is not a
communication device, it is impossible to implement any communication device from it).

However, these proofs are not wrong either since it is impossible to accomplish the sBGKW-box without
some sort of communication, which also works for the sBGKW2-box. In particular, it means that this
proof is seriously context-dependent. In a context where Patty and Peggy have access to a third party that
scrupulously monitors that they are not communicating with each other, the proof does not hold anymore
because using the third party as a sBGKW-box is not excluded.

The bottom line here is that this proof is valid solely in a stand-alone security model. As soon as one
starts composing such protocols, one has to, not only, monitor that the actions of the third party do not
allow communication but also do not constitute any form of correlation between Patty and Peggy.

This demonstrates that certain non-local correlations are enough to cheat Two-Prover Bit Commitment
schemes while they are not enough to communicate. Thus we have to define the prover’s isolation in terms
of these non-local correlations and not only in terms of communication. This is the purpose of Section 4.

3.5 A non-local box to cheat the original BGKW scheme

Similarly to the sBGKW scheme, we can define an analogous cheating box for the original BGKW scheme
with two binary inputs s, t, and two uniformly generated ternary outputs x, y.

The original protocol goes as follows:
Peggy and Patty agree on a uniform n-trit string w. They are then isolated from one another.

Protocol 33 ( BGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x such that for all k, xk := σrk
(wk) − b mod 3.

Protocol 34 ( BGKW - Unveil b )

1: Peggy announces bit b and the string w,

2: Vic accepts iff w is such that for all k, b = σrk
(wk) − xk mod 3.

Where the σ function of [BGKW88] can be re-written as the single expression: ∀ r ∈ {0, 1}, w ∈ {0, 1, 2}

σr(w) = (1 + r)w mod 3. (2)

So using (2), we want from the cheating NL-box that u := (s + 1)v − t mod 3 for each s, t, and uni-
formly chosen v. Because for any binary s, t we can easily define the inverse permutation over trits to be
v := (t+ u)(s+ 1) mod 3, the following PR3-box does not allow to communicate since individually u and
v are uniformly distributed.

s //

PR3
too

u //oo v := (t+ u)(s+ 1) mod 3

Fig. 5. A non-local box to cheat BGKW

It is not hard to verify that the PR3-box that implements this non-local computation from s, t is exactly
the one needed to cheat the original BGKW scheme. As with the PR-box, for each round i, Peggy inputs
in the box s := ri and obtains the trit xi := u, which she sends to Vic. If Patty wants to unveil for b, she
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inputs t := b in the PR3-box, which correctly outputs ŵi := v. Clearly, they successfully cheat since

∀ i (1 + ri)ŵi − xi mod 3 = (1 + ri)(b + xi)(1 + ri) − xi mod 3

= (1 + ri)
2(b+ xi) − xi mod 3

= (b+ xi) − xi mod 3

= b.

We can also demonstrate that the PR3-box is as powerful as the PR-box. It is straightforward to check
that the outputs x′ and y′ depicted in Figure 6 are indeed the correct outputs to cheat the sBGKW scheme.

PR
s //

PR3

oo t

x //oo y

�� ��

x′ := (s+ 1)x mod 3 mod 2 y′ := y + 2t mod 3 mod 2

Fig. 6. Reduction from the PR-box to the PR3-box.

3.6 Magic Square Non-locality game

A square is a 3 × 3 matrix whose entries are in {0, 1}. A row is said to be correct if its parity is even, and a
column is said to be correct if its parity is odd. We use the following definition of the Magic Square game
(from [CHTW04]), which slightly differs from the original game due to Aravind [Ara02]. The verifier Vic
picks at random a row or column, say column ci, and a position xi

j on ci, i, j ∈ {1, 2, 3}. He then asks the

entries of column ci to Peggy, and the value in position xi
j to Patty. The two provers win if the parity of ci

is odd (more generally, if the row or column asked for is correct), and if the value returned by Patty matches
the value at position xi

j in Peggy’s answer. The following defines the validity of a square.

Definition 3. A (3 × 3) matrix S is valid for zero if all rows of S xor to 0, and S is valid for one when all
columns of S xor to 1.

For instance the following matrix S0 is valid for zero while S1 is valid for one:

S0 =
[

0 0 0
0 1 1
1 0 1

]
, S1 =

[
1 0 1
1 1 0
1 0 0

]
. (3)

Any classical strategy successfully wins this Magic Square game with probability at most
(

17

18

)
. Remark-

ably, there exists a quantum strategy that allows Peggy and Patty to successfully win this game every time,
see [CHTW04,Ara02] for details.

3.7 Magic Square Bit Commitment

It is not hard to exploit the Magic Square game to build another Bit Commitment scheme. This scheme
is particularly relevant in our study of Bit Commitments in the Two-Prover model as it is perfectly secure
classically but can easily be cheated with probability one using a quantum strategy. The scheme is as follows:

Peggy and Patty agree on a random bit v and n random squares Si such that Si is valid for v. They are
then isolated.
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Protocol 35 ( MSBC - Commit to b )

1: Peggy computes x := v ⊕ b and sends x to Vic.

2: Vic picks a pair of random trits ri and ci and asks Peggy for Si(ri, ci).

Protocol 36 ( MSBC - Unveil b )

1: Peggy sends b to Vic,

2: Vic asks Patty for row number ri of Si if b = x, or column number ci of Si if b = x̄.

3: Vic accepts b if, for each i, the row or column that should xor to b does, and if the entry returned by Peggy

matches with Patty’s answer. Vic rejects otherwise.

Theorem 4. Any classical strategy successfully cheats the binding property of the MSBC scheme with prob-

ability at most
(

8

9

)n/6
, except with exponentially small probability.

Proof (of Theorem 4).
Wlog, it is sufficient to consider deterministic strategies. Consider the strategy where only the entry (2, 2)

is used to make the square Si correct for ŵi. When ti = 0 or 1, Peggy answers the line or column of Si as is.
However, when ti = 2, she sets the entry (2, 2) to the correct value such that a line xores to 0 or a column
xores to 1. On query (yi, zi), Patty answers the entry (yi, zi) of Si if (yi, zi) 6= (2, 2), otherwise she answers
0. It is not hard to show that this strategy is optimal, since Peggy knows all the information (the Si’s, x,
and r), and Patty knows nothing about x and r.

The problem for the provers is that whenever b · ri = 1, they succeed for at most only one of b ∈ {0, 1}.
This is because the square Si they share cannot be correct for both xi and xi. Since r is uniformly distributed,
by a Chernoff argument, r contains at least n/3 1’s. Thus, there is at least one of b ∈ {0, 1} for which in at
least n/6 challenges the provers will answer correctly with probability at most 8/9 (the sum of the challenges
where she succeeds with probability at most 8/9 for 0, and those where she succeeds with probability at

most 8/9 for 1, adds up to n/3). Therefore, their probability of successfully cheating is at most
(

8

9

)n/6
for

any classical strategy, except with exponentially small probability.

However, there exists a quantum strategy that allows Peggy and Patty to successfully break the binding
condition with probability 1 by winning the Magic Square game every time.

Theorem 5. There exists a quantum strategy that successfully cheats MSBC with probability 1.

4 Defining and checking Isolation

The existence of such an inputs-correlated6 random variable, which does not allow communication but
allows cheating of the sBGKW Two-Prover Bit Commitment scheme sheds some light on the limitations of
the original assumption of [BGKW88].

Indeed, the assumption of [BGKW88] is necessary but not sufficient to guarantee the binding property
of the Bit Commitment scheme. Among its weakness, we note that it does not explicitly force any cheating
strategy to be repeatable. The PR-box not being a repeatable process7 gives a first understanding why we
can still cheat the sBGKW scheme despite the result of Theorem 1, which implicitly assumed repeatability
of the cheating strategy.

Clearly, to achieve the binding condition, a stronger assumption is needed. One could require that once
the provers are isolated, there exists no mechanism by which they may sample a joint random variable

6 We emphasize that at least one of the “inputs” to the random variable needs to be obtained once the provers are
isolated, otherwise such a random variable can be shared while the provers are together, and is thus useless to
cheat the sBGKW scheme.

7 The PR-box cannot be repeated to generate two valid strings bw0 and bw1.
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which is dependent on the inputs they provide. We note that, among other things, this new condition
excludes communication between the two provers, as desired. However, it excludes a lot more, such as shared
entanglement! This is simply too strong; we need to be more subtle in the way we define this “mechanism
to sample a joint random variable”.

It seems reasonable to believe that nature does not allow the existence of a PR-box (consult [CHTW04]).
So why even ask for a stronger assumption than the no-communication assumption of [BGKW88]? Part of
the answer is that Vic can play the role of the PR-box, or any other third party. In no circumstances can
we ignore the fact that both Peggy and Patty individually talk to Vic. Definitely, we need to consider this
aspect of the protocol with great care. For instance, consider the scenario where r is sent to Peggy but
unveiling is not done immediately after committing, but rather once Vic and the two provers have been
involved in other, unrelated, interactive protocols. It is perfectly conceivable that within those protocols, for
each i, Peggy and Patty succeed in sending ri and b to Vic, and then in a completely different context (or a
moment of unawareness) Vic performs the required computation and output xi and ŵi, which are then sent
respectively to Peggy and Patty. It is obvious that if such a computation, or any alike, can take place with
enough probability then Peggy and Patty would succeed in cheating the sBGKW protocol!

More generally, we must not only consider Vic but any other third party, call it Ted, to which Peggy
and Patty might have access to obtain correlated information. The previous situation highlights the fact
that there is a whole class of functions with inputs coming from Peggy and Patty for which Ted must not
send the outputs. Intuitively, each time Ted sends a message to either Peggy or Patty, he must ensure that
the message does not outperform what Peggy and Patty can achieve using local variables in the sense of
quantum mechanics. We propose two different approaches to formulate that statement as a criteria. The first
considers the practical flavor of the problem, when Ted is working with instances of variables. The second
approach is based on an information theoretic argument. At this point, we will not consider the scenario
where the players can share quantum resources.

Let Peggy be identified by P0 and Patty by P1. The variable D ∈ {0, 1} is a reference to player PD, and
T ∈ {∅, {0}, {1}, {0, 1}} is a tag appended to each message that indicates to Ted the player(s) that is (are)
eligible for receiving this message, where T = {0, 1} means by both players and T = ∅ means by none of
them. The message about to be sent from Ted to prover PD is represented by (m,T )D. We formalize Ted’s
behavior as follows.

Definition 4 (Practical criteria). Ted is said to be a “secure third party” if ∀D ∈ {0, 1}, Ted follows
these points.

1. A message received from player PD is tagged with T := {D}.
2. A message generated without involving any of the previous messages, e.g. picking a random string, is

tagged with T := {0, 1}.
3. A message obtained from a computation involving previous messages is tagged with the intersection of

the tags of all the messages involved in that computation.
4. A message (m,T )D is sent to player PD only if D ∈ T .

Note: It is important that the communication pattern between Ted and the isolated provers be specified
ahead of time, otherwise the traffic pattern (not only the message contents) may leak information.

We now explain why Ted will not send a message that allows P0 and P1 to communicate or establish
non-local correlations. Let (m,T )D be the message Ted is about to send to player PD. From the fourth point
of Definition 4, Ted will send (m,T )D only if it is tagged T = {D} or {0, 1}. Looking at the message’s tag
assignment rule number 3, this happens only if there is absolutely no message tagged {1 −D} or ∅ used in
the computation of (m,T )D. Using an induction argument, it is not hard to see that this happens only when
all the variables involved in the computation of (m,T )D are independent of the information of P1−D, that
is, they have been themselves generated using variables tagged {D} or {0, 1}. Thus, such a message (m,T )D

is also independent of the information known only to P1−D. Therefore, the messages sent by Ted do not let
the two players communicate.

The case of non-locality is slightly more subtle, yet pretty straightforward. Recall that in a general
non-local process, both players use a message each and receive a message uniformly distributed, from their
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point of view, such that the four messages satisfy a certain relation. The received message does not allow to
communicate with the other player. Suppose P1−D receives his message first. Since from his point of view,
this message is uniformly distributed, Ted can in fact generate a uniformly distributed message, tag it with
T := {0, 1} and send it to P1−D. At this point, this behavior does not violate anything because non-locality
has not been created yet. Then, Ted computes the message for PD. Because this message needs to satisfy the
relation that binds together the four messages, at least a message tagged with T 6= {D} and one tagged with
T 6= {1−D} are used in its computation (it can be the same message), so the resulting message (m,T )D will
be assigned a tag T := ∅ because the intersection does not contain {D} nor {1 −D}. This message (m, ∅)D

is the one creating the non-local relation. However, from point 4 of Definition 4, since D /∈ ∅, Ted will never
send (m, ∅)D.

As mentioned before the previous definition, we can alternatively formalize Ted’s behavior in terms of
entropy. The advantage of doing so is to enable analysis of existing protocols. To satisfy the above practical
criteria, the wrapping protocol must be designed in a rather restricted way. To consider general protocols,
we offer this alternate definition.

Let the message about to be sent from Ted to prover PD be represented by the variable (M,T )D. The
set of variables SD,T represents all the variables (messages) with tag T sent by prover PD to Ted, and the
set of variables RD,T all the variables (messages) with tag T sent by Ted to prover PD before (M,T )D.

Definition 5 (Information based criteria). Ted is said to be a “secure third party” if ∀D ∈ {0, 1}, Ted
follows these points.

1. An information received from player PD is tagged with T := {D}8.
2. A variable M to be sent to PD is tagged with the less restrictive tag T ∈ {∅, {D}, {0, 1}} that satisfies

the following relation9. Note that the calligraphic tag T ′ stands for the tag {0, 1}/
(
T ∩ {D}

)
and the

calligraphic tag T ′′ stands for the tag {D} ∪
(
T ∩ {1 −D}

)
.

H((M,T )D|SD,{D}, RD,{D}, RD,{0,1}, S1−D,T ′ , R1−D,T ′ , R1−D,{0,1})

= H((M,T )D|SD,T ′′ , RD,T ′′ , RD,{0,1}, R1−D,{0,1}) (4)

3. A variable (M,T )D is sent to player PD only if D ∈ T .

We warn the reader that the tags and players’ variables D and 1−D do not play any role in the computation
of the entropies; they are only present to discriminate the variables and determine which ones to include in
the conditional part of the entropies. Notice also that, contrary to Definition 4, a variable’s tag is set only
when Ted considers sending it to a player, except for incoming variables. This relaxation will turn out to be
the key point to explain why this generalized definition is not stronger than local variables on the players’
side.

The process of determining which tag to assign can be broken into two steps. We start with the empty
tag ∅. The first step is to decide whether we can add {D} to the tag, or not. Notice that the right-hand
side of equation (4) is the same for T ∈ {∅, {D}}. This results from the calligraphic tag T ′′, which is
equivalent to {D} in this case. On the other hand, the calligraphic tag T ′ introduces the terms S1−D,{1−D}

and R1−D,{1−D} in the left-hand side of equation (4) when T = {D}. Thus, if the result of this first step
is that the tag is at least {D}, then it means that the message to be sent is independent of the private
information held by P1−D. However, if we find that the tag is not even {D}, then it means that the message
to be sent has some dependencies with the private information of P1−D, and therefore the message should
not be sent.

If the first step terminates with a tag containing {D}, then we can move on to determine whether we can
add {1−D} to the tag, or not. We note that T ′ won’t change for T ∈ {{D}, {0, 1}}, so the left-hand side is

8 This implies that the sets SD,{0,1} and S1−D,{0,1} are always empty. Therefore we do not include them in equation
(4), but a formal expression should include them in the conditional part on both sides of the equality.

9 In order to write a clear equation, we had to specify to which player the message is intended. As a result, we did
not include {1 − D} in the set of possible tags. It turns out that the empty set tag is sufficient to cover both
communication and correlation.
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invariant. However, the calligraphic tag T ′′ will remove the terms SD,{D} and RD,{D} from the right-hand
side if we consider the tag T = {0, 1}. Hence, if equation (4) is satisfied with T = {0, 1}, it means that the
message to be sent is not only independent of the private information of P1−D (from the first step), but also
of the private information of PD. It follows naturally that this message be eligible for distribution to both
players.

The interest of Definition 5 is that it is more flexible in the tag assignation than the practical Definition
4 (and thus more general). Indeed, whenever Ted deliberately randomizes a message with new [uniformly
distributed] information, the information-based criteria concludes that there is no problem to send to PD

a message that would have been tagged with T = {1 − D} or ∅ by the practical definition. The reason is
that by randomizing completely all the [private] variables related to P1−D, Ted is reducing the message he
sends to PD to what PD can exactly achieve using local variables. That is to say, PD already has (using local
variables) a random view of P1−D’s variables (and so of the global message), so there is no problem for Ted
to first randomize P1−D’s variables and then send this message to PD. Note however that the variables used
to randomize will never be sent to PD since they now carry the sensible information. We give two examples
of these particular cases in the Appendix A.

Henceforth, the Two-Prover model’s assumption is based on this refined definition of isolation.

Definition 6. We say that Peggy and Patty are isolated from one another if they cannot communicate with
one another, and if they only have access as external resource to secure third parties.

Using this new definition of isolation, we are now guaranteed that any strategy that Peggy and Patty try
to perform through a third party can be achieved using only local variables on each side. Using this fact
together with the general assumption that the cheating strategy is deterministic10, it is straightforward to
fix the proof of Theorem 1 by arguing that their classical strategy can be run on each copy of the information
to output both ŵ0 and ŵ1.

5 Quantum secure Bit Commitment in the Two-Prover model

We now present the modified version of the sBGKW scheme, called the mBGKW scheme, and prove its se-
curity against quantum adversaries. Although the two schemes are almost identical, it turns out the proof
against quantum provers is easier with the latter. The security of the sBGKW and BGKW schemes will follow
as corollaries of mBGKW’s security. The scheme is as follows:

Peggy and Patty agree on an n-bit string w. They are then isolated as in Definition 6.

Protocol 51 ( mBGKW - Commit to b )

1: Vic sends two random n-bit strings r0, r1 to Peggy.

2: Peggy replies with x := rb ⊕ w.

Protocol 52 ( mBGKW - Unveil b )

1: Patty announces an n-bit string bw
2: Vic computes r := bw ⊕ x. He accepts iff r ∈ {r0, r1} and deduces b from r = rb.

We want to show that the mBGKW scheme is secure against a quantum adversary. Clearly the commitment
is concealing because Vic does not know w. This means that there exists w and w′ such that x = r0 ⊕ w =
r1 ⊕ w′, and Vic cannot determine which one has been used.

To prove that the binding property holds according to Definition 2, we again use the crucial observation
that if Patty could simultaneously compute (ŵ0, ŵ1), then she would learn r0 ⊕ r1 = ŵ0 ⊕ ŵ1. Let p⊕ :=
Pr[Patty determines r0 ⊕ r1]. The next lemma relates p⊕ to p0 + p1 in the desired way. Notice however

10 A probabilistic strategy can be made deterministic by fixing the randomness to the best sequence.
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that because quantum information is involved this statement is much less straightforward than the classical
analog: p0 and p1 still correspond to running the attack twice on the same data but an attacker cannot do
both.

Lemma 1. Assume Patty has probability pb to unveil bit b successfully, for both values of b, and such that
p0 + p1 ≥ 1 + ε for ε > 0. Then, Patty can guess r0 ⊕ r1 with probability p⊕ ≥ ε2/4.

Proof (of Lemma 1).

Assume without loss of generality that when the unveiling phase of mBGKW starts, Patty holds the
pure state |ψ〉 ∈ HN of dimension N ≥ 2n. Note that we do not need to consider the whole bipartite state
between Peggy and Patty since when the unveiling phase starts, Peggy does no longer play an active role in
the protocol and no communication is allowed between the two; hence her system can be traced-out of the
global Hilbert space. Moreover, by linearity, the proof also holds if |ψ〉 is replaced by a mixed state. Notice
also that, from the new model’s assumption, Peggy and Patty cannot do better using a third party than
what they can achieve with entanglement.

Generally speaking, Patty has two possible strategies depending upon the bit b she wants to unveil.
When B = 0, she applies a unitary transform U0 to |ψ〉 in order to get the state |ψ0〉 := U0|ψ〉 that she
measures in the computational basis {|w〉〈w|}w∈{0,1}n applied to the first n qubits of |ψ0〉. When B = 1,
she proceeds similarly with unitary transform U1 allowing to prepare the state |ψ1〉 := U1|ψ〉. She then
measures |ψ1〉 using the same measurement as for B = 0. All general measurement can be realized in this
fashion, this is thus a general strategy for Patty. Notice that in the proof of Kent [Ken05], the use of unitary
transformations U0 and U1 is obscured by the fact that he works with projective measurements. Notice
also that the measurement on the first n qubits of |ψb〉 can alternatively be expressed by the measurement
operators {|w〉〈w| ⊗ IM}w∈{0,1}n on the whole state |ψb〉, where IM is the identity matrix on the system of
dimension M = N/2n.

From the values r0, r1, x ∈ {0, 1}n announced by Vic and Peggy during the committing phase, we define
ŵb := rb ⊕ x as the string Patty has to announce in order to open b with success. We have,

pb = 〈ψb|ŵb〉〈ŵb|ψb〉, (5)

which by assumption satisfies

p0 + p1 ≥ 1 + ε, ε > 0. (6)

Notice that 〈ψb|ŵb〉 is a generalized inner product11 since |ŵb〉 lives in a subspace of dimension 2n in HN .
Therefore when ŵb is obtained, there is some state left in HN of dimension N/2n which we label as |v̂b〉 (i.e.
|ψb〉 has not been completely collapsed by the measurement). Thus, using (5) we can write |ψb〉 as

|ψb〉 =
√
pb|ŵb〉|v̂b〉 +

√
1 − pb|ŵ⊥

b 〉, (7)

where ‖〈v̂b|〈ŵb|ŵ⊥
b 〉‖2 = 0. Note that the “state” |ŵ⊥

b 〉 has not necessarily a physical signification. It is simply
a mathematical tool that allows us to conveniently carry the statistics.

We want to determine a lower bound for the probability p⊕. One possible way for Patty to compute r0⊕r1
is to obtain ŵ0 and ŵ1 individually. Again, one possible way to do this is to use the following strategy:

1. Patty applies the strategy allowing to open B = 0 from |ψ0〉 = U0|ψ〉 resulting in the state |ψ̃0〉 after
the measurement in the computational basis {|w〉〈w|}w∈{0,1}n has been performed on the first n qubits,
and

2. Patty prepares |ψ̃1〉 := U1U
†
0 |ψ̃0〉 before applying again the measurement in the computational basis

{|w〉〈w|}w∈{0,1}n on the first n qubits.

11 If |w〉 ∈ HM and |ψ〉 ∈ HN then for |ψ〉N =
P

i αi|ai〉
M ⊗ |bi〉

N/M we define 〈w|ψ〉 =
P

i αi〈w|ai〉|bi〉.
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Note that when preparing |ψ̃1〉, we applied U †
0 before U1. This is to put back the state |ψ̃0〉 as close as

possible as the original state |ψ〉. From (6) and for N big enough, the probability to measure ŵ0 in the first
step is not too small and so, by applying the inverse of all the unitary transformations generated by U0, the
state |ψ̃〉 we get before applying U1 is a good enough approximation of the original |ψ〉. Similarly we can say
that the fidelity F (|ψ̃〉, |ψ〉) is large enough. By invariance under unitary transformation, it follows that |ψ̃1〉
approximates |ψ1〉 with the same fidelity F (|ψ̃〉, |ψ〉).

In the strategy described above, the probability to determine r0 ⊕ r1 is

p0 · pbw1| bw0
.

As we said earlier, this is only one of the possible strategies to determine r0 ⊕ r1, thus

p⊕ ≥ p0 · pbw1| bw0
.

Let us first find a lower bound on the probability pbw1| bw0
to produce ŵ1 given that ŵ0 has already been

produced after step 1. Since ŵ0 was obtained, the state |ψ̃0〉 is equal to |ŵ0〉|v̂0〉. We have,

|ψ̃1〉 = U1U
†
0 |ψ̃0〉

= U1U
†
0 |ŵ0〉|v̂0〉

= U1

(
U †

0

|ψ0〉√
p0

− U †
0

√
1 − p0

p0

|ŵ⊥
0 〉

)
(8)

= U1

|ψ〉√
p0

− U1U
†
0

√
1 − p0

p0

|ŵ⊥
0 〉 (9)

=
|ψ1〉√
p0

− U1U
†
0

√
1 − p0

p0

|ŵ⊥
0 〉 (10)

=
1√
p0

(√
p1|ŵ1〉|v̂1〉 +

√
1 − p1|ŵ⊥

1 〉 − U1U
†
0

√
1 − p0|ŵ⊥

0 〉
)
, (11)

where (8) follows from isolating |ŵ0〉|v̂0〉 in (7), (9) and (10) are obtained by definition of U0 and U1 respec-
tively, and (11) also follows from (7). At this point, Patty applies the measurement in the computational
basis in order to obtain ŵ1. Since we are interested only in finding a lower bound, the probability to obtain
ŵ1 is minimized when U1U

†
0 |ŵ⊥

0 〉 = |ŵ1〉|v̂1〉. It easily follows that,

pbw1| bw0
= 〈ψ̃1|ŵ1〉〈ŵ1|ψ̃1〉

≥ 1

p0

(√
p1 −

√
1 − p0

)2

(12)

≥ 1

p0

(√
p1 −

√
p1 − ε

)2
(13)

≥ ε2

4p0

, (14)

where (12) follows from (11), (13) is obtained from (6), and (14) follows from a Taylor expansion. Finally,
(14) gives the desired result since

p⊕ ≥ p0 · pbw1| bw0
≥ ε2

4
.

Theorem 6. If there exists an algorithm A that can cheat the mBGKW Bit Commitment scheme with
probabilities p0 + p1 > 1 + 2/

√
2n then there exists an algorithm A′ that can predict an unknown n-bit string

(r0 ⊕ r1) with probabilities better than 1/2n, which is impossible.
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Proof (of Theorem 6). From the isolation assumption, we have

p⊕ =
1

2n
.

Using the result from Lemma 1,
1

2n
≥ ε2

4
=⇒ ε ≤ 1√

2n−2
. (15)

It follows that the binding condition is satisfied: plugging (15) in Lemma 1, we get for any cheating strategies

p0 + p1 ≤ 1 +
1√

2n−2
.

Notice that the proof presented in Lemma 1 can easily be generalized to a whole class of Bit Commitment
schemes with the properties that information unknown to Patty is sent to Peggy to commit, and an exact
answer is needed from Patty to unveil successfully the committed bit. Theorem 6 therefore holds for a whole
class of Bit Commitment schemes in the Two-Prover model.

Note that sBGKW is the same as mBGKW where r0 := 000...0 is the all-zero string all the time. The
statement and proof of Lemma 1 is equally valid for any fixed choice of either (but not both) r0 or r1 because
the probability to predict r0 ⊕ r1 remains exponentially small. Hence using only the model’s assumption we
get:

Corollary 1. If there exists an algorithm A that can cheat the sBGKW Bit Commitment scheme with prob-
abilities p0 + p1 > 1 + 2/

√
2n then there exists an algorithm A′ that can predict an unknown n-bit string r

with probabilities better than 1/2n, which is impossible.

However, as previously, this proof is valid solely in a stand-alone security model. As soon as one starts
composing such protocols, this proof is not necessarily valid anymore.

6 Conclusion and open problems

This paper contained several results. It showed that Two-Prover Bit Commitment schemes may or not be
secure quantumly when they are classically. It also considered for the first time ever the exact conditions
that the provers and verifier must satisfy to obtain security proofs of such Bit Commitment schemes both
classically and quantumly.

A natural question would be to determine if the binding condition of ALL Two-Prover Quantum Bit
Commitment schemes can be broken by a non-local computation that does not allow to communicate. This
would imply that the no-communication assumption is NEVER sufficient to asses security of such schemes.
A hierarchy of non-local correlations may be imagined with higher up correlations simulating lower down
correlations, but not the opposite. What is the Bit Commitment scheme that can be broken only by a very
highest correlation ?

In our definition of Bit Commitment, we assessed that cheating meant p0 + p1 > 1 + ǫ for non-negligible
ǫ. However, recently more precise binding conditions have been introduced [DFRSS07]. The results of this
paper should be extended to suit this newer definition.

The last natural question that results from our work is to find the complexity class corresponding to
Quantum Two-Prover Zero-Knowledge Interactive Proofs (and similarly for k > 2 provers). Remember that
these questions are not even settled for Quantum Two-Prover Interactive Proofs alone. As soon as the verifier
is also quantum it is not clear how Bit Commitments may be used to “encrypt” the verifier’s computations,
thus the classical methodologies fall apart.
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A Isolation examples

Example 1:

Let P0 send to Ted a message represented by (X, {0})0 (the variable X is tagged with {0} and comes
from P0). Then Ted generates a uniform random variable (W,T )D (its tag and receiver have not been set
yet) and produces the message M = X ⊕W for P1. Checking with equation (4) we see there is no problem
setting M’s tag to {1}, as

H((M, {1})1|(X, {0})0) = H((W,T )D) = H((M, {1})1).
This is satisfied since (W,T )D is uniform and has never been sent. However, the practical definition would
have assigned the tag T := {0} since W ’s tag would have been {0, 1} (by the second rule) and {0} =
{0} ∩ {0, 1}. Let Ted send (M, {1})1. We now get that for both D = 0 and 1, if T = {D} or {0, 1} then the
left-hand side of equation (4) for W is

H((W,T )D|(X, {0})0, (M, {1})1) = 0,

and the right-hand side is respectively

H((W, {0})0|(X, {0})0) = H((W, {0})0) = 1,

H((W, {1})1|(M, {1})1) = H((X, {0})0) = 1,

H((W, {0, 1})D) = 1.

Because equation (4) is not satisfied for both T = {D} and {0, 1}, W ’s tag is set to T := ∅, and Ted should
not send (W, ∅)D to neither of PD, for D = 0, 1.

Example 2:

Similarly, we can send to P1 a message M that would have been tagged ∅ by the practical definition. We
take the PR-box relation as example. Suppose the variables (X, {0})0 and (Y, {1})1 have already been sent
to Ted by the players (and tagged accordingly), and (U, {0, 1})0 12 has been sent by Ted to P0. Let (W,T )D

be a uniformly distributed random variable chosen by Ted, with D ∈ {0, 1}. Consider the following variable
for P1,

V = U ⊕
(
W ⊕X

)
∧ T,

that is, we randomized the variable tagged {0} (i.e. X) in the PR-box relation. In the practical definition,
because W is chosen uniformly and independently of previous variables, the second rule would have assigned
a tag {0, 1} to it, and so V ’s tag would have been set to ∅ = {0, 1} ∩ {0, 1} ∩ {0} ∩ {1}. However, checking
with equation (4), because W has not been sent yet, we get that there is no problem setting V ’s tag to {1},
as

H((V, {1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0) =
1

2
= H((V, {1})1|(Y, {1})1, (U, {0, 1})0).

So Ted would send this message (V, {1})1 to P1. Is this a problem? No, because the classical limitations of
non-locality have not been violated yet! The reason is simple: by randomizing completely all the [private]
variables related to P0, Ted is reducing the message he sends to P1 to what P1 can exactly achieve using
local variables. That is to say, P1 already has a random view of P0’s variables, so there is no problem for
Ted to first randomize P0’s variables and then send this message to P1. If we make the calculations, we see
that indeed, for the variable V sent, the relation

V = U ⊕X ∧ Y
holds with probability 75%, just as in the classical scenario, and no W will never let us beat that. Of course,
as in the previous example, the variable (W,T )D used to randomize can never be disclosed to any of the two
players, and equation (4) agrees with that (W ’s tag will be set to T := ∅ for both D).

12 It is straightforward to verify that this is the less restrictive tag.
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