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Abstract. We present new techniques for deriving preimage resistance
bounds for block cipher based double-block-length, double-call hash func-
tions. We give improved bounds on the preimage security of the three
“classical” double-block-length, double-call, block cipher-based compres-
sion functions, these being Abreast-DM, Tandem-DM and Hirose’s scheme.
For Hirose’s scheme, we show that an adversary must make at least 22n−5

block cipher queries to achieve chance 0.5 of inverting a randomly cho-
sen point in the range. For Abreast-DM and Tandem-DM we show that
at least 22n−10 queries are necessary. These bounds improve upon the
previous best bounds of Ω(2n) queries, and are optimal up to a constant
factor since the compression functions in question have range of size 22n.

Keywords: Hash Function, Preimage Resistance, Block Cipher, Be-
yond Birthday Bound, Foundations

1 Introduction

Almost as soon as the idea of turning a block cipher into a hash function ap-
peared [9], it became evident that, for typical block ciphers and security expec-
tations, the hash function needs to output a digest that is considerably larger
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Fig. 1. Preimage bounds for the classical constructions.

than the block cipher’s block size. Consequently, many proposals of double-block-
length, or more generally multi-block-length, hash functions have appeared in
the literature. In this article we focus on a subclass of double-block-length con-
structions, where a 3n-bit to 2n-bit compression function makes two calls to a
block cipher of 2n-bit key and n-bit block.

Recently, for all three well-known members of this class—those being Tandem-
DM [5], Abreast-DM [5] and Hirose’s construction [4]—collision resistance has
been successfully resolved [2, 4, 6, 7]: for Abreast-DM and Hirose’s scheme, Ω(2n)
queries to the underlying block cipher are needed to obtain a non-vanishing ad-
vantage in finding a collision. For Tandem-DM, Ω(2n−logn) queries are needed,
which is almost optimal ignoring log factors.

On the other hand, the corresponding situation for preimage resistance is
far less satisfactory. Up to now, it has been an open problem to prove preimage
resistance for values of q higher than 2n for either Abreast-DM, Tandem-DM
or Hirose. This is not to say that no dedicated preimage security proofs have
appeared in the literature. For instance, Lee, Stam and Steinberger [7] provide
a preimage resistance bound for Tandem-DM that is a lot closer to 2n than a
straightforward implication [10] of their collision bound would give. However,
a “natural barrier” occurs once 2n queries are reached: namely, a block cipher
“loses randomness” after being queried Ω(2n) times on the same key (for exam-
ple, when 2n−1 queries have been made to a block cipher under a given key, the
answer to the last query under that key is deterministic). Going beyond the 2n

barrier seemed to require either a very technical probabilistic analysis, or some
brand new idea. In this paper, we show a new idea which delivers tight bounds
in a quite pain-free and non-technical fashion.



Our contribution. In this paper, we prove that various compression functions
that turn a block cipher of 2n-bit key into a double-block-length hash function,
have preimage resistance close to the optimal 22n in the ideal cipher model. Our
analysis covers many practically relevant proposals, such as Abreast-DM, Hirose-
DM and Tandem-DM. Bounds for the case n = 128 are depicted in Figure 1. At
the heart of our result are so-called “super queries”, a new technique to restrict
the advantage of an adaptive preimage-finding adversary.

To build some intuition for our result, let us first consider the much easier
problem of constructing a 3n-bit to 2n-bit compression function H based on two
3n-bit to n-bit smaller underlying primitives f and f ′. An obvious approach is
simply to concatenate the outputs of f and f ′, that is let H(B) = f(B)‖f ′(B) for
B ∈ {0, 1}3n. If f and f ′ are modeled as independent, ideal random functions,
then it is not hard to see that H behaves ideally as well. In particular, it is
preimage resistant up to 22n queries (to f and f ′).

When switching to a block cipher-based scenario, it is natural to replace f and
f ′ in the construction above by E, resp. E′, both run in Davies–Meyer mode. In
other words, for block ciphers E and E′ both with 2n-bit keys and operating on
n-bit blocks, define H(A‖B) = (EB(A)⊕A)‖(E′B(A)⊕A) where A ∈ {0, 1}n and
B ∈ {0, 1}2n. While there is every reason to believe this construction maintains
preimage resistance up to 22n queries, the standard proof technique against
adaptive adversaries falls short significantly. Indeed, the usual argument goes
that the i-th query an adversary makes to E using key K will return an answer
uniform from a set of size at least 2n− (i−1) and thus the probability of hitting
a prespecified value is at most 1/(2n− (i−1)) < 1/(2n− q). Unfortunately, once
q approaches 2n, the denominator tends to zero (rendering the bound useless).
As a result, one cannot hope to prove anything beyond 2n queries using this
method. This restriction holds even for a “typical” bound of type q/(2n − q)2.

When considering non-adaptive adversaries only, the situation is far less grim.
Such adversaries need to commit to all queries in advance, which allows bounding
the probability of each individual query hitting a prespecified value by 2−n.
While obviously there are dependencies (in the answers), these can safely be
ignored when a union bound is later used to combine the various individual
queries. Since the q offset has disappeared from the denominator, the typical
bound q/(2n)2 would give the desired security.

Our solution, then, is to force an adaptive adversary to behave non-adaptively.
As this might sound a bit cryptic, let us be more precise. Consider an adversary
adaptively making queries to the block cipher, using the same key throughout.
As soon as the number of queries to this key passes a certain threshold, we give
the remaining queries to the block cipher using this very key for free. We will
refer to this event as a super query. Since these free queries are all asked in
one go, they can be dealt with non-adaptively, preempting the problems that
occur (in standard proofs) due to adaptive queries. Nonetheless, for every super
query we need to hand out a very large number of free queries, which can aid
the adversary. Thus we need to limit the amount of super queries an adversary
can make by setting the threshold that triggers a super query sufficiently high.



In fact, we set the threshold at exactly half6 the total number of queries that
can be made under a given key (i.e., it is set at 2n/2 queries). This effectively
doubles the adversary’s query budget, since for every query the adversary makes
it can get another one later “for free” (if it keeps on making queries under the
same key), but such a doubling of the number of queries does not lead to an
unacceptable deterioration of the security bound.

With this new technique in hand, we can prove in Section 3 that the construc-
tion H given above has indeed an asymptotically optimal preimage resistance
bound. Afterwards, we revisit the proofs of preimage resistance of the three main
double-block-length, double-call constructions: Hirose (Section 4), Abreast-DM
(Section 5) and Tandem-DM (Section 6). An additional technical problem is that
these compression functions each make two calls to the same block cipher, as
opposed to using two calls to independent block ciphers. Ideally, to get a good
bound, one would like to query the two calls necessary for a single compression
function evaluation in conjunction (this would allow using the randomness of
both calls simultaneously, potentially leading to a denominator 22n as desired
for preimage resistance). For instance, in the context of collision resistance for
Hirose-DM and Abreast-DM corresponding queries are grouped in cycles (of
length 2 and 6, respectively) and all queries in a cycle are made simultaneously:
if the adversary makes one query in a cycle, the remaining queries are handed
out for free. Care has to be taken that these free queries and the free queries
due to super queries do not reinforce each other to untenable levels.

For Hirose’s scheme, there are no problems as the free queries introduced by
a super query necessarily consist of full cycles only. The corresponding (upper)
bound on the preimage finding advantage is 16q/22n which is as desired, up to
a small factor. For Abreast-DM, however, the cyclic nature can no longer be
exploited: any super query introduces many partial cycles, yet freely completing
these might well trigger a new super query, etc.! Luckily, the original preimage
proof for Tandem-DM [7] (which does not involve cycles) provides a way out of
this conundrum. The downside however is that our preimage bound for Abreast-
DM and Tandem-DM is slightly less tight than that for Hirose’s scheme. Ignoring
negligible terms, it grows roughly as 16

√
q/2n. Although this is faster than one

might wish for (as can be seen in Figure 1), it does imply that Ω(22n) queries
are required to find a preimage with constant probability.

2 The model

A block cipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·)
is a permutation of {0, 1}n for each K ∈ {0, 1}m. We call m the key size and n
the block length of the block cipher. It is customary to write EK(X) instead of
E(K,X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1K (·) denotes the inverse
of EK(·) (as EK(·) is a permutation). Henceforth, we will restrict to the case
m = 2n and we define N = 2n.

6 The “optimized” threshold turns out to be very near one half, but a bit less; we set
the threshold at a half for simplicity in our proofs.



A compression function H is block cipher-based if, in its execution, it has
access to a block cipher. In this paper, we only discuss double-block-length,
double-call constructions, meaning that H is a function from 3n-bits to 2n-bits
making two calls to some underlying block cipher E. (This definition will become
more concrete in the next sections.)

As our preimage security notion for H, we adopt everywhere preimage re-
sistance in the information theoretic setting [10]. In this preimage resistance
experiment, a computationally unbounded adversary with oracle access to a
uniformly sampled block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n selects and
announces a point C ∈ {0, 1}2n, before making queries to E. We allow the ad-
versary to query both E and E−1. After q queries to E, the query history of the
attacker is the set of triples Q = {(Xi,Ki, Yi)}qi=1 such that EKi(Xi) = Yi and
the attacker’s i-th query is either EKi(Xi) or E−1Ki

(Yi) for 1 ≤ i ≤ q. We say the
attacker succeeds or finds a preimage if its query history Q contains the means
of computing a preimage of C, in the sense that there exist values B ∈ {0, 1}3n,
K1,K2 ∈ {0, 1}2n and X1, X2, Y1, Y2 ∈ {0, 1}n such that both (X1,K1, Y1) and
(X2,K2, Y2) are in the query history Q, H(B) = C and the two queries used
to evaluate H(B) are precisely EK1(X1) and EK2(X2). In this case, we also say
Q contains a preimage of C. We let Preim(Q) be the predicate that is true if
and only if Q contains a preimage of C, where C is an elided-but-understood
parameter of the predicate. We define

Advepre
H (q) = max

A
Pr[Preim(Q)]

where the maximum is taken over all adversaries making at most q queries, and
where the probability is taken over the randomness of E as well as over the
adversary’s coins, if any.

For Tandem-DM, it turns out that the everywhere preimage resistance notion
is slightly too strong, as there is one weak point (namely 02n) in the range, for
which finding preimages is a bit easier. A simple adaptation of the everywhere
preimage resistance definition is to disallow the adversary to choose C = 02n as
the target point [7]; we denote the corresponding advantage as

Advepre 6=0
H (q) .

(We will still use the same predicate Preim(Q) though.)
A standard assumption made in ideal cipher proofs is that “the adversary

never makes a query to which it already knows the answer”. By this it is meant,
for example, that one can assume the adversary never makes a query EK(X),
obtaining an anwer Y , and then makes the query E−1K (Y ) (which will necessarily
be answered by X). In the current context, where we consider adversaries making
2n queries or more, this assumption should be more precisely restated as “the
adversary never makes a query that will result in a triple (X,K, Y ) which is
already present in the query history”. (This latter assumption can be made
without loss of generality using the fact that EK(·) is a permutation.) Indeed, if
an adversary has made 2n−1 queries under a key K, the result of the last query



under that key is predetermined, and thus the adversary “already knows” the
answer to this query. However, one should not forbid the adversary from making
this query, since the query may be necessary to complete a preimage.

Our security proofs also use the notion of “free” queries. Formally, these
can be modelled as queries which the adversary is “forced” to query (under
certain conditions), but for which the adversary is not charged: they do not count
towards the maximum of q queries which the adversary is allowed. However, these
queries become part of the adversary’s query history, just like other queries.
In particular, the adversary is not allowed, later, to remake these queries “on
its own” (due to the previously discussed assumption that the adversary never
makes a query which it already owns). Observe that “free” queries are a common
tool for analyzing the security of hash functions, e.g., see [2, 3, 6].

3 An example case

Before we apply the new technique of super queries to the analysis of three
well-known constructions that compress 3n bits to 2n bits and that each call
the same block cipher twice, we demonstrate our technique on the following
simplest possible example. We consider the construction H1, compressing 3n−1
bits to 2n bits that makes two block cipher calls. Given a block cipher E of key
length m = 2n and block length n, an input block X ∈ {0, 1}n and a key prefix
K ∈ {0, 1}2n−1 we define

H1(K,X) = (EK‖0(X)⊕X,EK‖1(X)⊕X)

where ‖ denotes concatenation. If we consider the ideal cipher model, the two
block cipher calls are independent. H1 can be seen as a simple special case
of a scenario where two different block ciphers are called and which is closely
connected with the more general framework introduced by Özen and Stam [8,
11] (with slightly different notation though).

Theorem 1. Let H1 : {0, 1}3n−1 → {0, 1}2n be the block cipher-based compres-
sion function defined as above. Then

Advepre
H1

(q) ≤ 8q/N2.

In particular, to achieve an advantage of 1/2 the adversary has to make at least
22n−4 queries.

Proof. Let U‖V ∈ {0, 1}2n be the point to invert (chosen by the adversary before
it makes any queries to E). We upper bound the probability that, in q queries,
the adversary finds a point A ∈ {0, 1}n and a key prefix K ∈ {0, 1}2n−1 such
that H1(K‖A) = U‖V . On top of the q queries the adversary wants to make,
we give it several queries for free, to ensure that the elements (X,K‖0, Y ) and
(X,K‖1, Y ′) are always added to the query history as a pair. We call such a pair
an “adjacent query pair” with respect to the key prefix K ∈ {0, 1}2n−1. The
involved free queries are as follows.



Normal forward query. If the adversary queries EK‖0(X) (resp. EK‖1(X))
for some key prefix K ∈ {0, 1}2n−1 and X ∈ {0, 1}n, we also give it for free
EK‖1(X) (resp. EK‖0(X)).

Normal inverse query. If the adversary queries E−1K‖0(Y ) (resp. EK‖1(Y ′)) for

some key prefix K ∈ {0, 1}2n−1 and receives answer X, we also give it for
free EK‖1(X) (resp. EK‖0(X)).

We now give further free queries to the adversary, in the fashion described
next. After each adjacent query pair has been completed (namely, after the
adversary has received the response to both its query and its associated free
query, and after these have been placed in the query history), we check whether
the key prefix used for the latest query is such that the (current) query history
contains exactly N/2 adjacent query pairs with this key prefix. If so, we give all
remaining adjacent query pairs under this key prefix for free to the adversary.
There will be exactly N/2 such query pairs. We insert these N/2 free query pairs
into the query history pair-by-pair (to maintain, mostly for conceptual simplicity,
the adjacent pair structure of the query history). We note that, after these free
queries have been inserted into the query history, the adversary cannot make
any more queries under this key prefix, since the adversary is assumed never
to make a query to which it knows the answer. When N/2 free query pairs are
given to the adversary in the fashion just described, we say that a super query
occurs. This can be summed up as follows:

Super query. When the query history contains N/2 adjacent query pairs all
using the same key prefix K ∈ {0, 1}2n−1, all the remaining queries of the
form EK||0(·) and EK||1(·) are given for free.

We say that an adjacent query pair (X,K‖0, Y ), (X,K‖1, Y ′) is “winning”,
or “successful”, if X ⊕ Y = U and X ⊕ Y ′ = V . Thus the adversary obtains a
preimage of U‖V precisely if it obtains a winning adjacent query pair. This can
occur in one of two ways: either the winning query pair is part of a super query,
or not. We let SuperQueryWin(Q) denote the event that the adversary obtains
a winning query pair that is part of a super query, and NormalQueryWin(Q) the
event that the adversary obtains a winning query pair of normal queries. It thus
suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary
makes, say, a forward query EK‖0(X), at most N/2− 1 queries have been previ-
ously answered to the key K‖0 and at most N/2−1 queries have been previously
answered to the key K‖1, since otherwise a super query for the key prefix K
would have occurred. Thus the values Y = EK‖0(X) and Y ′ = EK‖1(X) come
uniformly and independently at random from a set of size at least N/2+1 ≥ N/2,
and there is chance at most (1/(N/2))2 = 4/N2 that we obtain a winning pair



of adjacent queries. The same is true if the adversary makes a forward query
EK‖1(X), or an inverse query E−1K‖0(Y ), or an inverse query E−1K‖1(Y ′). Since the

adversary makes q queries in total, we therefore have

Pr[NormalQueryWin(Q)] ≤ 4q/N2. (1)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about to occur
on key prefix K ∈ {0, 1}2n−1, meaning that the value of EK‖0(·) and EK‖1(·) is
already known on exactly N/2 points. Let us denote this set of points by X , and
let Y = EK‖0(X ) and Y ′ = EK‖1(X ). Further letA = {0, 1}n\X , B = {0, 1}n\Y,
and B′ = {0, 1}n \ Y ′. Note that |X | = |Y| = |Y ′| = |A| = |B| = |B′| = N/2.

Now let a point A ∈ A in the domain of the super query be arbitrarily fixed,
and let us estimate the probability that point A induces a winning pair under
E. If A⊕ U ∈ Y or if A⊕ V ∈ Y ′, this probability is zero. Consequently, let us
suppose that A⊕ U ∈ B and A⊕ V ∈ B′.

The probability (taken w.r.t. E) that EK‖0(A) = A⊕U and EK‖1(A) = A⊕V

equals
(

(N/2−1)!
(N/2)!

)2
=
(

1
N/2

)2
. Thus, by union bounding over A, we find that

the probability of the super query producing a winning pair of adjacent queries

is at most N/2 ·
(

1
N/2

)2
= 1

N/2 . We now observe that at most q/(N/2) super

queries can ever occur, since each super query requires a “setup” cost of N/2
queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N2. (2)

Summing (1) and (2) completes the proof. ut

4 Preimage security results for Hirose’s scheme

Hirose [4] introduced his 3n-bit to 2n-bit compression function making two calls
to a block cipher of 2n-bit key over 10 years after Abreast-DM and Tandem-
DM (see the next Sections). Hirose’s construction (Figure 2) is simpler than
either of its predecessors and it uses a single keying schedule for the top and
bottom block ciphers. Moreover, Hirose himself already proved birthday-type
collision resistance for his construction in the ideal cipher model, thereby pre-
dating similar collision resistance analyses for Abreast-DM and Tandem-DM.
Previously, Lee and Kwon [6] have shown that Advepre

Hir (q) ≤ 2q/(N − 2q)2,
which becomes void once q > N/2. We improve upon this bound considerably.

Theorem 2. Let Hir : {0, 1}3n → {0, 1}2n be the block cipher-based compression
function depicted in Figure 2. Then

Advepre
Hir (q) ≤ 8q/N2 + 8q/N(N − 2).

In particular, Advepre
Hir (q) is upper bounded by approximately 16q/N2.
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Fig. 2. Hirose’s compression function. All wires carry n-bit values. The top and bottom
block ciphers, which are the same block cipher, have 2n-bit key and n-bit input/output.
The wires A,L,M are the inputs to the compression function. The bottom left-hand
wire is not an input; it carries an arbitrary nonzero constant c.

Proof. Let U‖V ∈ {0, 1}2n be the point to invert (chosen by the adversary before
it makes any queries to E). We upper bound the probability that, in q queries,
the adversary finds a point A‖L‖M ∈ {0, 1}3n such that Hir(A‖L‖M) = U‖V .

When the adversary makes a forward query EL‖M (A) we give it for free,
also, the answer to the query EL‖M (A⊕ c). Moreover when the adversary makes

a backward query E−1L‖M (R), resulting in an answer A = E−1L‖M (R), we give it

for free the answer to the forward query EL‖M (A ⊕ c). Also, we assume that
the adversary never makes a query to which it knows the answer (in the sense
discussed in Section 2). Thus the elements of the adversary’s query history Q
can be paired into adjacent pairs of the form (A,L‖M,R), (A⊕ c, L‖M,S). We
call such a pair an “adjacent query pair”. Furthermore, we define super queries
analogously to the definition used in the proof of Theorem 1. More precisely, as
soon as the (current) query history contains exactly N/2 queries with the same
key, all remaining queries under this key are given for free to the adversary. (A
minor difference with Theorem 1 is that it only takes N/4 queries to trigger a
super query under a given key, instead of N/2.)

We say that an adjacent query pair (A,L‖M,R), (A ⊕ c, L‖M,S) is “win-
ning”, or “successful”, if A ⊕ R = U and A ⊕ c ⊕ S = V , or if A ⊕ R = V and
A ⊕ c ⊕ S = U . Thus the adversary obtains a preimage of U‖V precisely if it
obtains a winning adjacent query pair. This can occur in one of two ways: either
the winning query pair is part of a super query, or not. We let SuperQueryWin(Q)
denote the event that the adversary obtains a winning query pair that is part of
a super query, and NormalQueryWin(Q) the event that the adversary obtains a
winning query pair of normal queries. It thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary
makes, say, a forward query EL‖M (A), at most N/2 − 2 queries (counting free



queries) have been previously answered with the key L‖M , since otherwise a
super query for the key L‖M would have occured. Thus the value R = EL‖M (A)
comes uniformly at random from a set of size at least N/2 + 2 ≥ N/2, and there
is chance at most 2/(N/2) = 4/N that either A ⊕ R = U or A ⊕ R = V (this
is also true if U = V ). If, say, A ⊕ R = U , there is further chance at most
1/(N/2) = 2/N that the free query EL‖M (A ⊕ c) returns A ⊕ c ⊕ V , since the
answer to the free query comes uniformly at random from a set of size at least
N/2+1 ≤ N/2. Other cases (e.g. when A⊕R = V , and when the adversary makes
a backward query E−1L‖M (R)) are similarly analyzed, showing that the adversary’s

chance of triggering the event NormalQueryWin(Q) at any given query is at most
(4/N)(2/N) = 8/N2. Since the adversary makes q queries total, we have

Pr[NormalQueryWin(Q)] ≤ 8q/N2. (3)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about to occur
on key L‖M , meaning that the value of EL‖M (·) is already known on exactly N/2
points paired into N/4 query pairs. Let A,A⊕ c be in the domain of the super
query. (We say that a point B ∈ {0, 1}n is “in the domain of the super query” if
EL‖M (B) is not yet known, and will be queried as part of the super query; note
that a point A ∈ {0, 1}n is in the domain of the super query if and only if A⊕ c
is in the domain of the super query.) Then the probability that EL‖M (A) = U
is either 0 if U is not in the range of the super query (meaning there is a normal
query EL‖M (B) = U already present in the query history when the super query
is made), or else is exactly 2/N , since the value of EL‖M (A) returned by the super
query is uniform at random in a set of size N/2. Thus, by a similar argument
on V , the probability that EL‖M (A) ∈ {U, V } is at most 4/N . Conditioning on
the event EL‖M (A) ∈ {U, V }, the probability that EL‖M (A ⊕ c) ∈ {U, V } is at
most 1/(N/2 − 1), since EL‖M (A ⊕ c) is sampled uniformly at random from a
set of size N/2−1, once the value EL‖M (A) is known. Thus the probability that
the super query returns values such that the adjacent query pair (A,L‖M, ·),
(A ⊕ c, L‖M, ·) is winning is at most 4/N(N/2 − 1). But A,A ⊕ c were two
arbitrary paired domain points; taking a union bound over the N/4 such pairs
in the domain of the super query, we find that the probability of the super query
producing a winning pair of adjacent queries is at most

(N/4) · (4/N(N/2− 1)) = 1/(N/2− 1).

We now observe that at most q/(N/4) super queries can ever occur, since each
super query requires a “setup” cost of N/4 queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N(N/2− 1). (4)

Summing (3) and (4) completes the proof. ut

5 Preimage security results for Abreast-DM

Abreast-DM, pictured in Figure 3, is one of the classical schemes for turning
a 2n-bit key block cipher into a 3n-bit to 2n-bit compression function. It was
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Fig. 3. The Abreast-DM compression function. The wires A,B,L are the inputs to
the compression function. The empty circle at the left side of the bottom block cipher
denotes bit complementation.

proposed by Lai and Massey in the same paper as Tandem-DM [5]. The collision
resistance of Abreast-DM was independently resolved by Fleischmann, Gorski
and Lucks [2] and Lee and Kwon [6], who both showed birthday-type collision
resistance for Abreast-DM. Previously, Hirose [3] had given a collision resistance
analysis for a general class of compression functions that included Abreast-DM
as a special case, but under the assumption that the top and bottom block
ciphers of the diagram be distinct. This assumption considerably simplifies the
analysis (see also the later generalization by Özen and Stam [8]).

Previously, Lee and Kwon [6] have shown that Advepre
Abr (q) ≤ 6q/(2n − 6q)2.

Although our bound for Abreast-DM (Theorem 3) is not as tight as our bound
for Hirose’s scheme (Theorem 2), it is clear from Corollary 1 below that our
result significantly improves this bound.

Theorem 3. Let Abr : {0, 1}3n → {0, 1}2n be the block cipher-based compres-
sion function depicted in Figure 3. Let α > 0 be an integer. Then

Advepre
Abr (q) ≤ 16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α
+

4q

αN
.

Proof. Let U‖V be the point to invert, chosen by the adversary before any
queries are made to E.

Unlike in the proof for Hirose’s scheme, we do not give the adversary a free
query after each query it makes. However, we still give the adversary “super
queries” for free. More precisely, whenever the adversary has made N/2 queries
under a given key K‖L, and after the (N/2)-th such query has been answered
and placed in the query history, we give the remaining N/2 queries under the
key K‖L for free to the adversary, in any order. In this case, we say that a super
query occurs; every query in the query history is either part of a super query,
or not; in the latter case we call the query a “normal query”. (Thus, in this
theorem, normal queries are exactly the non-free queries.) Unlike in the proof
of Theorem 2, there is no notion of an adjacent query pair. However, like in the
proof of Theorem 2, we alert the reader to the fact that a “super query” consists
of a set of N/2 queries, whereas a “normal query” is a single query.



We define an event Lucky(Q) on the query history; Lucky(Q) occurs if

|{(X,K‖L, Y ) ∈ Q : X ⊕ Y = U}| > 2α,

or if

|{(X,K‖L, Y ) ∈ Q : X ⊕ Y = V }| > 2α.

The adversary obtains a preimage of U‖V precisely if it obtains queries of
the form (A,B‖L,R), (B,L‖A,S) such that A⊕R = U and B⊕S = V , where B
is bitwise complementation of B. It is easy to check that these two queries must
be distinct, otherwise one obtains the contradiction B = A = L = B. We call
two such queries a “winning pair” of queries. Note, of course, that the queries
in a winning pair need not be adjacent in the query history. We speak of the
“first” and “second” query in a winning pair referring to the order in which they
appear in the query history.

Let WinNormal(Q) be the event that the adversary obtains a winning pair in
which the second query is a normal query. Let WinSuper1(Q) be the event that
the adversary obtains a winning pair in which the second query is part of a super
query and the first is either normal or part of a super query, but is not part of
the same super query as the second. Finally let WinSuper2(Q) be the event that
the adversary obtains a winning pair in which both queries of the pair are part
of the same super query. It is then clear that if the adversary wins, one of the
events

WinNormal(Q),WinSuper1(Q) or WinSuper2(Q)

occurs. In particular, thus, one of the four events

Lucky(Q),WinNormal(Q) ∧ ¬Lucky(Q),WinSuper1(Q) ∧ ¬Lucky(Q),

WinSuper2(Q) ∧ ¬Lucky(Q)

must occur if the adversary wins. We upper bound the probability of each of
these four events and sum the upper bounds in order to obtain an upper bound
on the adversary’s advantage.

We start by upper bounding Pr[Lucky(Q)]. For this we introduce two new
events. Let Qn be the restriction of Q to normal queries, and let Qs be the
restriction of Q to queries that are part of super queries. Let Luckyn(Q) be the
event that either

|{(X,K‖L, Y ) ∈ Qn : X ⊕ Y = U}| > α,

or

|{(X,K‖L, Y ) ∈ Qn : X ⊕ Y = V }| > α.

The event Luckys(Q) is likewise defined with respect toQs. Obviously, Lucky(Q) =⇒
Luckyn(Q) ∨ Luckys(Q), so it suffices to upper bound Luckyn(Q) and Luckys(Q)
and to sum these upper bounds.



Since every answer to a normal query, forward or backward, comes at random
from a set of size at least N/2, and since at most q normal queries are made, we
have that

Pr[Luckyn(Q)] ≤ 2 ·
(
q

α

)(
2

N

)α
≤ 2 ·

(
2eq

αN

)α
.

To upper bound Pr[Luckys(Q)], note that when a super query is made on key
K‖L, the expected number of points X ∈ {0, 1}n in the domain of the super
query such that X ⊕ EK‖L(X) = U is at most (N/2) · (2/N) = 1, since for
each individual such point the probability that X ⊕EK‖L(X) = U is either 0 (if
X ⊕ U is not in the range of the super query) or 2/N . Moreover there occur at
most q/(N/2) = 2q/N super queries, since it costs N/2 queries to setup a super
query for a given key. Thus, the expectation of the random variable

|{(X,K‖L, Y ) ∈ Qs : X ⊕ Y = U}|,

taken over the coin tosses of the adversary and the randomness of E, is at most
2q/N · 1 = 2q/N . It then follows by Markov’s inequality that the probability
that

|{(X,K‖L, Y ) ∈ Qs : X ⊕ Y = U}| > α

is at most 2q/αN . Then by a union bound and a symmetric argument (for
X ⊕ Y = V ) , we obtain that Pr[Luckys(Q)] ≤ 4q/αN . Summing the upper
bounds for Pr[Luckyn(Q)] and Pr[Luckys(Q)], we thus obtain that

Pr[Lucky(Q)] ≤ 2 ·
(

2eq

αN

)α
+

4q

αN
. (5)

We now upper bound Pr[WinNormal(Q) ∧ ¬Lucky(Q)]. For this we use a
“wish list” argument similar to that of [7]. As the adversary makes queries, we
maintain two sequences WT and WB called wish lists. These are initially empty.
For each query (X,K‖L, Y ) added to the query history (whether normal or part
of a super query) we update the wish lists as follows:

1. If X ⊕ Y = U then (K,L‖X,K ⊕ V ) is added to WB.
2. If X ⊕ Y = V then (L,X‖K,L⊕ U) is added to WT.

We emphasize thatWB andWT are sequences, not sets. The following properties
are easy to check: (i) a query never “adds itself” to a wish list (namely, the
queries inserted into the wish lists—if any—as a result of query (X,K‖L, Y )
being added to the query history, are distinct from (X,K‖L, Y ) itself); (ii) the
elements of WT are all distinct from one another, and the elements of WB are
all distinct from one another—namely, the same triple is never added twice to
a wish list; (iii) the adversary obtains a winning pair precisely if a query is ever
added to its query history that is already a member of one of its wish lists before
the updating of the wish lists for that query (by property (i), however, we could
equally well say “after the updating of the wish lists for that query”). Moreover,
as long as ¬Lucky(Q) holds, the wish lists never exceed length 2α.



Let EK‖L(X) be a query made to E during the adversary’s attack (either a
normal query, or as part of a super query). If, at the moment when the query
is being made, there is an element of the form (X,K‖L, Y ) in (at least) one of
the wish lists for some Y ∈ {0, 1}n, then we say this wish list element is being
“wished for” when the query EK‖L(X) is made. We similarly say the wish list

element (X,K‖L, Y ) is being “wished for” if the query E−1K‖L(Y ) is made (note

that in this case, the query E−1K‖L(Y ) is necessarily normal, since a super query

is, by default, implemented by forward queries). We note, importantly, that any
wish list element can only be wished for once, since EK‖L(·) is a permutation.

Let NormalWishGrantedT,i be the event that a normal query (X,K‖L, Y ),
when added to the query list, is equal to the i-th element ofWT (presumingWT

has length at least i when the query is added). Likewise define NormalWishGrantedB,i
with respect to the list WB. Then by the above remarks

WinNormal(Q) ∧ ¬Lucky(Q) =⇒
2α∨
i=1

NormalWishGrantedT,i ∨

2α∨
i=1

NormalWishGrantedB,i

so by a union bound

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[NormalWishGrantedT,i] +

2α∑
i=1

Pr[NormalWishGrantedB,i].

Because each wish list element can only be wished for once and because a normal
query is answered at random uniformly from a set of size at least N/2, we have

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and therefore

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 2 · (4α/N) = 8α/N. (6)

We now upper bound Pr[WinSuper1(Q) ∧ ¬Lucky(Q)]. We keep the same
definition of the wish listsWT,WB as above. We let SuperWishGranted1T,i be the
event that a query (X,K‖L, Y ) that is part of a super query is equal to the i-th
element of WT, where WT has length ≥ i before any of the super queries under
key K‖L have been made. The event SuperWishGranted1B,i is similarly defined.
By the definition of WinSuper1(Q) we have that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[SuperWishGranted1T,i] +

2α∑
i=1

Pr[SuperWishGranted1B,i].



Assume, for a given i, that the i-th element of WT (say) is (X,K‖L, Y ), and
that a super query is about to be made for the key K‖L, and that X is in the
domain of the super query. Then the probability that EK‖L(X) = Y is at most
2/N (more precisely, it is exactly 2/N unless Y is not in the super query’s range,
in which case it is 0). Thus, arguing similarly for the list WB, we obtain that

Pr[SuperWishGranted1T,i] ≤ 2/N, Pr[SuperWishGranted1B,i] ≤ 2/N.

Therefore

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (7)

We finally bound Pr[WinSuper2(Q) ∧ ¬Lucky(Q)]. In fact we upper bound
the value Pr[WinSuper2(Q)], and we do not use a wish list argument. Note the
event WinSuper2(Q) can only occur when a super query is made on a key of
the form L‖L, and then occurs only if both L and L are in the domain of the
super query and if EL‖L(L) ⊕ L = U , EL‖L(L) ⊕ L = V . It is easy to see that
probability (when the super query is made) that these latter equalities hold is
at most (2/N) · (1/(N/2 − 1)). Since at most q/(N/2) super queries are made,
we therefore have

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1). (8)

Finally, we obtain the theorem by summing (5), (6), (7) and (8). ut

Corollary 1. We have

Advepre
Abr (22n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

Proof. By setting α = q1/2/2 (note that α is allowed to depend on q), the bound
from Theorem 3 simplifies to

16q1/2

N
+

8q

N2(N − 2)
+ 2 ·

(
4eq1/2

N

)q1/2/2
Suppose that q = (cN)2 for some 0 < c < 1, then this bound can be rewritten
as

16c+
8c2

N − 2
+ 2 · (4ec)cN/2 .

For 4ec < 1 this tends 16c, so setting c = 1/32 gives us the claimed result. ut

6 Preimage security results for Tandem-DM

The Tandem-DM compression function, proposed by Lai and Massey in 1992 [5],
is a 3n-bit to 2n-bit compression function based on two applications of a block
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Fig. 4. The Tandem-DM compression function. The wires A,B,L are the inputs to the
compression function.

cipher of 2n-bit key and n-bit word length (Figure 4). The first (flawed) proof
of collision security for Tandem-DM (by Fleischmann, Gorski and Lucks [1])
did not appear until 2009. Later, Lee, Stam and Steinberger [7] gave a correct
collision resistance analysis of Tandem-DM showing that indeed it has birthday-
type collision security in the ideal cipher model (necessitating at least 2120.8

queries to break when the output length is 2n = 256 bits). They also showed
preimage resistance up to essentially 2128 queries (for n = 128), once 0n‖0n is
excluded as challenge digest. Our new bound is identical to the bound we gave
for Abreast-DM, so in particular 22n−10 queries are needed to obtain a preimage
with probability ∼0.5 (Corollary 2).

Theorem 4. Let Tan : {0, 1}3n → {0, 1}2n be the block cipher-based compres-
sion function depicted in Figure 4. Let α > 0 be an integer. Then

Advepre 6=0
Tan (q) ≤ 16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α
+

4q

αN
.

Proof. Let U‖V 6= 0n‖0n be the point to invert, chosen by the adversary before
making any queries to E.

We manage free queries exactly as for Abreast-DM; more precisely, when N/2
queries are made to E under a given key, we give the remainingN/2 queries under
that key for free to the adversary, and this constitutes a “super query”. No other
free queries are given.

In the case of Tandem-DM, the adversary obtains a preimage of U‖V pre-
cisely if it obtains queries of the form (A,B‖L,R), (B,L‖R,S) such that A⊕R =
U , B ⊕ S = V . It is easy to see these two queries must be distinct, otherwise
we would have A = B = L = R = S and therefore U‖V = 0n‖0n. We call two
queries as above a “winning pair” of queries, where the two elements of a win-
ning pair need not be adjacent in the query history (and could be in any order).
We speak again of the “first” and “second” query in a winning pair referring to
the order in which they appear in the query history.

We define the events Lucky(Q), WinNormal(Q), WinSuper1(Q) and WinSuper2(Q)
as in the proof of Theorem 3 (but with respect, of course, to the new definition



of “winning pair”). If the adversary wins, one of the events

Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q),

WinSuper2(Q) ∧ ¬Lucky(Q)

must occur. We upper bound the probability of each of these events separately.
As in the case of Theorem 3, we have

Pr[Lucky(Q)] ≤ 2 ·
(

2eq

αN

)α
+

4q

αN
. (9)

To upper bound Pr[WinNormal(Q) ∧ ¬Lucky(Q)], we again use wish lists.
There are two wish lists, WT and WB, which are initially empty and which
are updated after each new query (X,K‖L, Y ) placed into the query history,
according to the following rules:

1. If X ⊕ Y = U then (K,L‖Y,K ⊕ V ) is added to WB.
2. If X ⊕ Y = V then (L⊕ U,X‖K,L) is added to WT.

The same four properties from Theorem 3 are easy to check: (i) a query never
“adds itself” to a wish list (this uses U‖V 6= 0n‖0n); (ii) the elements within
each wish list are all distinct from one another; (iii) the adversary obtains a
winning pair precisely if it obtains a query that is already in one of its wish
lists (at the moment of insertion of that query into the query history). And by
definition of Lucky(Q), the wish lists never exceed length 2α as long ¬Lucky(Q)
holds.

Let NormalWishGrantedT,i, NormalWishGrantedB,i be defined as in (the proof
of) Theorem 3. Then, using exactly the same analysis as in the proof of Theorem
3, we have that

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and that

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (10)

Then also arguing word for word as in the proof of Theorem 3, we find that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (11)

We finally bound Pr[WinSuper2(Q)∧¬Lucky(Q)]. Note the event WinSuper2(Q)
can only occur when a super query occurs for a key of the form L‖L, and when
that super query results in the triples (U ⊕ L,L‖L,L), (L,L‖L,L ⊕ V ) being
added to the query history. The probability that EL‖L(U ⊕ L) = L is at most
2/N , and, conditioned on the event that EL‖L(U ⊕L) = L, the probability that
EL‖L(L) = L ⊕ V is at most 1/(N/2 − 1). Since at most 2q/N super queries
occur, we thus find that

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1). (12)

The theorem follows by summing (9), (10), (11) and (12). ut



As for Abreast-DM, we have the following corollary (with the same proof):

Corollary 2. We have

Advepre
Tan (22n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

7 Conclusion

In this work, we developed and applied new techniques for determining lower
bounds with respect to preimage resistance. As opposed to existing techniques,
statements on the security beyond the birthday bound are possible. We ap-
plied successfully these techniques to the three popular double-block-length,
double-call, block cipher-based compression functions, these being Abreast-DM,
Tandem-DM and Hirose’s scheme.

Although these techniques allow for proving asymptotically optimal bounds,
these bounds differ by constant factors from the best possible bound. This raises
the question whether more accurate bounds can be derived, possibly revealing
differences in the preimage resistance between the three constructions. A related
question is the estimation of non-trivial upper bounds on the preimage resistance.
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