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Abstract. We initiate the formal treatment of cryptographic construc-
tions (“Polly Cracker”) based on the hardness of computing remainders
modulo an ideal over multivariate polynomial rings. We start by formal-
ising the relation between the ideal remainder problem and the prob-
lem of computing a Gröbner basis. We show both positive and negative
results. On the negative side, we define a symmetric Polly Cracker en-
cryption scheme and prove that this scheme only achieves bounded CPA
security. Furthermore, we show that a large class of algebraic transfor-
mations cannot convert this scheme to a fully secure Polly-Cracker-style
scheme. On the positive side, we formalise noisy variants of the ideal
membership, ideal remainder, and Gröbner basis problems. These prob-
lems can be seen as natural generalisations of the LWE problem and the
approximate GCD problem over polynomial rings. We then show that
noisy encoding of messages results in a fully IND-CPA-secure somewhat
homomorphic encryption scheme. Our results provide a new family of
somewhat homomorphic encryption schemes based on new, but natural,
hard problems. Our results also imply that Regev’s LWE-based public-
key encryption scheme is (somewhat) multiplicatively homomorphic for
appropriate choices of parameters.

Keywords. Polly Cracker, Gröbner bases, LWE, Noisy encoding, Ho-
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1 Introduction

Background. Homomorphic encryption [19] is a cryptographic primitive which
allows performing arbitrary computations over encrypted data. From an alge-
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braic perspective, this homomorphic feature can be seen as the ability to evalu-
ate multivariate polynomials over ciphertexts. Hence, an instantiation of homo-
morphic encryption over multivariate polynomials is perhaps the most natural
strategy.

Indeed, let I ⊂ P = F[x0, . . . , xn−1] be some ideal. We can encrypt a message
m ∈ P/I as c = f + m for f randomly chosen in I. Decryption is performed
by computing remainders modulo I. From the definition of an ideal the homo-
morphic features of this scheme follow. The problem of computing remainders
modulo an ideal was solved by Buchberger in [8], where he introduced the notion
of Gröbner bases, and gave an algorithm for computing such bases.

In fact, all known doubly homomorphic schemes are based on variants of the
ideal remainder problem over various rings. For example in [13] the ring 〈p〉 ∈ Z
for p an odd integer is considered. In [19] ideals in a number field play the
same role (cf. [29]). One can even view Regev’s LWE-based public-key encryption
scheme [25] in this framework. Finally, we note that the construction displayed
above is essentially Polly Cracker (PC) [17]. However, despite their simplicity,
our confidence in PC-style schemes has been shaken as almost all such proposals
have been broken [15]. In fact, it is a long standing open research challenge to
propose a secure PC-style encryption scheme [5].

Contributions & Organisation. Our contributions can be summarised as
follows: 1) we initiate the formal treatment of PC-style schemes and characterise
their security; 2) we show the impossibility of converting such schemes to fully
IND-CPA-secure schemes through a large class of transformations; 3) we intro-
duce natural noisy variants of classical problems related to Gröbner bases which
also generalise previously considered noisy problems; and 4) we present a new
somewhat (and doubly) homomorphic encryption scheme based on a new class
of computationally hard problems.

In more detail, after settling notation in Section 2, we formalise various problems
from commutative algebra in the language of game-based security definitions in
Section 3. In particular, we show that computing remainders modulo an ideal
with overwhelming probability is equivalent to computing a Gröbner basis for
zero-dimensional ideals. We then show that deciding ideal membership and com-
puting ideal remainders are equivalent for certain choices of parameters. We then
introduce a symmetric variant of Polly Cracker and characterise its security guar-
antees. We show that this scheme achieves bounded IND-CPA security, and that
this level of security is the best that one can hope for: we give an attacker which
breaks the cryptosystem once enough ciphertexts are obtained.

In Section 5, we show the security limitations of the constructed scheme are in
some sense intrinsic. More precisely, we show that a large class of algebraic trans-
formation cannot turn this scheme into a (fully) IND-CPA secure and additively
homomorphic PC-style scheme.
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To go beyond this limitation, we consider a constructions where the encoding of
messages is randomised. To prove security for such schemes, we consider noisy
variants of the ideal membership and related problems. These can be seen as nat-
ural generalisations of the (decisional) LWE and the approximate GCD problems
over polynomial rings (Section 6). After formalising and justifying the hardness
of the noisy assumptions in Section 7, we show that noisy encoding of messages
can indeed be used to construct a fully IND-CPA-secure somewhat homomor-
phic scheme. This result also implies that Regev’s LWE-based public-key scheme
is multiplicatively homomorphic under appropriate choices of parameters. Our
result, together with a standard symmetric-to-asymmetric conversion for homo-
morphic schemes, provides a positive answer to the long standing open problem
proposed by Barkee et al. [5]. In addition, we provide a new family of somewhat
homomorphic schemes which are based on new natural variants of well-studied
hard problems. Due to space limitations, we discuss concrete parameter choices
and include a reference implementation in the full version of the paper [1]. There,
we also show how our scheme allows proxy re-encryption of ciphertexts. This re-
encryption procedure can be seen as trading noise for degree in ciphertexts. That
is, we can control the growth of the ciphertext size due to multiplication by tol-
erating more noise. We note that this technique was recently and independently
developed in [7]. In [1], we also show that our scheme achieves a limited form of
key-dependent message (KDM) security in the standard model, where the least
significant bit of the constant term of the key is encrypted. We leave it as an
open problem to adapt the techniques of [2] to achieve full KDM security for the
Polly Cracker with noise scheme.

1.1 Related Work

Polly Cracker. In 1993, Barkee et al. wrote a paper [5] whose aim was to dispel
the urban legend that “Gröbner bases are hard to compute”. Another goal of
this paper was to direct research towards sparse systems of multivariate equa-
tions. To do so, the authors proposed the most obvious dense Gröbner-based
cryptosystem, namely an instantiation of the construction mentioned at the be-
ginning of the introduction. In their scheme, the public key is a set of polynomials
{f0, . . . , fm−1} ⊂ I which is used to construct an element f ∈ I. Encryption of
messages m ∈ P/I are computed as c =

∑
hifi + m = f + m for f ∈ I. The

private key is a Gröbner basis G which allows to compute m = c mod I = c
mod G. As highlighted in [5] this scheme can be broken using results from [12]
(cf. Theorem 2). At about the same time, and independently from the work of
Barkee et al., Fellows and Koblitz [17] proposed a framework for the design of
public-key cryptosystems. The ideas in [17] were similar to Barkee et al.’s, but
differed in some details. However, the main instantiation of such a system was the
Polly Cracker cryptosystem. Subsequently, a variety of sparse PC-style schemes
were proposed. The focus on sparse polynomials aimed to prevent the attack
based on Theorem 2, yet almost all of these schemes were broken. We point the
reader to [15] for a good survey of various constructions and attacks. Currently,
the only PC-style scheme which is not broken is the scheme in [9]. This scheme
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is based on binomial ideals (which in turn are closely related to lattices). Not
only can our constructions be seen as instantiations of Polly Cracker (with and
without noisy encoding of messages), they also allow security proofs based on the
hardness of computational problems related to (multivariate) polynomial ideals
with respect to random systems.

Homomorphic Encryption. With respect to doubly (i.e., additively and multi-
plicatively) homomorphic schemes, a number of different hardness assumptions
and constructions appeared in the literature. These include the Ideal Coset Prob-
lem of Gentry [19], the approximate GCD problem over the Integers of van Dijk
et al. [13], the Polynomial Coset Problem as proposed by Smart and Vercauteren
in [29], the Approximate Unique Shortest Vector Problem, the Subgroup Deci-
sion Problem, and the Differential Knapsack Vector Problem which appear in
[23]. The main difference between our work and previous work is that we base
the security of our somewhat homomorphic scheme on new computational prob-
lems related to ideals over multivariate polynomial rings. Furthermore, due to
the versatility of Gröbner basis theory, our work can be seen as a generalisation
of a number of known schemes and their underlying hardness assumptions. How-
ever, while our construction is doubly homomorphic and reasonably efficient for
low multiplicative circuit depths, it is currently an open problem how to make
it bootstrappable and hence turn it into a fully homomorphic scheme.

MQ Cryptography. Our work bears some connection with public-key cryptosys-
tems based on the hardness of solving multivariate quadratic equations (MQ).
The difference is that our cryptographic constructions enjoy strong reductions to
the known and hard problem of solving a random system of equations, whereas
the bulk of work inMQ cryptography relies on heuristic security arguments [14].
In contrast, our work is more in the direction of research initiated by Berbain
et al. [6] who proposed a stream cipher whose security was reduced to the dif-
ficulty of solving a system of random multivariate quadratic equations over F2.
Note also that the concept of adding noise to a system of multivariate equa-
tions has been also proposed by Gouget and Patarin in [21] for the design of an
authentication scheme. Our work, however, presents a more general and com-
plete treatment of problems related to ideals over multivariate polynomials –
both with and without noise – and aims to provide a formal basis to assess the
security of cryptosystems based on such problems.

2 Preliminaries

Notation. We write x← y for assigning value y to a variable x, and x←$ X for
sampling x from a set X uniformly at random. If A is a probabilistic algorithm we
write y←$ A(x1, . . . , xn) for the action of running A on inputs x1, . . . , xn with
uniformly chosen random coins, and assigning the result to y. For a random
variable X we denote by [X] the support of X, i.e., the set of all values that X
takes with non-zero probability. We use ppt for probabilistic polynomial-time.
We call η(λ) negligible if |η(λ)| ∈ λ−ω(1).
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Commutative Algebra Notation. In [1] we recall some basic definitions
related to Gröbner bases. For a more detailed treatment we refer to, for in-
stance, [10]. We consider a polynomial ring P = F[x0, . . . , xn−1] over some finite
field (typically Fq), some monomial ordering on elements of P , and a set of poly-
nomials f0, . . . , fm−1. We denote by M(f) the set of all monomials appearing
in f ∈ P . By LM(f) we denote the leading monomial appearing in f ∈ P ac-
cording to the chosen term ordering. We denote by LC(f) the coefficient ∈ F
corresponding to LM(f) in f and set LT(f) = LC(f) · LM(f). We denote by
P<d the set of polynomials of degree < d (and analogously for the >,≤,≥, and
= relations). We define P=0 as the underling field including 0 ∈ F. We define
P<0 as zero. Finally, we denote by M<m the set of all monomials < m for some
monomial m (and analogously for the >,≤,≥, and = relations). We assume the
usual power product representation for elements of P .

3 Gröbner Basis and Ideal Membership Problems

Following [11], we define a computational polynomial ring scheme. This is a gen-
eral framework allowing to discuss in a concrete way the different families of rings
that may be used in cryptographic applications. More formally, a computational
polynomial ring scheme P is a sequence of probability distribution of polynomial
ring descriptions (Pλ)λ∈N. A polynomial ring description P specifies various
algorithms associated with P such as computing ring operations, sampling el-
ements, testing membership, encoding of elements, ordering of monomials, etc.
We assume each polynomial ring distribution is over n = n(λ) variables, for
some polynomial n(λ), and is over a finite prime field of size q(λ).

In this work we denote by GBGen(1λ, P, d) an arbitrary ppt algorithm which
outputs a reduced Gröbner basis G for some zero-dimensional ideal I ⊂ P such
that every element of G is of degree at most d. Of particular interest to this
paper is the Gröbner basis generation algorithm shown in Algorithm 1 called
GBGendense(·). (Algorithm ReduceGB(·) is given in [1].) We show in [1] that
GBGendense(·) returns a Gröbner basis. Throughout the paper we assume an
implicit dependency of various parameters associated with P on the security
parameter. Thus, we drop λ to ease notation.

Algorithm 1: Algorithm GBGendense(1
λ, P, d)

begin1

if d = 0 then return {0};2

for 0 ≤ i < n do3

for mj ∈M<xdi
do4

cij ←$ Fq; gi ← gi + cijmj ;5

return ReduceGB({xd0 + g0, . . . , x
d
n−1 + gn−1}) ;6

end7
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We can now formally define the problem of computing a Gröbner basis.

Definition 1. The Gröbner basis problem is defined through the game denoted
GBP,GBGen(·),d,b,m as shown in Figure 1. The advantage of a ppt algorithm A in
solving the GB problem is defined as the probability of winning the game (i.e., the
game returning T). An adversary is legitimate if it calls the Sample procedure
at most m = m(λ) times.

Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ← f − (f mod G);
return f ;
end

Finalize():

begin
return (G = G′);
end

Fig. 1. Game GBP,GBGen(·),d,b,m.

We show in [1] that Sample returns elements of degree b which are uniformly
distributed in 〈G〉. We recall that given a Gröbner basis G of an ideal I, r = f
mod I = f mod G is the normal form of f with respect to the ideal I. We
sometimes drop the explicit reference to I when it is clear from the context
which ideal we are referring to, and simply refer to r as the normal form of
f . Computing normal forms is the ideal remainder problem which we formalise
below.

Definition 2. The ideal remainder problem is defined through the game shown
in Figure 2: IRP,GBGen(·),d,b,m. The advantage of a ppt algorithm A in solv-
ing the IR problem is defined as the probability of winning the game minus
1/qdimFq (P/〈G〉). An adversary is legitimate if it calls the Sample procedure at
most m = m(λ) times.

Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ′ ← (f mod G);
return f − f ′;
end

Challenge():

begin
f ←$ P≤b;
return f ;
end

Finalize(r′):

begin
r ← f mod G;
return r = r′;
end

Fig. 2. Game IRP,GBGen(·),d,b,m.

In Lemma 1 below we prove a weak form of equivalence between the above
problems. That is, we require that the IR adversary returns the correct answer
with an overwhelming probability. This is due to the restriction that Sample
can only be called a bounded number of times, and thus one cannot amplify the
success probability of the IR adversary through repetition. The weak statement
is sufficient in our context.
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Lemma 1. If the GB problem is hard, then the IR problem is weakly hard (i.e.,
cannot be solved with overwhelming probability). Furthermore, if the IR problem
is hard then so is the GB problem.

The precise theorem statement and a proof is given in [1]. Informally, the reduc-
tion of the GB problem to the IR problem works as follows. Consider an arbitrary
element gi in the Gröbner basis G. We can write gi as mi + g̃i for some g̃i < gi
and mi = LM(gi). Now, assume the normal form of mi is ri and suppose that
ri < mi. This implies that mi =

∑n−1
j=0 hjgj+ri for some hi ∈ P . Hence, we have

mi − ri ∈ 〈G〉, an element ∈ 〈G〉 with leading monomial mi. Repeat this pro-
cess for all monomials up to and including degree d and accumulate the results
mi− ri in a list G̃. The list G̃ is a list of elements ∈ 〈G〉 with LM(G̃) ⊇ LM(G)
which implies G̃ is a Gröbner basis. We note that this is the core idea behind
the FGLM algorithm [16].

The decisional variant of the IR problem is to decide whether the normal form
of some element modulo an ideal is zero or not, i.e., whether this element is in
the ideal or not. This is the ideal membership problem formalised below.

Definition 3. The ideal membership problem is defined through the the game
denoted IMP,GBGen(·),d,b,m as shown in Figure 3. The advantage of a ppt algorithm
A in solving IM is defined as twice the probability of winning the game minus 1.
An adversary is legitimate if it calls the Sample procedure at most m = m(λ)
times.

Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);
c←$ {0, 1};
return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ′ ← f mod G;
return f − f ′;
end

Challenge():

begin
f ←$ P≤b;
if c = 1 then
f ← f − (f mod G);
return f ;
end

proc. Finalize(c′):

begin
return (c = c′);
end

Fig. 3. Game IMP,GBGen(·),d,b,m.

Clearly any adversary which can solve the IR problem can also solve the IM
problem. However, if the search space of reminders modulo 〈G〉 is sufficiently
small, i.e., when qdimFq (P/〈G〉) = poly(λ), and under similar assumptions as for
Lemma 1, one can also perform the converse reduction. That is, one can solve
the IR problem using an oracle for the IM problem. Lemma 2 below proves this
equivalence for the special case of GBGendense(·). Once again, this is sufficient in
our context. As before, for Lemma 2 to be meaningful we require that the IM
adversary returns the correct answer with overwhelming probability.

Lemma 2. If the IR problem is hard, then the IM problem is weakly hard for
poly-sized qdimFq (P/〈G〉). Furthermore, if the IM problem is hard, then the IR
problem is also hard.
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Informally, the construction of an IR adversary from an IM adversary proceeds
as follows. Let f̃ be the challenge polynomial. The attacker simply exhaustively
searches all elements of the Fq vector space P/〈G〉 until the right remainder
r is found. This occurs if f − r ∈ 〈G〉 and can be then detected using an IM
adversary. However, there is a technical difficulty here. In general, the attacker
does not necessarily know the support of P/〈G〉 and hence cannot know how
to construct r. However, in our case we assume that GBGen(·) = GBGendense(·)
and this difficulty does not arise. In a more general setting, we would have to
discover P/〈G〉 as well (cf. proof of Lemma 4). See [1] for the proof.

Complexity estimation about Gröbner basis computations [1], together with the
above results, lead to the following hardness assumptions.

Definition 4. Let P be such that n(λ) = Ω(λ). Assume b − d > 0, b > 1,
and that m(λ) = c · n(λ) for a constant c ≥ 1. Then the advantage of any ppt
algorithm in solving the GB/IR/IM problem is negligible as function of λ.

4 Symmetric Polly Cracker: Noise-Free Version

4.1 Homomorphic Symmetric Encryption

Syntax. A homomorphic symmetric-key encryption scheme (HSKE) is spec-
ified by four ppt algorithms: 1) Gen(1λ) is the key generation algorithm and
returns a key pair (SK,PK), a message space MsgSp(PK) and a function space
FunSp(PK). 2) Enc(m,SK) is the encryption algorithm and returns a ciphertext
c. 3) Eval(c0, . . . , ct−1, C,PK) is the evaluation algorithm and outputs a cipher-
text cevl. 4) Dec(cevl,SK) is the deterministic decryption algorithm and returns
either a message m or a special failure symbol ⊥.

Correctness. An HSKE scheme is correct if for any λ ∈ N, any (SK,PK) ∈
[Gen(1λ)], any t messages mi ∈ MsgSp(PK), any c ∈ [Enc(m,SK)], any circuit C ∈
FunSp(PK), any t ciphertexts ci ∈ [Enc(mi,PK)], and any evaluated ciphertext
cevl ∈ [Eval(c0, . . . , ct−1, C,PK)], we have that Dec(cevl,SK) = C(m0, . . . ,mt−1).
We do not necessarily require correctness over freshly created ciphertexts.

Compactness. An HSKE scheme is compact if there exists a fixed polyno-
mial bound B(·) so that for any key pair (SK,PK) ∈ [Gen(1λ)], any circuit
C ∈ FunSp(PK), any set of t messages mi ∈ MsgSp(PK), any ciphertext ci ∈
[Enc(mi,SK)], and any evaluated ciphertext cevl ∈ [Eval(c0, . . . , ct−1, C,PK)], the
size of cevl is at most B(λ+ |C(m0, . . . ,mt−1)|) (independently of the size of C).

The syntax, correctness, and compactness of a homomorphic public-key encryp-
tion scheme is defined similarly.

4.2 The Scheme

In this section we formally define the (noise-free) symmetric Polly Cracker en-
cryption scheme. We present a family of schemes parameterised not only by the
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underlying computational polynomial ring scheme P, but also by a Gröbner ba-
sis generation algorithm, which itself depends on a degree bound d, and a second
degree bound b. Our parameterised scheme, which we write as SPCP,GBGen(·),d,b,
is presented in Figure 4. The message space is P/I.

GenP,GBGen(·),d,b(1
λ):

begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);
SK← (G,P, b);
PK← (P, b);
return (SK,PK);
end

Enc(m, SK):

begin
f ←$ P≤b;
f ′ ← f mod G;
f ← f − f ′;
c← m+ f ;
return c;
end

Dec(c, SK):

begin
m← c mod G;
return m;
end

Eval(c0, . . . , ct−1, C,PK):

begin
apply the Add and Mult

gates of C over P ;
return the result;
end

Fig. 4. The (noise-free) Symmetric Polly Cracker scheme SPCP,GBGen(·),d,b.

Correctness of evaluation can be verified by a straight-forward calculation. This
scheme is not compact since multiplications square the size of the ciphertext.

4.3 Security

We will show that the above scheme only achieves a weak version of chosen-
plaintext security, which allows access to a limited number of ciphertexts.

Definition 5. The m-time IND-BCPA security of a (homomorphic) symmetric-
key encryption scheme SKE is defined though a game IND-BCPAm,SKE , which is
similar to IND-CPA except that the adversary can query its encryption and left-
or-right oracles a total of at most m = m(λ) times. We say SKE is m-IND-BCPA
secure if the advantage of any ppt adversary A, defined as twice the probability
of wining the game minus 1 is negligible.

Theorem 1. The scheme in Figure 4 is m-IND-BCPA secure iff the IM problem
is hard.

See [1] for the proof. As a corollary, observe that when m(λ) = O
(
λb
)

one can
construct an adversary which breaks the IND-BCPAm,SKE security of SPC in
polynomial time. Thus we can only hope to achieve security in the bounded
model for this scheme.

5 Symmetric-to-Asymmetric Conversion

Our goal for the rest of the paper is to convert the above scheme to one which is
both fully IND-CPA secure and somewhat homomorphic. Once we achieve this, it
is possible to construct a public-key scheme using the homomorphic features of
the symmetric scheme by applying various generic conversions. In the literature
there are two prominent such conversions:

(A) Publish a set of encryptions of zero F0 as part of the public key. To encrypt
m ∈ {0, 1} compute c =

∑
fi∈S fi +m where S is a sparse subset of F0 [13].
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(B) Publish two sets F0 and F1 of encryptions of zero and one as part of the
public key. To encrypt m ∈ {0, 1} compute c =

∑
fi∈S0

fi +
∑
fj∈S1

fj , with
S0 and S1 being sparse subsets of F0 and F1 respectively such that the parity
of |S1| is m. Decryption checks whether Dec(c,SK) is even or odd [27].

The security of the above transformations rests upon the (computational) in-
distinguishability of asymmetric ciphertexts from those produced directly using
the symmetric encryption algorithm. As noted above, since SPC is not IND-CPA
secure the above transformations cannot be used. However, one could envisage
a larger class of transformations which might lead to a fully secure additively
homomorphic SKE (or equivalently an additively homomorphic PKE) scheme.
In this section we rule out a large class of such transformations. To this end, we
consider PKE schemes which lie within the following design methodology.

1. The secret key is the Gröbner basis G of a zero-dimensional ideal I ⊂ P .
The decryption algorithm computes c mod I = c mod G (perhaps together
with some post-processing such as a mod 2 operation). Thus, the message
space is (essentially) P/I. We assume that P/I is known.

2. The public key consists of elements fi ∈ P . We assume that the remainder
of these elements modulo the ideal I, i.e., ri := fi mod I, are known.

3. A ciphertext is computed using ring operations. In other words, it can be
expressed as f =

∑N−1
i=0 hifi+r. Here fi are as in the public key, hi are some

polynomials (possibility depending on fi), and r is an encoding in P/I of
the message.

4. The construction of the ciphertext does not encode knowledge of I beyond
fi. That is, we have

(∑N−1
i=0 hifi + r

)
mod I =

∑N−1
i=0 hiri + r. Hence we

have that
(∑N−1

i=0 hiri + r
)
∈ P/I as an element of P .

5. The security of the scheme relies on the fact that elements f produced at
step (3) are computationally indistinguishable from random elements in P≤b.

Condition 4 imposes some real restrictions on the set of allowed transformation,
but strikes a reasonable balance between allowing a general statement without
ruling out too large a class of conversions. It requires that the ri and r do not
encode any information about the secret key. We currently require this restric-
tion on the “expressive power” of ri and r so as to make a general impossibility
statement. If ri and r produce a non-zero element in I using some arbitrary
algorithm A, we are unable to prove anything about the transformation. Fur-
thermore, it is plausible that for any given A a similar impossibility result can
be obtained if the remaining conditions hold.

Note that the two transformations above are special linear cases of this method-
ology. For transformation (A) we have that fi ∈ I (hence ri = 0), hi ∈ {0, 1}
and r = m. For transformation (B) we have ri = 0 if fi ∈ F0, ri = 1 if fi ∈ F1,
hi ∈ {0, 1}, and r = 0.
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To show that any conversion of the above form cannot lead to an IND-CPA-secure
public-key scheme, we will use the following theorem which was also used in [5]
to discourage the use of Gröbner bases for public-key schemes.

Theorem 2 ([12]). Let I = 〈f0, . . . , fm−1〉 be an ideal in the polynomial ring
P = F[x0, . . . , xn−1], h be such that deg(h) ≤ D, and

h− (h mod I) =
m−1∑
i=0

hifi, where hi ∈ P and deg(hifi) ≤ D.

Let G be the output of some Gröbner basis computation algorithm up to degree
D. Then h mod I can be computed by polynomial reduction of h via G.

The main result of this section is a consequence of the above theorem. It essen-
tially states that uniformly sampling elements of the ideal up to some degree is
equivalent to compute a Gröbner basis for the ideal. Note that in itself Theorem 2
does not provide this result, since there is no assumption about the “quality” of
h. Hence, to prove this result we first show that the above methodology implies
sampling as in Theorem 2 but with uniformly random output. Theorem 2 then
allows us to compute normal forms which (because of the randomness of h) al-
lows the computation of a Gröbner basis by Lemma 1. The proof of Theorem 3
is given in [1].

Theorem 3. Let G = {g0, . . . , gs−1} be the reduced Gröbner basis of the zero-
dimensional ideal I in the polynomial ring P = F[x0, . . . , xn−1] where each
deg(gi) ≤ d. Assume that P/I is known. Furthermore, let F = {f0, . . . , fN−1}
be a set of polynomials with known ri := fi mod I. Let A be a ppt algorithm
which given F produces elements f =

∑
hifi + r with deg(f) ≤ b, hi ∈ P ,

b ≤ B, deg(hifi) ≤ B, and (f mod I) =
∑
hiri + r. Suppose further that

the outputs of A are computationally indistinguishable from random elements in
P≤b. Then there exists an algorithm which computes a Gröbner basis for I from
F in O

(
n3B

)
field operations.

Therefore, if for some degree b ≥ d computationally uniform elements of P≤b
can be produced using the public key f0, . . . , fN−1, there is an attacker which
recovers the secret key g0, . . . , gs−1 in essentially the same complexity. Hence,
while conceptually simple and provably secure up to some bound, our symmetric
Polly Cracker scheme SPCP,GBGen(·),d,b does not provide a valid building block
for constructing a fully homomorphic public-key encryption scheme.

Remark. Although the above impossibility result is presented for public-key en-
cryption schemes, due to the equivalence result of [27], it also rules out the exis-
tence of additively homomorphic symmetric PC-style schemes with full IND-CPA
security.

11



6 Gröbner Bases with Noise

In this section, we introduce noisy variants of the problems presented in Sec-
tion 3. The goal is to lift the restriction on the number of samples that the ad-
versary can obtain, and following a similar design methodology to Polly Cracker,
construct an IND-CPA-secure scheme. That is, we consider problems which nat-
urally arise if we consider noisy encoding of messages in SPC. Similarly to [13,
26] we expect a problem which is efficiently solvable in the noise-free setting to
be hard in the noisy setting. We will justify this assumption in Section 6.1 by
arguing that our construction can be seen as a generalisation of [13, 26]. The
games below will be parameterised by a noise distribution. The discrete Gaus-
sian distribution – denoted for χα,q for standard deviation αq and modulus q –
is of particular interest to us (cf. [25]).

We now define a noisy variant of the Gröbner basis problem. The task here is
still to compute a Gröbner basis for some ideal I. However, we are now only
given access to a noisy sample oracle which provides polynomials which are not
necessarily in I but rather are “close” approximations to elements of I. Here
the term “close” is made precise using a noise distribution χ on P/I.

Definition 6. The Gröbner basis with noise problem is defined through the game
GBNP,GBGen(·),d,b,χ as shown in Figure 5. The advantage of a ppt algorithm A in
solving the GBN problem is the probability of winning the game.

Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Finalize(G′):

begin
return (G = G′);
end

Fig. 5. Game GBNP,GBGen(·),d,b,χ.

The essential difference between the noisy and noise-free versions of the GB prob-
lem is that by adding noise we have eliminated the restriction on the adversary
to call the Sample oracle a bounded number of times. The choice of χ greatly
influences the hardness of the GBN problem.

As in the noise-free setting, we can ask various questions about the ideal I
spanned by G. One such example is solving the ideal remainder problem with
access to noisy samples from I.

Definition 7. The ideal remainder with noise problem is defined through the
game IRNP,GBGen(·),d,b,χ as shown in Figure 6. The advantage of a ppt algorithm
A is defined as the probability of winning the game minus 1/q(λ)dimF(P/〈G〉).

In fact, the above two problems are equivalent as shown in the lemma below.
Compared to the noise-free version, we no longer need the IM adversary to be
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Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Challenge():

begin
f ←$ P≤b;
return f ;
end

Finalize(r′):

begin
r” = f mod G;
return r′ = r”;
end

Fig. 6. Game IRNP,GBGen(·),d,b,χ.

overwhelmingly successful, as there are no restrictions on the number of calls
that can be made to the Sample procedure. The proof is given in [1].

Lemma 3. The IRN problem is hard iff the GBN problem is hard.

Similarly to the noise-free setting, the ideal membership with noise (IMN) prob-
lem is the decisional variant of the IRN (and hence the GBN) problem. However,
in the noisy setting we have the choice between a noisy and noise-free challenge
polynomial. In the definition below noisy challenges are provided and the ad-
versary wins the game if he can distinguish whether an element was sampled
uniformly from P≤b or from I + χ.

Definition 8. The ideal membership with noise problem is defined through the
game IMNP,GBGen(·),d,b,χ as shown in Figure 7. The advantage of a ppt algorithm
A in solving the IMN problem is as twice the probability of winning the game
minus 1.

Initialize(1λ,P, d):
begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);
c←$ {0, 1};
return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e←$ χ;
f ′ ← f mod G;
f ← f − f ′ + e;
return f ;
end

Challenge():

begin
f ←$ P≤b;
if c = 1 then
e←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Finalize(c′):

begin
return (c′ = c);
end

Fig. 7. Game IMNP,GBGen(·),d,b,χ.

Our definition of the IMN problem can be seen as an instantiation of Gentry’s
ideal coset problem [18] since both problems require distinguishing uniformly
chosen elements in P≤b from those in I + χ. Our problem, however, assumes
noisy samples since it is clear from Section 3 that otherwise the problem is easy.

Again, we would like to have a decision-to-search reduction; that is, we would
like to have an equivalence between the IRN and IMN problems. This equivalence
holds when the search space of remainders is polynomial in λ, namely when
q(λ)dimFq (P(λ)/GBGen(·)) = poly(λ). The intuition behind this reduction is that
the adversary can exhaustively search the quotient ring and use the IMN oracle
to verify his guess. Once again, a technical difficulty arises as the adversary
does not know the search space P/I and thus has to discover it during the
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attack. Again, the IMN adversary provides an oracle to accomplish this. This is
formalised in the lemma below whose proof is in [1].

Lemma 4. The IMN problem is hard iff the IRN problem is hard for poly-sized
qdimFq (P/〈G〉).

Hence GBN is equivalent to IRN and IRN is equivalent to IMN under some addi-
tional assumptions about the size P/I. Finally, for d = 1 (but arbitrarily b) we
show that if we can solve the GBN problem on average, then we can also solve
it for worst-case instances. This is turn increases our confidence in hardness of
the GBN problem. The proof of the follow lemma is given in [1].

Lemma 5. If the GBN problem is worst-case hard, then it is also average-case
hard.

6.1 Hardness Assumptions and Justifications

Let us now investigate the hardness of the GBN, IRN, and IMN problems.

Relation to LWE. It is easy to see that GBN can be considered as a non-
linear generalisation of LWE if q = poly(n) is a prime. In other words, we have
equivalence between these problems when b = d = 1 in GBN. This is formalised
below (proof is in [1]).

Lemma 6. If the LWE problem is hard then the GBN problem is also hard for
b = d = 1.

In the noise-free setting we assume that solving systems of equations of degree
greater than 1 is harder than solving those of degree 1. More generally, we
assume that equations of degree b > b′ are harder to solve than those of degree
b′. Intuitively, equations of degree b′ can be seen as those of degree b where
the coefficients of higher degree monomials are set to zero. However, formalising
this intuition for an adversary which expects uniformly distributed equations of
degree b seems futile since producing such equations is equivalent to solving the
system by Theorem 3.

In the noisy setting this equivalence (i.e., Theorem 3) between sampling and
solving no longer holds. However, we still need to deal with the distribution of
noise. One strategy to show that difficulty increases with the degree parameter
b is to allow for an increase of the noise level in the samples. We formalise this
below (a proof is given in [1]) .

Lemma 7. If the GBN problem is hard for degree 2b with noise χ√Nα2q,q, N =(
n+b
b

)
, then it is also hard for degree b with noise χα,q.

Relation to the Approximate GCD Problem. The GBN problem for n = 1
is the approximate GCD problem over Fq[x]. Contrary to the approximate GCD
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problem over the integers (cf. [13]), this problem has not yet received much atten-
tion, and hence it is unclear under which parameters it is hard. However, as we
discuss in [1], the notion of a Gröbner basis can be extended to Z[x0, . . . , xn−1],
which in turn implies a version of the GBN problem over Z. This can be seen as
a direct generalisation of the approximate GCD problem in Z.

The Case q = 2. Recall that if b = d = 1 we have an equivalence with the LWE
problem (or the well-known problem of learning parity with noise (LPN) if q = 2).
More generally, for d = 1 we can reduce Max-3SAT instances to GBN instances by
translating each clause individually to a Boolean polynomial. However, in Max-
3SAT the number of samples is bounded and hence this reduction only shows
the hardness of GBN with a bounded number of samples. Still, the Gröbner basis
returned by an arbitrary algorithm A solving GBN using a bounded number of
samples will provide a solution to the Max-3SAT problem. Vice versa, we may
convert a GBN instance for d = 1 to a Max-SAT instance (more precisely Partial
Max-Sat) by running an ANF to CNF conversion algorithm [4].

Known Attacks. Finally, we consider known attacks to understand the dif-
ficulty of the GBN problem. Recall that if b = 1 Lemma 6 states that we can
solve the LWE problem if we can solve the GBN problem. The converse also
applies. Indeed, for any b ≥ d and d = 1 the best known attack against the
GBN problem for d = 1 is to reduce it to the LWE problem, similarly to the
linearisation technique used for solving non-linear systems of equations in the
noise-free setting. Let N =

(
n+b
b

)
be the number of monomials up to degree b.

Let M : P → FNq be a function which maps polynomials in P to vectors in FNq
by assigning the i-th component of the image vector the coefficient of the i-th
monomial ∈ M≤b. Then, in order to reduce GBN with n variables and degree
b to LWE with N variables, reply to each LWE Sample query by calling the
GBN Sample oracle to retrieve f , compute v = M(f) and return (a, b) with
a = (vN−1, . . . , v1) and b = −v0. When the LWE adversary queries Finalize on
s, query the GBN Finalize on [x0 − s0, . . . , xn−1 − sn−1]. Correctness follows
from the correctness of linearisation in the noise-free setting [3]. Furthermore,
the LWE problem in N variables and with respect to the discrete Gaussian noise
distribution χα,q is considered to be hard if α ≥ 3/2 · max( 1

q , 2
−2
√
N log q log d)

for an appropriate choice of δ which is the quality of the approximation for the
shortest vector problem. With current lattice algorithms δ = 1.01 is hard and
1.005 infeasible [24].

Perhaps the most interesting attack on LWE from the perspective of this work
is that due to Arora and Ge [3] which reduces the problem of solving linear
systems with noise to the problem of solving (structured) non-linear noise-free
systems. We may apply this technique directly to GBN, i.e., without going to
LWE first, and reduce it to GB with large b. However, it seems this approach does
not improve the asymptotic complexity of the attack. Finally, certain conditions
to rule out exhaustive search must be imposed.
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Definition 9. Let b, d ∈ N with b ≥ d ≥ 1. Let P be a polynomial ring distri-
bution and χα,q be the discrete Gaussian distribution. Suppose the parameters
n, α, and q (all being a function of λ) satisfy the following set of conditions:
1) n ≥ b

√
λ; 2) (αq)nd

n ≈ 2λ so exhaustive search over the noise or the secret key
space is ruled out; 3) αq ≥ 8 as suggested in [22]; and 4) for N :=

(
n+b
b

)
, and

δ := 1.005 we have α ≥ 3/2 ·max{ 1
q , 2
−2
√
N log q log δ}, and hence the best known

attacks against the LWE problem are ruled out [24, 28]. Then the advantage of
any ppt algorithm in solving the GBN, IRN, and IMN problems is negligible.

7 Polly Cracker with Noise

In this section we present a fully IND-CPA-secure PC-style symmetric encryption
scheme. Our parameterised scheme, SPCNP,GBGen(·),d,b,χ, is shown in Figure 8.
Here we represent elements in Fq as integers in the interval (−b q2c, b

q
2c]. This

representation is also used in the definition of noise. All the computations are
performed in the ring P as generated by Gen. Furthermore we assume that
gcd(2, q) = 1. This condition is needed for the correctness and the security of
our scheme. The message space is F2 (although we remark that this can be
generalised to other small fields). Correctness of evaluation up to overflows can
be established by a straight-forward calculation.

GenP,GBGen(·),d,b,χ(1λ):

begin
P ←$ Pλ;

G←$ GBGen(1λ, P, d);
SK← (G,P, b, χ);
PK← (P, b, χ);
return (SK,PK);
end

Enc(m, SK):

begin
f ←$ P=b;
f ′ ← f mod G;
f ← f − f ′;
e←$ χ;
c← f + 2e+m;
return c;
end

Dec(c, SK):

begin
m′ ← c mod G;
m← m′ mod 2;
end

Eval(c0, . . . , ct−1, C,PK):

begin
apply Add and Mul gates
of C over P ;
return the result;
end

Fig. 8. The Symmetric Polly Cracker with Noise scheme SPCNP,GBGen(·),d,b,χ.

Permitted Circuits. Circuits composed of Add and Mul gates can be seen
as multivariate Boolean polynomials in t variables over F2. We can consider the
generalisation of this set of polynomials to Fq (i.e., the coefficients are in Fq).
In order to define the set of permitted circuits (which will be parameterised by
α > 0) we first embed the Boolean polynomials into the ring of polynomials
over Z. For χα,q we have that the probability of the noise being larger than
kαq is < exp(−k2/2). We now say that a circuit is valid if for any (s0, . . . , st−1)
with si ≤ tαq we have that the outputs are less than q for some parameter t.
This restriction ensures that no overflows occur when polynomials are evaluated
over Fq. In [1] we discuss how to set α and q in order to allow for evaluation of
polynomials of some fixed degree µ and provide a Sage implementation [30].

Compactness. Additions do not increase the size of the ciphertext, but they do
increase the size of the error by at most one bit. Multiplications square the size
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of the ciphertext and the bit-size of the the noise by approximately log(5e0e1)
bits. In [1] we also provide a discussion on how to trade ciphertext size with
noise, an avenue which is investigated independently in [7]. The theorem below,
which is proven in [1], states the security properties of the above scheme.

Theorem 4. If the IMN problem is hard, then the scheme in Figure 8 is secure.

The above theorem together with the recent results in [27] which establish
the equivalence of symmetric and asymmetric homomorphic encryption schemes
leads to the first provably secure public-key encryption scheme from assumptions
related to Gröbner bases for random systems. This provides a positive answer
to the challenges raised by Barkee et al. [5] (and later also by Gentry [18]). We
note here that the transformation – as briefly described in Section 5 – only use
the additive features of the scheme and does not require full homomorphicity.
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