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Abstract. In this work, we introduce a new non-random property for
hash/compression functions using the theory of higher order differen-
tials. Based on this, we show a second-order differential collision for the
compression function of SHA-256 reduced to 47 out of 64 steps with
practical complexity. We have implemented the attack and provide an
example. Our results suggest that the security margin of SHA-256 is
much lower than the security margin of most of the SHA-3 finalists in
this setting. The techniques employed in this attack are based on a rect-
angle/boomerang approach and cover advanced search algorithms for
good characteristics and message modification techniques. Our analysis
also exposes flaws in all of the previously published related-key rectangle
attacks on the SHACAL-2 block cipher, which is based on SHA-256. We
provide valid rectangles for 48 steps of SHACAL-2.
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1 Introduction

The significant advances in the field of hash function research that have been
made in the recent years, had a formative influence on the landscape of hash func-
tions. The analysis of MD5 and SHA-1 has convinced many cryptographers that
these widely deployed hash functions can no longer be considered secure [39,40].
As a consequence, people are evaluating alternative hash functions in the SHA-3
initiative organized by NIST [29]. During this ongoing evaluation, not only the
three classical security requirements (preimage resistance, 2nd preimage resis-
tance and collision resistance) are considered. Researchers look at (semi-) free-
start collisions, near-collisions, etc. Whenever a behavior different from the one
expected of a ’random oracle’ can be demonstrated for a new hash function, it is
considered suspect, and so are the weaknesses that are demonstrated only for the
compression function. In light of this, for four out of the five third round SHA-3
candidates the best attacks are in the framework of distinguishers: boomerang
distinguisher for BLAKE [6], differential distinguisher for Grøstl [32], zero-sum
distinguisher on Keccak [8] and rotational rebound distinguisher for Skein [17].

With the cryptographic community joining forces in the SHA-3 competition,
the SHA-2 family gets considerably less attention. Apart from being marked



as ‘relying on the same design principle as SHA-1 and MD5’, the best attack
to date on SHA-256 is a collision attack for 24 out of 64 steps with practical
complexity [13,33] and a preimage attack on 45 steps [18] having a complexity
of 2255.5.

Higher-order differentials have been introduced by Lai in [21] and first applied
to block ciphers by Knudsen in [20]. The application to stream ciphers was pro-
posed by Dinur and Shamir in [10] and Vielhaber in [35]. First attempts to apply
these strategies to hash functions were published in [2]. Recently, higher-order
differential attacks have been applied to several hash functions submitted to the
SHA-3 initiative organized by NIST such as BLAKE [6], Hamsi [7], Keccak [8],
and Luffa [42].

In this work, we present a second-order differential collision for the SHA-256
compression function on 47 out of 64 steps having practical complexity. The
attack is an application of higher-order differentials on hash functions. Table 3
shows the resulting example.

Since our attack technique resembles boomerang/rectangle attacks, known
from the cryptanalysis of block ciphers, we use a strict criterion for checking
that the switch in the middle does not contain any contradictions that can
appear due to the independency assumption of the characteristics used in the
rectangle. We show that all the previous related-key rectangle distinguishers for
SHACAL-2 have a common flaw in the switch due to these assumptions and
present a rectangle distinguisher for 48 steps that passes our check.

Our analysis shows that the compression functions exhibit non-random prop-
erties, though they do not lead to collision/preimage attacks on the hash func-
tions. Nevertheless, the attacks give a clear indication that if we compare the
security of SHA-256 to the security of the third round SHA-3 candidates, in the
this setting, then SHA-256 has one of the lowest security margins.

2 Higher-Order Differential Collisions for Compression
Functions

In this section, we give a high-level description of the attack. It is an application
of higher-order differential cryptanalysis on hash functions. While a standard
differential attack exploits the propagation of the difference between a pair of
inputs to the corresponding output differences, a higher-order differential attack
exploits the propagation of the difference between differences.

Higher-order differential cryptanalysis was introduced by Lai in [21] and sub-
sequently applied by Knudsen in [20]. We recall the basic definitions that we will
use in the subsequent sections.

Definition 1. Let (S,+) and (T,+) be abelian groups. For a function f : S →
T , the derivative at a point a1 ∈ S is defined as

∆(a1)f(y) = f(y + a1)− f(y) . (1)



The i-th derivative of f at (a1, a2, . . . , ai) is then recursively defined as

∆(a1,...,ai)f(y) = ∆(ai)(∆(a1,...,ai−1)f(y)) . (2)

Definition 2. A one round differential of order i for a function f : S → T is
an (i+ 1)-tuple (a1, a2, . . . , ai; b) such that

∆(a1,...,ai)f(y) = b . (3)

When applying differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a pair of inputs with output difference zero. Sim-
ilarly, when using higher-order differentials we define a higher-order differential
collision for a function as follows.

Definition 3. An i-th-order differential collision for f : S → T is an i-tuple
(a1, a2, . . . , ai) together with a value y such that

∆(a1,...,ai)f(y) = 0 . (4)

Note that the common definition of a collision for hash functions corresponds to
a higher-order differential collision of order i = 1.

In this work, we concentrate on second-order differential collisions, i.e. i = 2:

f(y)− f(y + a2) + f(y + a1 + a2)− f(y + a1) = 0 (5)

Further we assume that we have oracle access to a function f : S → T and
measure the complexity in the number of queries to f , i.e. query complexity,
while ignoring all other computations, memory accesses, etc. Additionally, we
will restrict ourselves to functions f mapping to groups (T,+) with |T | = 2n

which are endowed with an additive operation.

Definition 4. Let f : S → T be as above. A solution (y, a1, a2) ∈ S3 to (5)
is called trivial if the complexity of producing it is O(1), otherwise it is called
non-trivial.

Lemma 1. Let f : S → T be as above. Then, a trivial solution to (5) can be
found if

1. f is linear, or
2. at least one of a1, a2 is zero, or
3. a1 = a2 and the group (T,+) is of the form

(T,+) ' (Z2,+)n−` ⊕ (Z2` ,+), (6)

for small `.

Proof. If f is a linear function, then (5) collapses and any choice of (y, a1, a2)
is a valid solution. Under the assumption that f is drawn uniformly at random
from all functions f : S → T , and T is not as in (6), then the only trivial
solution to equation (5) is when the inputs coincide, i.e. either y = y + a2 and



y + a1 + a2 = y + a1 leading to the case where a2 = 0, or y = y + a1 and
y + a1 + a2 = y + a2 leading to a1 = 0.

In the third case, equation (5) boils down to 2f(y) = 2f(y + a). In general
this is a classical meet-in-the-middle problem, however if (T,+) is as in (6), this
equation holds with a probability 2−2(`−1) for a random function f which leads
to trivial solutions for small values of `.

For all the other cases, the problem of finding a solution is an instance of
the generalized birthday problem proposed by Wagner [37] and therefore the
number of queries depends on n. �

We now want to lower bound the query complexity of producing a non-trivial
differential collision of order 2.

Theorem 1. For a function f : S → T with |T | = 2n, the query complexity for
producing a non-trivial differential collision of order 2 is Ω(2n/3).

Proof. To find an input (y, a1, a2) such that (5) holds, one has to try around
2n different tuples – otherwise the required value 0, may not appear. We can
freely choose three input parameters, i.e. y, a1, a2, which then fix the remaining
one. Therefore, (5) can be split into three parts (but not more!), and solved by
generating three independent lists of values. Obviously, the number of queries is
the lowest when these lists have equal size. Hence, to have a solution for (5), one
has to choose 2n/3 values for each of y, a1, a2, and therefore the query complexity
of a differential collision of order 2 for f is Ω(2n/3). �

Remark 1. We want to note that the actual complexity might be much higher
in practice than this bound for the query complexity. We are not aware of any
algorithm faster than 2n/2, since dividing (5) into three independent parts is not
possible (one of the terms has all the inputs, and any substitution of variables
leads to a similar case).

2.1 Second-Order Differential Collision for Block-Cipher-Based
Compression Functions

In all of the following, we consider block ciphers E : {0, 1}k × {0, 1}n → {0, 1}n
where n denotes the block length and k is the key length. For our purposes, we
will also need to endow {0, 1}n with an additive group operation. It is however
not important, in which way this is done. A natural way would be to simply use
the XOR operation on {0, 1}n or the identification {0, 1}n ↔ Z2n and define the
addition of a, b ∈ {0, 1}n by a + b mod 2n. Alternatively, if we have an integer
w dividing n, that is n = ` · w, we can use the bijection of {0, 1}n and Z`

2w and
define the addition as the word-wise modular addition, that is,

({0, 1}n,+) := (Z2w ,+)× · · · × (Z2w ,+)︸ ︷︷ ︸
` times

. (7)

The latter definition clearly aims very specifically at the SHA-2 design. However,
the particular choice of the group law has no influence on our attack.



A well known construction to turn a block cipher into a compression function
is the Davies-Meyer construction. The compression function call to produce the
i-th chaining value xi from the i-th message block and the previous chaining
value xi−1 has the form:

xi = E(mi, xi−1) + xi−1 (8)

When attacking block-cipher-based hash functions, the key is not a secret param-
eter so for the sake of readability, we will slightly restate the compression function
computation (8) where we consider an input variable y = (k||x) ∈ {0, 1}k+n so
that a call to the block cipher can be written as E(y). Then, the Davis-Meyer
compression function looks like:

f(y) = E(y) + τn(y), (9)

where τn(y) represents the n least significant bits of y.

In an analogous manner, we can also write down the compression functions for
the Matyas-Meyer-Oseas and the Miyaguchi-Preneel mode which are all covered
by the following proposition.

Proposition 1 For any block-cipher-based compression function which can be
written in the form

f(y) = E(y) + L(y), (10)

where L is a linear function with respect to +, an i-th-order differential colli-
sion for the block cipher transfers to an i-th-order collision for the compression
function for i ≥ 2.

For the proof of Proposition 1, we will need following property of ∆(a1,...,ai)f(y):

Proposition 2 (Lai [21]) If deg(f) denotes the non-linear degree of a multi-
variate polynomial function f , then

deg(∆(a)f(y)) ≤ deg(f(y))− 1 . (11)

Proof (of Proposition 1). Let ∆(a1,...,ai)E(y) = 0 be an i-th-order differential
collision for E(y). Both the higher-order differential and the mode of opera-
tion for the compression function are defined with respect to the same additive
operation on {0, 1}n. Thus, from (10) we get

∆(a1,...,ai)(E(y) + L(y)) = ∆(a1,...,ai)E(y) +∆(a1,...,ai)L(y),

so we see that all the terms vanish because the linear function L(y) has degree
one and so for i ≥ 2 we end up with an i-th-order differential collision for the
compression function because of Proposition 2. �



Hence, if we want to construct a second order collision for the compression
function f it is sufficient to construct a second-order collision for the block cipher.
The main idea of the attack is now to use two independent high probability
differential characteristics – one in forward and one in backward direction – to
construct a second-order differential collision for the block cipher E and hence
due to Proposition 1, for the compression function.

Therefore, the underlying block cipher E is split into two subparts, E =
E1◦E0. Furthermore, assume we are given two differentials for the two subparts,
where one holds in the forward direction and one in the backward direction and
we assume that both have high probability. This part of the strategy has been
already applied in other cryptanalytic attacks, we refer to Section 2.2 for related
work. We also want to stress, that due to our definition above, the following
differentials are actually related-key differentials. We have

E−1
0 (y + β)− E−1

0 (y) = α (12)

and
E1(y + γ)− E1(y) = δ (13)

where the differential in E−1
0 holds with probability p0 and in E1 holds with

probability p1. Using these two differentials, we can now construct a second-
order differential collision for the block cipher E. This can be summarized as
follows (see also Figure 1).

1. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

2. Compute backward from X,X∗, Y, Y ∗ using E−1
0 to obtain P, P ∗, Q,Q∗.

3. Compute forward from X,X∗, Y, Y ∗ using E1 to obtain C,C∗, D,D∗.
4. Check if P ∗ − P = Q∗ −Q and D − C = D∗ − C∗ is fulfilled.

Due to (12) and (13),

P ∗ − P = Q∗ −Q = α, resp. D − C = D∗ − C∗ = δ, (14)

will hold with probability at least p20 in the backward direction, resp. p21 in
the forward direction. Hence, assuming that the differentials are independent
the attack succeeds with a probability of p20 · p21. It has to be noted that this
independence assumption is quite strong, cf. [28]. However, if this assumption
holds, the expected number of solutions to (14) is 1, if we repeat the attack
about 1/(p20 · p21) times. As mentioned before, in our case, there is no secret key
involved, so message modification techniques (cf. [40]) can be used to improve
this complexity.

The crucial point now is that such a solution constitutes a second-order
differential collision for the block cipher E. We can restate (14) as

Q∗ −Q− P ∗ + P = 0 (15)

E(Q∗)− E(P ∗)− E(Q) + E(P ) = 0 (16)



If we set α := a1 and the difference Q− P := a2 we can rewrite (16) as

E(P + a1 + a2)− E(P + a1)− E(P + a2) + E(P ) = 0, (17)

that is, we have found a second-order differential collision for the block cipher
E. Because of Proposition 1 the same statement is true for the compression
function.

E1

E−1
0

E1

E−1
0

P P ∗

C C∗

X X∗

D D∗

Y Y ∗

δ δ

E1

E−1
0

E1

E−1
0

Q Q∗

γ

α

β
γ

α

β

Fig. 1. Schematic view of the attack.

2.2 Related Work

The attack presented in this paper stands in relation to previous results in the
field of block cipher and hash function cryptanalysis. Figure 1 suggests that it
stands between the boomerang attack and the inside-out attack which were both
introduced by Wagner in [36] and also the rectangle attack by Biham et al. [3].
For the related-key setting, we refer to [4] (among others). We also want to refer
to the amplified boomerang attack [16]. A previous application of the boomerang
attack to block-cipher-based hash functions is due to Joux and Peyrin [15], who
used the boomerang attack as a neutral bits tool. Another similar attack strat-
egy for hash functions is the rebound attack introduced in [27]. Furthermore, the
second-order differential related-key collisions for the block cipher used in Sec-
tion 2.1 are called differential q-multi-collisions introduced by Biryukov et al.
in [5] with q = 2. Recently, an attack framework similar to this was proposed
in [6,22] and applied to HAVAL in [34].



3 Application to SHA-256

In the light of the breakthrough results of Wang et al. on the hash functions
MD5 and SHA-1, the analysis of SHA-256 is of great interest. Moreover, SHA-2
is a reference point in terms of speed but also security for the SHA-3 candidates.

In the last few years several cryptanalytic results have been published for
SHA-256. The security of SHA-256 against preimage attacks was first studied
by Isobe and Shibutani in [14]. They presented a preimage attack on 24 steps.
This was improved by Aoki et al. to 43 steps in [1] and later extended to 45
steps by Khovratovich et al. in [18]. All attacks are only slightly faster than the
generic attack, which has a complexity of about 2256. In [25], Mendel et al. stud-
ied the security of SHA-256 with respect to collision attacks. They presented
the collision attack on SHA-256 reduced to 18 steps. After that these results
have been improved by several researchers. In particular, Nikolić and Biryukov
improved in [31] the collision techniques, leading to a collision attack for 23 steps
of SHA-256. The best collision attacks so far are extensions of [31]. Indesteege
et al. [13] and Sanadhya and Sarkar[33], both presented collision attacks for 24
steps. We want to note that in contrast to the preimage attacks all these attacks
are of practical complexity. Furthermore, Indesteege et al. showed non-random
properties for SHA-2 for up to 31 steps. At the rump session of Eurocrypt 2008,
Yu and Wang announced that they had shown non-randomness for SHA-256
reduced to 39 steps [41]. In the same presentation they also provided a practical
example for 33 steps. However, no details have been published to date. We are
not aware of any attack on SHA-256 with practical complexity for more than
33 steps. In this section, we show how to construct a second-order differential
collision for SHA-256 reduced to 47 (out of 64) steps, following the attack strat-
egy described in the previous section. Since the complexity of the attack is quite
low, only 246 compression function evaluations, we implemented the attack. An
example of a second-order differential collision for SHA-256 reduced to 47 steps
is shown in Table 3.

3.1 Description of SHA-256

SHA-256 is an iterated hash function that processes 512-bit input message blocks
and produces a 256-bit hash value. In the following, we briefly describe the
hash function. It basically consists of two parts: the message expansion and the
state update transformation. A detailed description of the hash function is given
in [30].

Message Expansion. The message expansion of SHA-256 splits the 512-bit
message block into 16 words Mi, i = 0, . . . , 15, and expands them into 64 ex-
panded message words Wi as follows:

Wi =

{
Mi 0 ≤ i < 16
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 16 ≤ i < 64

. (18)



The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X � 3)
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X � 10)

(19)

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of eight 32-bit words and updates them in 64 steps. In
each step one 32-bit word Wi is used to update the state variables Ai, Bi, . . . ,Hi

as follows:

T1 = Hi +Σ1(Ei) + f1(Ei, Fi, Gi) +Ki +Wi ,
T2 = Σ0(Ai) + f0(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(20)

For the definition of the step constants Ki we refer to [30]. The bitwise
Boolean functions f1 and f0 used in each step are defined as follows:

f0(X,Y, Z) = X ∧ Y ⊕ Y ∧ Z ⊕X ∧ Z
f1(X,Y, Z) = X ∧ Y ⊕ ¬X ∧ Z (21)

The linear functions Σ0 and Σ1 are defined as follows:

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22)
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25)

(22)

After the last step of the state update transformation, the initial values are
added to the output values of the last step (Davies-Meyer construction). The
result is the final hash value or the initial value for the next message block.

3.2 Differential Characteristics

Finding the differential characteristics for both backward and forward direction
is the most important and difficult part of the attack. Not only the differential
characteristics need to be independent, but also they need to have high proba-
bility in order to result in a low attack complexity. As noted before, in general,
the assumption on independent characteristics is quite strong, cf. [28].

We apply a particular approach to construct differential characteristics that
are used to construct second-order differential collisions for reduced SHA-256. We
run a full search for sub-optimal differential characteristics, i.e. characteristics
with the following properties:

– use a linearized approximation of the attacked hash function, i.e. approxi-
mate all modular additions by the xor operation;

– approximate the Boolean functions f0 and f1 by the 0-function, except in the
bits j, where either ∆A[j] = ∆B[j] = ∆Ci[j] = 1 or ∆F [j] = ∆G[j] = 1 –
in these bits approximate with 1. This requirement comes from the fact that



if all three inputs to f0 have a difference, then the output has a difference
(with probability 1); a similar property holds for f1. Note that it is possible
to approximate some bits with either 0 or 1, however, this introduces a high
branching leading to an infeasible search;

– the characteristic has a single bit difference in the message word at some step
i (i ≤ 16), followed by 15 message words without difference. When using such
characteristic, 16 steps (the ones that follow i) can be passed with probability
1 – arguably, any characteristic that does not follow this strategy will have
a low probability due to the fast diffusion of the difference coming from the
message words. This type of characteristics was used to construct various
related-key rectangle distinguishers for SHACAL-2 [11,19,23,24,38].

Once we have the set of sub-optimal characteristics, we try to combine them
for the second-order differential collision scenario, i.e. try to check if the switch
in the middle is possible. This is a very important requirement, as some of the
characteristics cannot be combined, i.e. their combination leads to contradic-
tions. Some of the conditions for the switch can be checked only by examining
the differences in the characteristics, while other are checked by confirming ex-
perimentally the absence of contradictions in the switch.

Table 1. Differential characteristic for steps 1-22 using signed-bit-differences.

i chaining value message prob

0

B: -3

2−10E: +10 +24 +29

H: -12 -17 +23

1
C: -3

2−4

F: +10 +24 +29

2
D: -3

2−4

G: +10 +24 +29

3
E: -3

2−7

H: +10 +24 +29

4 F: -3 2−1

5 G: -3 2−1

6 H: -3 +3 2−1

7 1
...

...
...

...

20 1
21 +17 +28 1

22
A: +17 +28

E: +17 +28

b
a
ck
w
a
rd

In Table 1 and Table 2 the differential characteristics for both forward and
backward direction are shown. Furthermore, the probabilities for each step of
the differential characteristics are given. Note that for start we assume that the
differential characteristic in the message expansion will hold with probability 1.
To describe the differential characteristic we use signed-bit differences introduced
by Wang et al. in the cryptanalysis of MD5 [40]. The advantage of using signed-
bit differences is that there exists a unique mapping to both xor and modular
differences. Another advantage is that the feedforward in SHA-256 is modular,
hence no additional probability will be introduced for this operation.



Table 2. Differential characteristic for steps 23-47 using signed-bit-differences.
Note that conditions imposed by the characteristic in steps 23-30 are fulfilled in
a deterministic way using message modification techniques.

i chaining value message prob

22

B: +3 +12 +14 +19 +23 +32

-25 2−22

C: +25

E: -3 -7 -13

F: -12 -23

G: -25

H: -1 +3 +7 +14 +15 +24 +26 +28 -30

23

C: +3 +12 +14 +19 +23 +32

2−13
D: +25

F: -3 -7 -13

G: -12 -23

H: -25

24

A: -25
2−10

D: +3 +12 +14 +19 +23 +32

G: -3 -7 -13

H: -12 -23

25

B: -25

2−7E: +14 +19 +32

H: -3 -7 -13

26
C: -25

2−4

F: +14 +19 +32

27
D: -25

2−4

G: +14 +19 +32

28
E: -25

2−4

H: +14 +19 +32

29 F: -25 2−1

30 G: -25 2−1

31 H: -25 +25 1
32 1
...

...
...

...

45 1
46 -7 -18 -22 2−6

47
A: -7 -18 -22

E: -7 -18 -22

fo
rw

ar
d

m
es

sa
ge

m
o
d

ifi
ca

ti
on

3.3 Complexity of the Attack

Using the differential characteristics given in the previous section, we can con-
struct a second-order differential collision for SHA-256 reduced to 47 out of 64
steps. The differential characteristic used in backward direction holds with prob-
ability 2−28 and the differential characteristic used in forward direction holds
with probability 2−72. Hence, assuming that the two differential characteristics
are independent and using the most naive method, i.e. random trials, to fulfill
all the conditions imposed by the differential characteristics would result in an
attack complexity of 22·(72+28) = 2200. This is too high for a practical attack
on reduced SHA-256. However, the complexity can be significantly reduced by
using message modification techniques. Moreover, some conditions at the end
of the differential characteristics can be ignored which also improves the attack
complexity.

Ignoring conditions at the end. As was already observed in the cryptanalysis
of SHA-1, conditions resulting from the modular addition in the last steps of the
differential characteristic can be ignored [9,39]. The reason is that we do not care



about carries in the last steps, since the modular difference will be the same. In
the attack on SHA-256, we can ignore 6 conditions in step 46 in the characteristic
used in forward direction and 3 conditions in step 1 in the characteristic used in
backward direction. This improves the complexity of the attack by a factor of
22·(3+6) = 218 resulting in a complexity of 2182.

Impact of additional less probable characteristics. Even if all the message
conditions for the two characteristics are already in place, there exist a number
of differential characteristics which hold with the same or a slightly lower prob-
ability. Hence, it is advantageous to consider differentials. A similar effect has
been exploited by Kelsey et al. in the amplified boomerang attack on block ci-
phers [16]. For hash functions, this has been systematically studied for SHA-1
in [26]. We achieve a significant speedup in the attack on SHA-256 by allowing
these additional characteristics. For instance by changing the signs of the differ-
ences in chaining variable H0, we get 23 additional differential characteristics for
the backward direction which all hold with the same probability as the original
differential characteristic given in Table 1. Similarly, we also get 23 additional
differential characteristic by changing the signs of the differences in chaining
variable H3. This already improves the complexity of the attack by a factor of
26. Furthermore, if we do not block the input differences of f1 and f0 in step 1,
we get 24 additional characteristics which again holds with the same probability.
Thus, by allowing additional differential characteristics the complexity of the
attack can be improved by a factor of 210, resulting in an attack complexity
of 2172. We want to stress, that in practice there exist many more additional
differential characteristics that can be used and hence the attack complexity is
much lower in practice.

Message modification. As already indicated in Section 2 message modification
techniques can be used to significantly improve the complexity of the attack.
The notion of message modification has been introduced by Wang et al. in the
cryptanalysis of MD5 and other hash functions [40]. The main idea is to choose
the message words and internal chaining variables in an attack on the hash
function to fulfill the conditions imposed by the differential characteristic in a
deterministic way.

Luckily, by using message modification techniques, we can fulfill all conditions
imposed by the differential characteristic in steps 22-30 by choosing the expanded
message words W22, . . . ,W30 accordingly. This improves the complexity of the
attack by a factor of 22·66 = 2132 resulting in an attack complexity of 240.

Additional costs coming from the message expansion. So far we assumed
that the differential characteristic in the message expansion of SHA-256 will hold
with probability 1. However, since the message expansion of SHA-256 is not lin-
ear, this is not the case in practice. Indeed most of the conditions that have
to be fulfilled to guaranty that the characteristic holds in the message expan-
sion can be fulfilled by choosing the expanded message words and differences



in steps 21-30 accordingly. Only the conditions for step 5 and step 6 imposed
by the differential characteristic used in backward direction cannot be fulfilled
deterministically (see Table 1). In step 6 we need that:

W ∗
6 −W6 = 3 (23)

Furthermore, to ensure that there will be no difference in W5 we need that:

W ∗
21 − σ0(W ∗

6 )− (W21 − σ0(W6)) = 0 (24)

Since (23) will hold with a probability of 2−1 and (24) will hold with probability
2−2, this adds an additional factor of 22·3 = 26 to the attack complexity. Hence,
the final complexity of the attack is 246. By Theorem 1, the complexity in the
generic case is around 285.

Implementation. Even though the complexity of the attack was estimated to
be about 246, we expected that the complexity will be lower in practice due to
the impact of additional differential characteristics. This was confirmed by our
implementation. In Table 3, an example of a second-order differential collision
for 47 steps of SHA-256 is shown.

Table 3. Example of a second-order differential collision f(y+ a1 + a2)− f(y+
a1)− f(y + a2) + f(y) = 0 for 47 steps of the SHA-256 compression function.

y
89456784 4ef9daf6 0ab509f5 3fdf6c93 fe7afc67 b03ad81a fd306df9 1d14cadd

daea3041 70f45fd7 4a03bf20 c13c961c 6a12c686 fc7be50c 7b060fc2 0ee1e276

630c3c7e 734246a4 88401eb0 9aac88c1 4b6bca45 b777c1e6 5537cdb1 9b5bc93b

a1

00000000 00000000 00000000 00000000 00000000 00000000 00000004 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 fffffffc 00000000 fffffffc 10800200 00000000 ff800000 803ef414

a2

2335e851 20f48326 69151911 f5cb76c2 b9d69e31 32685b9c 90cceff7 081ebbf7

967c8864 a43138d1 7e9a3eec c39cf7d3 5914e008 8d0d3b73 e077c63f d29db1b0

742b8c01 92248811 a119f182 dd829be5 e3e1802e 21130e9f 1dacd7d3 8acf11fe

4 Applications to Related Primitives

The results presented in the previous section have a direct impact on the anal-
ysis of primitives similar to SHA-256. First of all, due to the similar design of
SHA-256 and SHA-512 the attack extends in straight forward way to SHA-512.
Second, our search for sub-optimal characteristics in SHA-256, can be used to
find suitable characteristics for a related-key rectangle attack on the SHACAL-2
block cipher [12]. which is based on SHA-256. The block cipher proposed by
Handschuh and Naccache in 2000 and was evaluated by NESSIE.



4.1 Application to SHA-512

The structure of SHA-512 is very similar to SHA-256 – only the size of the
words is increased from 32 to 64 bits and the linear functions Σ0, Σ1, σ0, σ1 are
redefined. Also the number of steps is increased from 64 to 80. Since the design
of SHA-512 is very similar to SHA-256 the attack presented for SHA-256 extends
in a straight forward way to SHA-512. Furthermore, due to the larger hash size
of SHA-512 compared to SHA-256 also the complexity of the generic attack
increases, i.e. it becomes around 2170. Hence, the attack can be extended to
more steps than it was the case for SHA-256 by adding steps at the beginning.
Also, due to the larger word size and hence worse diffusion within the words
adding steps in the middle becomes easier. Thus, we expect that several steps
can be added in the middle as well. This is work in progress.

4.2 Application to SHACAL-2

In the past several related-key rectangle attacks have been published for the
SHACAL-2 block cipher [11,19,23,24,38]. It is interesting to note that all of
the published rectangles on SHACAL-2 contain a flaw in the analysis. This
flaw is in the switch of the rectangle, since the used characteristics are not
independent and the conditions cannot be satisfied simultaneously in both of the
characteristics. In the rectangles in [24,38,11], in the the switch in the middle
the following differences in bit 13 are defined: at the output of the backward
characteristic ∆E[13] = 1, ∆F [13] = ∆G[13] = 0; at the input of the forward
characteristic ∆E[13] = 0, ∆F [13] = 1, ∆G[13] = 0. At the first step of the
forward characteristics it is assumed that the output difference of f1 is zero.
However, this is not possible for both of the characteristics. Since ∆F [13] = 1,
the value of E[13] has to be 0. Then, in the second characteristic (on the other
side of the rectangle), since the output difference ∆E[13] is 1, then this E[13]
will be 1, and therefore the output of f1 in bit 13 will produce difference. A
similar contradiction can be seen in [23]. First, since there is a difference in bit
13 in E25 coming from the upper trail, one needs the differences in F25 and G25

in bit 13 to be the same (have the same sign) in the lower trail (see Table 3),
otherwise there will be a contradiction. In the next step we have G26 = F25 and
H26 = G25 and hence the difference in bit 13 of G26 and H26 have the same sign.
This leads now to a contradiction, since in the characteristic it is required that
these two differences cancel out. However, since they have the same sign this is
not possible and we get a contradiction. In [19], in the lower trail (Table 6) there
are conditions on E24 in bits (2,14,15,24,25) to guarantee that the differences in
G24 behave correctly, in particular the bit 24 of E24 has to be 1. But from the
upper trail we get difference in W23 in bits 13,24, and 28, and hence E24 will
have difference in bits 13,24,28. Therefore, E24 cannot take the value 1 (in these
three bits) in both of the bottom characteristics. This can be fixed by allowing
a carry from bit 13 to 24 to cancel the difference in bit 24, but then there will
always be a difference in bit 14 and 15 which again leads to a contradiction.



Table 4. Differential characteristic using xor-differences for the rectangle dis-
tinguisher on 48 steps of SHACAL-2.

i chaining value message prob

0

C: 32 28 23 21 12 9

2−15
D: 2

F: 22 16 12

G: 32 21 12

H: 12 2

1

A: 2

2−11D: 32 28 23 21 12 9

G: 22 16 12

H: 32 21 12

2

B: 2

2−7E: 28 23 9

H: 22 16 12

3
C: 2

2−4

F: 28 23 9

4
D: 2

2−4

G: 28 23 9

5
E: 2

2−4

H: 28 23 9

6 F: 2 2−1

7 G: 2 2−1

8 H: 2 2 2−1

9 1
...
...

...
...

22 1

23 27 16 2−4

24
A: 27 16

E: 27 16

i chaining value message prob

24

C: 30 26 21 19 10 7

2−13
D: 32

F: 20 14 10

G: 30 19 10

H: 32 10

25

A: 32

2−13D: 30 26 21 19 10 7

G: 20 14 10

H: 30 19 10

26

B: 32

2−7E: 26 21 7

H: 20 14 10

27
C: 32

2−4

F: 26 21 7

28
D: 32

2−3

G: 26 21 7

29
E: 32

2−4

H: 26 21 7

30 F: 32 2−1

31 G: 32 2−1

32 H: 32 32 1

33 1
...
...

...
...

46 1

47 29 25 14 2−6

48
A: 29 25 14

E: 29 25 14

Each of the published rectangle attack works for the whole key space. Further,
we relax this requirement, i.e. we examine the security of the cipher in a weak-key
class. These types of attacks are inline with the recent attacks on AES-256 [5].
We analyze a secret-key primitive, hence the message modification techniques
presented in the previous section are not applicable and therefore the complexity
of the attack is fully determined by the probability of the characteristics used
in the rectangle. The probability of the characteristic in the key schedule not
necessarily has to be 1 (it is a weak-key class), however this adds to the total
complexity of the attack.

Our search for sub-optimal characteristics in SHA-256, can be used as well
to find characteristics suitable for a related-key rectangle attack on SHACAL-2.
Note that the search avoids using the above mentioned characteristics (with
flaws), since it checks experimentally, that all the conditions on the switch can
be satisfied.

We found a 48-step related-key rectangle distinguisher with two different
characteristics, the first on 24 steps with 2−52, and the second on 24 steps with
2−52 (see Table 4). The probability of the key schedule (message expansion) is
2−8.5. Therefore, the total probability of the rectangle is 2−216.5. Using some
available techniques, e.g. the one presented in [24], we can add one step at the
beginning, and two steps at the end of the rectangle, to obtain a key recovery
attack on 51 steps of SHACAL-2.



5 Conclusions

In this work, we have shown an application of higher-order differential crypt-
analysis on block-cipher-based hash functions. In our attack, we adapted several
techniques known from block cipher cryptanalysis to hash functions. Applying
these techniques to SHA-256 led to an attack for 47 (out of 64) steps of the
compression function with practical complexity. The best known attack so far
with practical complexity was for 33 steps. Since the structure of SHA-512 and
SHA-256 is very similar, the attack transfers to SHA-512 in a straight forward
way. Furthermore, due to the larger word size and output size, attacks for more
steps may be expected. We also want to note that the attacks cannot be extended
to the hash function to construct collisions or (second) preimages.

However, based on our results, a few conclusions can be deduced. First,
SHA-256 has a low security margin against practical distinguishers. Its compres-
sion function seems to be weaker than those of the third round SHA-3 candidates,
as none of them has practical distinguishers covering such a high percentage of
the total number of steps.

Second, when applying boomerang/rectangle attacks to word oriented prim-
itives, the switch in the middle has to be checked carefully – the flaws we have
presented as well as our experiments indicate that only a very small percentage
of characteristics (even with sparse input-output differences) can be combined.

Finally, the basic strategy described in this paper, i.e. linearize the com-
pression function, search for sub-optimal characteristics and combine them in a
boomerang/rectangle attack, can be used as a preliminary security analysis for
hash functions in general.
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