
Resettable Cryptography in Constant Rounds –
the Case of Zero Knowledge

Yi Deng†?, Dengguo Feng] ??, Vipul Goyal‡, Dongdai Lin]? ? ?, Amit Sahai§†,
and Moti Yung\

† NTU Singapore and SKLOIS, Institute of Software, CAS, China
‡ MSR India

] SKLOIS, Institute of Software, CAS, China
§ UCLA

\ Google Inc., USA

Abstract. A fundamental question in cryptography deals with under-
standing the role that randomness plays in cryptographic protocols and
to what extent it is necessary. One particular line of works was initi-
ated by Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) who
introduced the notion of resettable zero-knowledge, where the protocol
must be zero-knowledge even if a cheating verifier can reset the prover
and have several interactions in which the prover uses the same random
tape. Soon afterwards, Barak, Goldreich, Goldwasser, and Lindell (FOCS
2001) studied the setting where the verifier uses a fixed random tape in
multiple interactions. Subsequent to these works, a number of papers
studied the notion of resettable protocols in the setting where only one
of the participating parties uses a fixed random tape multiple times. The
notion of resettable security has been studied in two main models: the
plain model and the bare public key model (also introduced in the above
paper by Canetti et. al.).

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first
construction of a simultaneous resettable zero-knowledge protocol where
both participants of the protocol can reuse a fixed random tape in any
(polynomial) number of executions. Their construction however required
O(nε) rounds of interaction between the prover and the verifier. Both in

? Supported by the Singapore National Research Foundation under Research Grant
NRF-CRP2-2007-03, the National Natural Science Foundation of China Under Grant
NO.60803128, and the National 973 Program of China under Grant 2007CB311202.

?? Supported by the National 973 Program of China under Grant 2007CB311202.
? ? ? Supported by the National 973 Program of China under Grant 2011CB302400 and

the National Natural Science Foundation of China under Grant 60970152.
† Supported in part from a DARPA/ONR PROCEED award, NSF grants 1118096,

1065276, 0916574 and 0830803, a Xerox Foundation Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced Re-
search Projects Agency through the U.S. O ffice of Naval Research under Contract
N00014-11-1-0389. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.



2 Yi Deng et al.

the plain as well as the BPK model, this construction remain the only
known simultaneous resettable zero-knowledge protocols.
In this work, we study the question of round complexity of simultane-
ous resettable zero-knowledge in the BPK model. We present a constant
round protocol in such a setting based on standard cryptographic as-
sumptions. Our techniques are significantly different from the ones used
by Deng, Goyal and Sahai.

1 Introduction

A fundamental question in cryptography deals with understanding the role that
randomness plays in cryptographic protocols and to what extent it is necessary.
Progress on this question was made relatively early with the result of Goldreich
and Oren [GO94] showing that zero knowledge protocols cannot exist in the
setting where the parties do not have access to any randomness resource at
all. While this work showed that randomness cannot be completely eliminated,
it simultaneously motivated several natural questions studying the “extent” to
which randomness is necessary. A rich line of work deals with studying the usage
of imperfect randomness in various settings (see [KLRZ08,DOPS04] and the
references therein). Another line of work (and the one dealt with in this paper)
studies whether all the random choices can be made “offline” and be fixed once
and for all. In other words, is it possible to design cryptographic protocols where
a party can reuse the same random tape in multiple (or even all) executions?

The question of reusing randomness in cryptographic protocols was first con-
sidered in the context of zero knowledge by Canetti, Goldreich, Goldwasser,
and Micali [CGGM00] who proposed the notion of resettable zero knowledge.
In resettable zero knowledge, the zero knowledge property is required to hold
even if a malicious verifier can “reset” the prover to the initial state and start
a new interaction where the prover uses the same random tape. Canetti et al.
[CGGM00] proposed constructions of resettable zero knowledge protocols based
on standard cryptographic assumptions. Barak, Goldreich, Goldwasser, and Lin-
dell [BGGL01] showed how to construct zero knowledge protocols for opposite
setting (where soundness is required to hold even if the verifier uses the same ran-
dom tape in multiple executions), which following Micali and Reyzin [MR01b]1

they call resettably sound (rS) zero-knowledge. Barak et. al. also showed that
any resettable sound zero-knowledge protocol must make use of non-black-box
simulation techniques (introduced in a breakthrough work of Barak [Bar01]).

Subsequent to these two works, a number of papers have studied the notion
of resettable security primarily in the setting where only one of the participating
parties uses a fixed random tape multiple times. Protocols have been proposed
in the so called plain model (cf. [CGGM00,BGGL01,BLV03,DL07a,GS09]. A
larger body of literature studies resettable security in the so called bare public
key (BPK) model. In the BPK model, a (possibly adversarial chosen) public

1 Micali and Reyzin defined resettable soundness (and other soundness notions) in
what is called the bare public key model.



Title Suppressed Due to Excessive Length 3

key is selected and published by the verifier(s) before any protocol interaction
starts 2. Protocol for resettable security in the BPK model were studied in
[CGGM00,MR01b,ZDLZ03,CPV04,DL07b,YZ07]. A more complete account of
the related works is given in a later subsection.

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first construc-
tion of a simultaneous resettable zero-knowledge protocol where both partici-
pants of the protocol can reuse a fixed random tape in any (polynomial) number
of executions. Their construction was in the plain model. The construction how-
ever required nε rounds of interaction between the prover and the verifier. Even
in the BPK model, the DGS construction remains the best known simultaneous
resettable zero-knowledge protocol. This motivates the following question:

“Does there exist a polylogarithmic (or even constant) round simultaneous
resettable zero-knowledge protocol in the BPK model?”

Our Results. In this paper, we resolve the above question by constructing a
constant round protocol for simultaneous resettable zero-knowledge in the BPK
model. Our main theorem is as follows.

Theorem 1. If there exist trapdoor permutations and collision resistant hash
function families, then there exist constant-round resettably-sound resettable
ZK arguments for NP in the BPK model.

We leave open the question of round complexity of simultaneous resettable
zero-knowledge in the plain model. Note that every resettable zero-knowledge
protocol is also concurrent zero-knowledge [CGGM00]. Hence, a breakthrough
will be required to construct a protocol in the plain model which matches the
round complexity of the one in the BPK model given in our paper.

Our Techniques. The techniques used in our paper are quite different from the
ones used in the DGS construction [DGS09]. Here we outline the main technical
problem which is required to be resolved to obtain a constant round construction
of simultaneous resettable zero-knowledge in the BPK model.

The source of large round complexity in the DGS construction is the usage
of recursive rewinding strategies (cf. [RK99,KP01,PRS02]) which are coupled
with a novel non-black-box simulation strategy. In the BPK model however,
it is indeed possible to avoid recursive rewinding because of the existence of a
“long term” trapdoor associated with the public key of the verifier (which the
simulator can try to extract). At a high level, our protocol in the BPK would
follow the following structure. The verifier would first prove knowledge of a long
term trapdoor associated with the public key using a zero-knowledge protocol.
The prover would then give a witness indistinguishable argument of knowledge
(WIAOK) proving either x ∈ L or that it “knows” such a trapdoor. Very roughly,
now once the simulator extracts a long term trapdoor for a public key, it never
needs to rewind a session with that public key (and the simulation can be done

2 Such a model is quite different from having a “setup assumption” where one would
assume, e.g., that a trusted party ensured that the public key was chosen correctly.



4 Yi Deng et al.

straight line). This would lead to a much simpler rewinding strategy avoiding
large round complexity.

The key problem that arises while implementing the above approach in the
simultaneous resettable setting is that obtaining a WIAOK protocol from the
prover to the verifier is non-trivial and quite complex (since an adversarial ver-
ifier may rewind the prover to extract the witness). Instead, we would like to
resort to using ZAPs [DN00] which are two round WI protocol (and hence al-
ready “secure” in the simultaneous resettable setting). Using a ZAP leads to the
following problem. To arrive a contradiction in the proof of (resettable) sound-
ness, the prover should be forced to prove a false statement about the trapdoor
of the verifier (since we are not using an argument of knowledge protocol). This
is turn means that the theorems the verifier proves about its long term trapdoor
must also be false (this is important for the proof of resettable zero-knowledge
to go through). However note that statements about the same public key (and
the long term trapdoor) are being proven by the verifier in multiple sessions. To
simulate its proof in all of those sessions, it seems that the verifier will need to
use a (constant round) concurrent zero-knowledge protocol!

To overcome this problem, the verifier needs to be able to prove different
statements in different sessions with the same public key such that some of them
could be false while the others are true. This might suggest that the witness
(containing the trapdoor) used by the verifier in each session is different. Yet we
need that once we extract a trapdoor for any of these sessions, it should be a
long term trapdoor which should enable the simulator to simulate every session
with this public key (including even future sessions). Our protocol uses a careful
technique to resolve this tension between “using sufficiently different witnesses
in each session” and yet having “a common long term trapdoor binding them
all”. Our full protocol is described in Section 3.

Related Work. Subsequent to the works of Canetti et al. [CGGM00] and Barak
et al. [BGGL01] described above, a number of works have investigated the prob-
lem of security against resetting attacks for zero-knowledge protocols in the
plain model. Barak, Lindell, and Vadhan [BLV03] constructed the first constant-
round public-coin argument that is bounded resettable zero-knowledge. Deng and
Lin [DL07a] showed a zero-knowledge argument system that is bounded reset-
table zero-knowledge and satisfies a weak form of resettable soundness.

A larger body of work has investigated the same problems in a relaxed
setting, called the “bare public key” (BPK) model, introduced by [CGGM00],
which assumes that parties must register (arbitrarily chosen) public keys prior
to any attack taking place. [CGGM00] presented a constant-round resettable
zero-knowledge argument in the BPK model, the round complexity of which
was improved by Micali and Reyzin [MR01b]. Micali and Reyzin [MR01b] also
first investigated different notions of soundness in the BPK model, including the
notion of resettable soundness. Di Crescenzo, Persiano, and Visconti [CPV04]
described a resettable zero-knowledge protocol with concurrent soundness, and
Deng and Lin [DL07b] improved the computational assumptions needed to ob-
tain this result. Yung and Zhao [YZ07] also construct resettable zero-knowledge



Title Suppressed Due to Excessive Length 5

and concurrently sound arguments in the BPK model, using a general and effi-
cient transformation. Micali and Reyzin [MR01a] also proposed a stronger vari-
ant of the BPK model for constructing bounded-secure protocols, and provided
constant-round bounded resettable zero-knowledge arguments in this model; this
result was strengthened by Zhao et al. [ZDLZ03] also in a bounded setting for
resettable zero knowledge.

Goyal and Sahai [GS09] study the notion of general resettable two-party and
multi-party computation and presented general feasibility results when only one
of the parties may be reset. In this work, we restrict ourselves to the study of
the zero-knowledge functionality.

Rest of this paper. We provide some basic definitions in section 2. In section
3, we construct a constant-round resettably-sound concurrent ZK arguments for
NP in the BPK model. At last, we apply the transformation of Deng, Goyal
and Sahai [DGS09] to the protocol constructed in section 3 to obtain our main
result.

2 Definitions

Notation. We abbreviate probabilistic polynomial time as PPT. A function
f(n) is said to be negligible if for every polynomial q(n) there exists an N such
that for all n ≥ N , f(n) ≤ 1/q(n). If L is a language in NP, we define the
associated relation as the relation RL = {(x,w) |x ∈ L;w is a witness for ‘x ∈
L’}.
Interactive Arguments in the BPK Model. The bare public-key model
(BPK model) assumes that:

– A public file F that is a collection of records, each containing a verifier’s
public key, is available to the prover.

– An (honest) prover P is an interactive polynomial-time algorithm that is
given as inputs a secret parameter 1n, a n-bit string x ∈ L, a witness w for
x ∈ L, a public file F and a random tape r.

– An (honest) verifier V is an interactive polynomial-time algorithm that works
in two stages. In stage one (key registration stage), on input a security pa-
rameter 1n and a random tape r, V generates a key pair (pk, sk) and stores
pk in the file F . In stage two (proof stage), on input sk, an n-bit string x
and a random string ρ, V performs the interactive protocol with a prover,
and outputs “accept x” or “reject x”.

Definition 1 (Complete Interactive Arguments in the BPK Model).
We say that the protocol < P, V > is complete for a language L in NP, if for
all n-bit string x ∈ L and any witness w such that (x,w) ∈ RL, the probability
that V interacting with P on input w, outputs “reject x” is negligible in n.

Malicious Resetting Provers in the BPK model. Let s be a positive poly-
nomial and P ∗ be a PPT algorithm on input 1n.

A resetting attack by a s-resetting malicious prover P ∗ in the BPK model is
defined as the following process:



6 Yi Deng et al.

– Run the key generation stage of V on input 1n and a random string r to
obtain pk and sk. P ∗ obtains pk and V stores the corresponding sk.

– Choose s(n) random string ρi, 1 ≤ i ≤ s(n), for V .
– P ∗ is allowed to choose an instance x and initiate any (polynomial) number

of sessions with each verifier and interact with it in the second stage (proof
stage) of the protocol. The i-th verifier uses input sk, ρi.

Definition 2 (Resettably sound arguments in the BPK model). < P, V >
satisfies resettable soundness for an NP language L in the BPK model if for all
positive polynomial s, for all s-resetting malicious prover P ∗, the probability that
in an execution of resetting attack, P ∗ ever receives “accept x” for x /∈ L from
any of these oracles is negligible in n

Malicious Resetting/Concurrent Verifiers in the BPK model. A reset-
ting attack by an (s, t)-resetting malicious PPT verifier V ∗, for any two positive
polynomials s and t, can be defined as the following process:

– In the key generation stage, on input 1n, V ∗ receives s instances x1, ..., xs(n) ∈
L of length n each, and, outputs an arbitrary public file F

– Choose r1, ..., rs(n) for P uniformly at random.
– In proof stage, V ∗ starts in the final configuration of the key generation stage,

is given oracle access to s3(n) provers, P (xi, wi, pkj , rk, F ), 1 ≤ i, j, k ≤ s(n).
– V ∗ finally outputs its entire view of the interaction (i.e., its random tape

and the messages received from the provers). The total number of steps of
V ∗ in both stages is at most t(n).

The concurrent attack by V ∗ is defined in the same way except that we
choose s2 random tapes ri,j , 1 ≤ i, j ≤ s, and V ∗ is allowed to interact with
s2 provers P (xi, wi, pkj , ri,j , F ) (1 ≤ i, j ≤ s) concurrently. Note that here each
random tape is used only once.

Definition 3 (Resettable zero-knowledge in the BPK model). < P, V >
is (non-black-box) resettable zero knowledge for an NP language L in the BPK
model if for every pair of positive polynomials (s, t), for all (s, t)-resetting ma-
licious verifier V ∗, there exists a simulator S, given as input the description
of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two distributions are
computationally distinguishable:

1. The output of V ∗ at the end of a resetting attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).

Definition 4 (Concurrent zero-knowledge in the BPK model). < P, V >
is (non-black-box) concurrent zero-knowledge for an NP language L in the BPK
model if for every pair of positive polynomials (s, t), for all (s, t)-concurrent ma-
licious verifier V ∗, there exists a simulator S, given as input the description
of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two distributions are
computationally distinguishable:

1. The output of V ∗ at the end of a concurrent attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).



Title Suppressed Due to Excessive Length 7

3 Constructing Resettably-Sound Concurrent Zero
Knowledge Arguments for NP in the BPK Model

As a first step towards obtaining a simultaneous resettable zero-knowledge pro-
tocol, we present a resettably-sound concurrent zero knowledge argument for an
NP language in the BPK Model in this section. We will later show how to use a
compiler described in [DGS09] to obtain our main theorem.

Let (G,E,D) be a semantically secure public-key encryption scheme, where
G, E, and D denote key-generation algorithm, encryption algorithm, and de-
cryption algorithm respectively. The commitment scheme Com is a statistically
binding and computationally hiding commitment scheme. Com(s, r) denotes the
commitment to a string s using the random tape r. The protocol proceeds as
follows.

The resettably-Sound Concurrent ZK Argument (P, V ) in the BPK
model

The key registration stage: V runs the key generation algorithm G of a se-

mantically secure public key encryption scheme (G,E,D) twice independently,
(pk0, sk0) = G(1n, rk0 ), (pk1, sk1) = G(1n, rk1 ), publishes (pk0, pk1) and stores rkb
and skb for a random b ∈ {0, 1}.

The proof stage (main protocol):

Common input: x (supposedly in L) and verifier’s public key (pk0, pk1).

P ’s private input: the witness w such that (x,w) ∈ RL.

V ’s private input: the randomness rkb used in key generation for one of the public
keys.

P ’s randomness: rp.

V ’s randomness: rv.

1. P sends a commitment c = Com(e, r) to a random challenge e.
2. V Computes two ciphertexts of 0 under pk0 and pk1 independently, c0 =
E(pk0, 0, r0), c1 = E(pk1, 0, r1); Send c0, c1 and the first message a of the
3-round WI proof of Hamiltonian Cycle for the following statement:
(a) there exists rkb such that (pkb, skb) = G(1n, rkb ) (equivalently, “I know

one of secret keys”); and,
(b) there exist r0 and r1 such that c0 = E(pk0, 0, r0) and c1 = E(pk1, 0, r1)

(i.e., both cipertexts are encryption of 0).
The randomness used by V in this step as well as the rest of the protocol is
generated by applying a pseudorandom function frv to the first message c
of the prover.

3. P sends e and executes the BGGL protocol in which P proves that either:
1) there exists r such that c = Com(e, r), or, 2) x ∈ L.

4. V now responds to the challenge e by sending the final message z of the
3-round WI protocol of Hamiltonian Cycle.



8 Yi Deng et al.

5. P executes a ZAP in which P proves that either x ∈ L or there exists rkd ,
d ∈ {0, 1}, such that (pkd, skd) = G(1n, rkd) and 0 = D(skd, cd) (i.e., one of
the decryptions result to the message 0).

Remark 1. For simplicity of presentation, we view com and ZAPs as non-
interactive protocol requiring only one message in each direction. However our
construction can indeed use two round protocols for each in a straight-forward
way.

Remark 2. Note that there is fine difference between the verifier and the prover
in proving a ciphertext is an encryption of 0: the verifier uses the knowledge of
randomness in encryption to prove the ciphertext is an encryption of 0, while
the prover uses the knowledge of the secret key (more precisely, randomness
that used to generate the public/secret key pair) to prove that one plaintext is
actually 0. We stress that this difference is crucial for security proof. In the course
of simulation, once our simulator extracts the randomness used for generating
one of pk0 and pk1 (note that it does not need the randomness used in these
encryptions by the verifier to execute a session), it can handle all sessions under
the same public key (pk0, pk1). On the other hand, in the proof of soundness, the
reduction algorithm, playing the role of verifier, needs only one of secret keys to
execute a session, and this will enable it to use the power of cheating prover to
either break the semantic security of the other public key scheme or break the
WI property of the underlying 3-round WI protocol if such a cheating prover
exists.

We now state the following theorem.

Theorem 2. The above protocol (P, V ) is a resettably-sound concurrent zero
knowledge argument.

The completeness is obvious. We will prove concurrent zero knowledge and
resettable-soundness in next two subsections.

Hardness assumption. Note that the 2-round statistically-binding commit-
ment scheme and semantically secure public key encryption scheme can be based
on trapdoor permutations, which also imply the existence of ZAPs. In addi-
tion, we need to assume collision-resistant hash functions required for the reset-
tably sound BGGL protocol (which makes use of non-black-box simulation tech-
niques). Thus we can base the above resettably-sound concurrent ZK argument
on the assumption of existence of trapdoor permutations and collision-resistant
hash function families.

3.1 Proof of Concurrent Zero-Knowledge

Let V ∗ be an concurrent malicious verifier. Assume w.l.g. in real world, on input
a fixed YES instance sequence x1, ..., xs(n) ∈ L of length n each, V ∗ generates
s public keys F = ((pk10, pk

1
1), ..., (pks0, pk

s
1)), and interacts with s2(n) incarna-

tions of prover, P (xi, wi, (pk
j
0, pk

j
1), ri,j , F ), 1 ≤ i, j ≤ s(n). We now construct a

simulator S as required by definition 3.



Title Suppressed Due to Excessive Length 9

S operates as follows. First, given a fixed YES instance sequence x1, ..., xs ∈ L
of length n each as input, S runs the key-generation phase of V ∗ to obtain the
public file F .

In proof stage, the first task of S is to extract one rkb (b ∈ {0, 1}) for each

public key pair (pkj0, pk
j
1) such that rkb is the randomness used for generating

one public key pkjb . Note that once these rkb ’s are obtained, S is able to carry
out all sessions successfully in a straight-line manner by decrypting one of two
ciphertexts (and relying on the soundness of the WI protocol). We say a session
under public key (pkj0, pk

j
1) is solved if S already extracted the corresponding

randomness rkb ; otherwise, we say it is unsolved.
The extraction is done in a sequential way. Once receiving an accepting ex-

ecution of the 3-round WI protocol in an unsolved session under public key
(pkj0, pk

j
1), S rewinds to the beginning of step 3, sends a random challenge e′ and

runs the simulator for BGGL protocol to prove that c is a commitment to e′.
When another accepting execution of this subprotocol is obtained, S solved all
sessions under this public key.

We would like to make the following remarks on the above extraction:

– The non-black-box simulator for the standalone BGGL protocol handles only
a single session, but it runs in a concurrent setting. This means, during
the execution of this subprotocol, many other sessions may appear. To deal
with this issue, we have the following strategy. First observe that all the
other sessions are being executed honestly by the simulator (and the cur-
rent rewinding thread will be aborted if an unsolved session reaches its final
prover message). Thus, we consider these sessions (and the part of the simu-
lator handling these sessions) as part of the adversarial machine itself. Then
our modified non-black-box simulator Sim will now simply act on this new
machine (by using its code) instead of the original one.

– For the analysis of running time to go through, we use the Goldreich-Kahan
technique to bound the running time of S.

The detailed description of S follows.

The Simulator S:

Input: the code of V ∗, s YES instances x1, ..., xs.

1. select a random tape for V ∗, and run the key-generation phase of V ∗ to
obtain the public file F = ((pk10, pk

1
1), ..., (pks0, pk

s
1)).

2. Set h← (x1, ..., xs) and S ← ∅.
3. Do the following:

(a) Adopt the honest prover strategy until the final ZAP in every session,
and extend h to include the transcript generated in this step. If V ∗

terminates during this step, return h; Otherwise, go to next step.
(b) If a solved session reaches the final ZAP, use the relevant randomness

and secret key to produce a prover message of the final ZAP, and extend
h to include this message. If V ∗ terminates during this step, return h;
Otherwise, go to next step.



10 Yi Deng et al.

(c) If an unsolved session reaches the end of of the underlying 3-round WI
protocol, and the resulting transcript (a, e, z) so far is accepting, do the
following:

– (Estimation) Suppose that the first two messages sent in the cur-
rent session are c, (c0, c1, a), and the corresponding public key is
(pkj0, pk

j
1). Rewind P ∗ to the point (we call it rewinding point)

where the verifier’s message (c0, c1, a) was just sent, and repeat the
following until it receives the accepting transcript (a, e, z) of the
underlying 3 round WI argument n2 times: send the honest chal-
lenge e and choose independent randomness to execute the underly-
ing BGGL protocol honestly; when another unsolved session reaches
the final ZAP, S aborts the current thread3.
We denote by X the total number of iterations (or threads) of this
step.

– (Extraction) Rewind V ∗ to the above rewinding point again, and
repeat the following until it obtains another accepting transcript
(a, e′, z′) with e 6= e′ until the X + 1st iteration is reached. If all
iterations fail, output “⊥”.

• For the current session, S send a new random challenge e′ 6= e,
and then runs the non-black-box simulator Sim to prove that c
is a commitment to e′, where Sim proceeds exactly the same as
the simulator for the BGGL protocol (except for acting on the
new adversarial machine as described earlier).

• For any other solved session, S executes the strategy described
in step b; if an unsolved session reaches the final ZAP, S aborts
the current iteration.

(d) From the two accepting transcripts of the 3-round WI protocol (a, e, z)
and (a, e′, z′), compute the randomness rkb such that (pkjb , sk

j
b) = G(1n, rkb ),4

and update S to include rkb , and go to step 1. (Note that the above step
3(c) does not update history).

The concurrent zero knowledge property of our protocol follows from the
following claims.

Claim 1 S runs in expected polynomial time.

Claim 2 The output h by S is indistinguishable from real interaction.

Proof of Claim 1. We first count the number of queries which the simulator
makes to the adversary. Observe that the number of queries which S makes in
a single solved session is a constant C. Suppose that for a specific session i, S
enters step 3(c) with probability pi, then we have for this session, the expected
number of iterations in step 3(c) is at most pi · (2n2/pi) < 2n2. Since V ∗ is
only allowed to initiate s2 sessions, the entire simulation of S will make an

3 in this case, S cannot proceed further without knowledge of the relevant secret key.
4 Note that we can also compute the randomness that were used in the two encryptions

to 0, but we don’t need it to carry out the final ZAP.



Title Suppressed Due to Excessive Length 11

expected s2 · C · (2n2 + 1) number of queries (which is polynomial). Since each
query additionally requires only polynomial time, the overall running time of the
simulator is expected polynomial. �

Proof of Claim 2. We first prove the probability that S outputs ⊥ is negligible.
Observe that S outputs ⊥ only if it fails to extract a relevant secret key.

Assume that for session i, S enters step 3(c) with probability pi (taken over
the random coins used in step 3 of the protocol; here prover proves that e is the
correct challenge). We claim that in a single run of the Extraction in step 3(c),
the probability that S obtains an accepting transcript of the 3-round WI protocol
is at least pi − neg(n) for some negligible function neg (except for a negligible
fraction of protocol prefixes, i.e., transcripts of steps 1 and 2), otherwise, we can
use V ∗ to break either the computational-hiding property of the scheme Com
or the zero knowledge property of the BGGL protocol.

Note that the Goldreich-Kahan technique [GK96] guarantees that, the esti-
mation n2/X of pi is within a constant factor of pi except with exponentially
small probability, thus, we conclude that X > n2/(c · pi holds for some constant
c except with exponentially small probability.

Thus, the probability that S enters step 3(c) but doesn’t extract out the
randomness used in generation of some public key is

pi(1− pi + neg)X

≤pi(1− pi + neg)n
2/(c·pi)

which is negligible.
Observe that the only difference between S and the honest prover is that

they use different witness to carry out the final ZAP in each session. Now by the
WI property of the ZAP, we conclude that h is indistinguishable from the real
interaction between honest provers and V ∗. �

3.2 Proof of Resettable-Soundness

Assume that there is a PPT resetting P ∗ that can cheat an honest verifier V (and
complete a protocol execution) on a NO instance x with noticeable probability
p. We shall now consider the following 5 hybrid verifier strategies. We shall prove
that in each hybrid, the probability of the verifier being able to cheat (in some
session) is still noticeable. In the final hybrid, we note that the above cheating
probability must be negligible by the soundness of the ZAP system (and thus
arrive at a contradiction). We shall first describe the hybrid strategies and then
argue that the probability of cheating remains negligible in each.

V1: Follow the honest verifier strategy V , except that whenever V is instructed to
applying the pseudorandom function specified by its random tape to generate
randomness, V1 uses truly random coins (while still making sure that for a
given prover first message c, it always uses the same random coins).



12 Yi Deng et al.

V2: Follow the strategy below.

1. In the key registration stage, V2 acts exactly as V1.
2. In the proof stage, V2 first picks a session i at random.

Suppose that the first prover message in session i is c, and that the
public key is (pk0, pk1) and the secret key stored by V2 is skb for some
b ∈ {0, 1}.

3. For all sessions having a first prover message different than c, V2 executes
honest verifier’s strategy throughout the entire interaction between P ∗

and V2.
4. For all sessions having the first prover message c, V2 executes honest

verifier’s strategy until when a session among them first completes an
accepting proof via BGGL protocol for the correctness of challenge e, and
then rewinds to the point where it received c for the first time, computes
two encryptions of 0 under both public key pkb and pk1−b honestly again,
produces a fake first massage a that can answer e successfully according
to the 3-round WI protocol5, and continue (without using the actual
witness).

V3: Follow the strategy of V2 except that, in item 4 of V2, computes an encryption
of 0 under public key pkb and an encryption of 1 under public key pk1−b after
extracting the challenge e and then rewinding (but produces the first message
a in the same way as V2),

V4: Follow the strategy of V3 except that, in all sessions, whenever V3 needs to
use rkb as partial witness to carry out the 3-round WI protocol, V4 uses rk1−b.

V5: Follow the strategy of V4 except that, after rewinding, V5 computes two
encryptions of 1 under pk0 and pk1 respectively in those sessions having the
first prover message c.

First, we have that P ∗ can cheat V1 with probability negligibly close to p,
due to the pseudorandomness of the pseudorandom function specified by the
random tape of V .

We now prove that P ∗ can cheat V2 in a session having the first prover mes-
sage c with probability negligibly close to p/poly, where poly is the total number
of distinct first prover messages appeared in the whole interaction between P ∗

and V2. Observe that for a randomly chosen first prover message c, P ∗ will
cheat V1 in a session having this first prover message with probability exactly
p/poly, and that the only difference between the second run of V2 and V1 is the
way in which the transcript (a, e, z) is produced. Since in the 3-round protocol
for Hamiltonian Cycle, the simulated transcript (a, e, z) is computationally in-
distinguishable to a real one, we conclude that V2 will accept with probability
negligibly close to p/poly in a session having the first prover message c.

We further claim that P ∗ can also cheat V3 in a session having the first
prover message c with probability negligibly close to p/poly. Notice that the
only difference between V2 and V3 is, in their second run (after rewinding), V2

5 In the 3-round WI protocol for Hamiltonian Cycle, given a challenge e, there exists
a simple simulator that can produce an accepting transcript (a, e, z) efficiently.



Title Suppressed Due to Excessive Length 13

encrypts to 0 under public key pk1−b, while V3 encrypts to 1 under public key
pk1−b. Notice also that in both their second runs, the message a is produced
independently of these encryptions. Thus, if the aforementioned claim is false,
we can construct an algorithm Vh to break the semantic security of the public
key encryption scheme: Vh acts as V2 except that, after rewinding, it obtains
the ciphertext (that is supposed to be 0 or 1) under the public key pk1−b from
an external challenger, instead of computing this ciphertext itself; When P ∗

convinces Vh to accept in a session having the first prover message c, Vh outputs
0, otherwise, outputs 1. Observe that if the ciphertext obtained from encryption
oracle is an encryption of 0, then Vh is identical to V2; if this ciphertext is an
encryption of 1, Vh is identical to V3. Hence, in a session having the first message
c, if there is a non-negligible gap between the probability that V2 accepts and the
probability that V3 accepts, Vh breaks the semantic security of the underlying
public key encryption scheme.

For strategies V3 and V4, we observe that the only difference between them is
that they use different witnesses to carry out the 3-round WI protocol. Consider
the following algorithm Vwi.

Vwi: 1. In the key registration stage, Vwi generates two public keys honestly,
i.e., it computes (pk0, sk0) = G(1n, rk0 ), (pk1, sk1) = G(1n, rk1 ), publishes
(pk0, pk1), chooses a random bit b and stores both rk0 and rk1 .

2. Like V2, Vwi first picks a session i at random. Again, suppose that the
first prover message in session i is c.

3. For all sessions having a first prover message different than c, when a
session with a distinct first prover message c′ was initiated for the first
time, Vwi executes honest verifier’s strategy to compute two encryptions
of 0, c0 = E(pk0, 0, r0) and c1 = E(pk1, 0, r1), send (rk0 , r

k
1 , r0, r1) to an

independent honest prover Pwi of the 3-round WI protocol, and forward
the Pwi’s first message a′ along with c0, c1 to P ∗; Once a session with the
first prover message c′ first completes the correctness proof via BGGL
protocol for the challenge e′, Vwi sends e′ to Pwi and forwards Pwi’s
answer z′ to P ∗; in all sessions with c′ as the first prover message, Vwi
sends the same (a′, c0, c1) to P ∗, and if P ∗ reveals the same e′ again and
completes the correctness BGGL proof, Vwi answers with the same z′;
Otherwise, Vwi outputs “failure”.

4. When P ∗ sends c for the first time, Vwi acts the same as the above
strategy: computes two encryptions of 0, sends all random tapes to an
independent Pwi and forward Pwi’s first message a (and the two encryp-
tions) to P ∗. Once P ∗ repeats c, Vwi responds with the same a. When a
session with the first prover message c first completes an accepting proof
via BGGL protocol for the correctness of challenge e, it rewinds to the
point where it received c for the first time, computes an encryptions of
0 under public key pkb and an encryption of 1 under public key pk1−b,
produces a fake first massage a that can answer e successfully according
to the 3-round WI protocol, and continue.



14 Yi Deng et al.

We first note that Vwi outputs “failure” only if P ∗ opens some commit-
ment c′ to two different values and gives two accepting proofs for both. Due
to the statistically-binding property of the commitment scheme and resettable-
soundness of the BGGL protocol, the probability that Vwi outputs “failure” is
negligible. Note also that, each independent Pwi is run once (i.e., the 3-round
WI protocol is executed in concurrent setting), and that if all these Pwi’s uses
rkb (resp., rk1−b) as partial witness, then Vwi is identical to V3 (resp., V4). Note
that the 3-round WI protocol is concurrent witness indistinguishable. Thus, we
conclude that the probability that P ∗ cheats V4 in a session with the first prover
message c is negligibly close to p/poly.

Finally, notice that both V4 and V5 do not use the knowledge of the random-
ness rkb (used in generation the public/secret key pair (pkb, skb)) to carry out
any session in their entire interaction, and the only difference between them is
that they encrypt different messages under pkb in sessions having the first prover
message c after rewinding. Similar to the analysis of V2 and V3, due to the se-
mantic security of the public key encryption scheme (pkb, skb), the probability
that P ∗ cheats V5 in a session with the first prover message c is negligibly close
to p/poly. However, since both ciphertexts in these sessions are encryptions of
1, by the soundness of the ZAP system, P ∗ can cheat V5 in any one of these
sessions only with negligible probability. Thus we have p is negligible.

4 Simultaneous Resettable Zero-Knowledge Arguments
for NP in the BPK model

In this section, we apply the transformation of [DGS09] to the resettably-sound
concurrent ZK arguments presented in the last section, and obtain simultane-
ously resettable arguments for NP in the BPK model. This establishes theorem 1.

Given a resettably-sound concurrent ZK argument (PRC , VRC) for NP lan-
guage L in the BPK model and a common input x ∈ L, the simultaneously
resettable argument (P, V ) for L proceeds as follows.

The key registration stage: V acts exactly the same as VRC in the key
registration stage.

The proof stage:

Common input: x (supposedly in L) and verifier’s public key ver k

P ’s randomness: (γ1p , γ
2
p)

V ’s randomness: (γ1v , γ
2
v)

1. P uses randomness γ1p to generate a random string rp (of appropriate length)
and a first verifier message ρp of a ZAP system. P sends Cp = Com(rp) and
ρp (where Com is a perfect binding commitment scheme).

2. V sets (τ1v , τ
2
v ) = fγ1

v
(x, ver k, Cp). Using randomness τ1v , V generates the

first verifier message ρv and compute a commitment Ct = Com(0) to 0. V
sends ρv and Ct.



Title Suppressed Due to Excessive Length 15

3. V and P execute the BGGL protocol in which V uses random tape τ2v and
proves that Ct is a commitment to 0. In addition, in each verifier step in this
subprotocol, P generates a ZAP proof along with each verifier message for
the following OR statement:
(a) The current message is produced by an honest verifier of the BGGL

protocol using random tape rp, or,
(b) x ∈ L

4. V sets (τ3v , τ
4
v ) = fγ2

v
(hist), where hist is the history so far except those ZAP

proofs. Using randomness τ3v , V sends a commitment Cv = Com(τ3v ) to P .
In the remaining steps, V uses randomness τ4v .

5. P sets τp = fγ2
p
(hist). Using random tape τp, P and V execute (PRC , VRC)

in which P proves x ∈ L, except that for every VRC ’s message, we have V
give an additional ZAP proof for the following OR statements:

(a) the current message is produced by an honest verifier of (PRC , VRC)
using random tape τ3v , or,

(b) Ct is a commitment to 1.

V accepts if and only if VRC accepts the transcript of (PRC , VRC).

Remark. In [DGS09], the actual transformation of resettably-sound concurrent
ZK argument into a resettably-sound resettable ZK argument takes two steps:
1) transform the resettably-sound concurrent ZK argument into a hybrid sound
hybrid zero knowledge argument; 2) transform a hybrid sound hybrid zero knowl-
edge protocol into a resettably-sound resettable zero knowledge protocol. The
second step is done by simply having each party refresh their randomness via
a pseudorandom function. Here for the sake of simplicity and keeping the proof
short, we merge these two steps into a single transformation (and refer the reader
to [DGS09] for a detailed formal presentation).

Theorem 3. The protocol (P, V ) is a resettably-sound resettable zero knowl-
edge.

Proof sketch. The proof of this theorem is similar in spirit to the one appeared
in [DGS09]. Here we just give a proof outline.
The completeness is obvious.

Resettable-Soundness. For a given cheating prover P ∗ for (P, V ) and a NO in-
stance x /∈ L, we can construct a series of hybrid verifiers to show the cheating
probability is negligible just like the hybrid verifiers V1, V2, V3, V4 and V5 we
set up in the previous section. Whenever a hybrid verifier needs to rewind in
some target sessions with a specific first prover message Cp, it always computes
a commitment Ct to 1 in its first step, and then runs the simulator for the BGGL
protocol to prove that Ct is a commitment to 0 in all sessions having the same
first prover message Ct

6; Whenever it produces a fake first message a of the

6 Note that, all subexecutions of BGGL protocol in these sessions are actually identical,
due to the resettable-soundness of ZAP and the instance x to be proven is a NO
instance. This is why the simulator for BGGL protocol in the standalone setting
works in this specific resettable setting.



16 Yi Deng et al.

underlying 3-round WI protocol in (PRC , VRC), it uses the witness for “Ct is
a commitment to 1” to execute ZAP for the correctness of message a. Similar
to the analysis presented in previous section, it is not hard to show that, if all
building blocks are secure, the above protocol (P, V ) is resettably-sound.

Resettable ZK. Note that the BGGL protocol is resettably-sound, and hence for
any malicious resetting verifier, if an execution of BGGL protocol in step 3 is
accepting, the message Ct sent in step 2 is guaranteed to be a commitment to
0 (except with negligible probability). As a consequence, all verifier’s messages
sent in the subprotocol (PRC , VRC) are determined by the commitment Cv sent
in step 4 and the session history of (PRC , VRC) due to the fact that ZAP is
resettably-sound, that is, for a fixed session prefix until step 4, all subexecutions
of (PRC , VRC) are identical. This observation enables us to adopt essentially the
same simulation strategy of S which works for concurrent adversary and prove
the property of resettable zero knowledge. Given a resetting verifier V ∗, our
simulator S’ proceeds as follows. For all sessions, S’ follows the honest prover
strategy until step 4. When reaching the subprotocol (PRC , VRC), S’ acts as the
simulator S for (PRC , VRC). For those solved sessions, S’ uses the relevant secret
key as witness to carry out the final ZAP. When an unsolved session reaches the
end of the 3-round WI protocol in (PRC , VRC), S’ applies the extraction strategy
of S to extract a secret key. We can perform a similar analysis and show that
S’ will run in expected polynomial time and its output is distinguishable from
that in the real interaction. �

Acknowledgement. Yi Deng would like to thank Ivan Visconti and Pino Persiano
for helpful discussions. We thank anonymous referees for their constructive and
valuable comments.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS,
pages 106–115, 2001.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell.
Resettably-sound zero-knowledge and its applications. In FOCS, pages
116–125, 2001.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-
black-box zero knowledge. In FOCS, pages 384–393, 2003.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-
round resettable zero knowledge with concurrent soundness in the bare
public-key model. In CRYPTO, pages 237–253, 2004.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous reset-
tability conjecture and a new non-black-box simulation strategy. In FOCS,
pages 251–260. IEEE Computer Society, 2009.

[DL07a] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions
and their application to simultaneous resettability. In EUROCRYPT, pages
148–168, 2007.



Title Suppressed Due to Excessive Length 17

[DL07b] Yi Deng and Dongdai Lin. Resettable zero knowledge with concurrent
soundness in the bare public-key model under standard assumption. In
Inscrypt, pages 123–137, 2007.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS,
pages 283–293, 2000.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On
the (im)possibility of cryptography with imperfect randomness. In FOCS,
pages 196–205. IEEE Computer Society, 2004.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for np. J. Cryptology, 9(3):167–190, 1996.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. J. Cryptology, 7(1):1–32, 1994.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine
Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer
Science, pages 54–71. Springer, 2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network
extractor protocols. In FOCS, pages 654–663. IEEE Computer Society,
2008.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-loalgorithm rounds. In STOC, pages 560–569, 2001.

[MR01a] Silvio Micali and Leonid Reyzin. Min-round resettable zero-knowledge in
the public-key model. In EUROCRYPT, pages 373–393, 2001.

[MR01b] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
CRYPTO, pages 542–565, 2001.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of
zero-knowledge proofs. In EUROCRYPT, pages 415–431, 1999.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-
knowledge in the bare public-key model. In EUROCRYPT, pages 129–147,
2007.

[ZDLZ03] Yunlei Zhao, Xiaotie Deng, Chan H. Lee, and Hong Zhu. Resettable zero-
knowledge in the weak public-key model. In EUROCRYPT, pages 123–139,
2003.


