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Abstract. In this paper we present the first CCA-secure public key en-
cryption scheme that is structure preserving, i.e., our encryption scheme
uses only algebraic operations. In particular, it does not use hash-functions
or interpret group elements as bit-strings. This makes our scheme a per-
fect building block for cryptographic protocols where parties for instance
want to prove properties about ciphertexts to each other or to jointly
compute ciphertexts. Our scheme is very efficient and is secure against
adaptive chosen ciphertext attacks.
We also provide a few example protocols for which our scheme is useful.
For instance, we present an efficient protocol for two parties, Alice and
Bob, that allows them to jointly encrypt a given function of their re-
spective secret inputs such that only Bob learns the resulting ciphertext,
yet they are both ensured of the computation’s correctness. This proto-
col serves as a building block for our second contribution which is a set
of protocols that implement the concept of so-called oblivious trusted
third parties. This concept has been proposed before, but no concrete
realization was known.
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1 Introduction

Public key encryption and signature schemes have become indispensable build-
ing blocks for cryptographic protocols such as anonymous credential schemes,
group signatures, anonymous voting schemes, and e-cash systems. In the design
of such protocols, it is often necessary that one party be able to prove to an-
other that it has correctly signed or encrypted a message without revealing the



message and its signature or encryption. An efficient implementation of such
proofs is possible if the signature and encryption schemes allows one to employ
generalized Schnorr [12] or Groth-Sahai proofs [21]. In the design of suitable
signature and encryption schemes one should therefore stay within the realm of
algebraic groups and not break the algebraic structures, for instance, by using
hash-functions in an essential way.

When it comes to signature schemes, a designer can pick from a number of
schemes that are suitable (e.g., [15, 5, 1]). For encryption schemes secure against
adaptive chosen ciphertext attack (CCA) the situation is quite different. Two
schemes that are somewhat suitable are the Camenisch-Shoup and the Cramer-
Shoup encryption schemes [7, 18], allowing for the verifiable encryption (and
decryption) of discrete logarithms and group elements, respectively. Both these
schemes make use of a cryptographic hash function to achieve security against
chosen ciphertext attacks. These hash functions, unfortunately, prevent one from
efficiently proving relations between the input and output of the encryption
procedure. Such proofs, however, are an important feature in many advanced
protocols. They are for instance required when two parties are to jointly encrypt
(a function of) their respective inputs without revealing them or when a user is
to prove knowledge of a ciphertext, e.g., as a part of a proof of knowledge of a
leakage-resilient signature [22, 20] (proving knowledge of a signature is a central
tool in privacy-preserving protocols which so far is not possible for leakage-
resilient signatures).

In this paper we present the first efficient structure preserving CCA secure
encryption scheme. The term “structure-preserving” is borrowed from the notion
of structure-preserving digital signatures [1]. An encryption scheme is called
structure-preserving if its public keys, messages (plaintexts), and ciphertexts
are group elements and the encryption and decryption algorithm consists only
of group and pairing operations. We achieve structure preserving encryption by
a novel implementation of the consistency check that ensures security against
chosen ciphertext attacks. More precisely, we implement the consistency checks
using a bilinear map between algebraic groups and embed all other ciphertext
components in the pre-image group of that map. Our ciphertext consistency
element(s) could be either one element in the target group or several group
elements in the pre-image group. The former gives better efficiency, whereas
the latter can be used in more scenarios, in particular those making use of
Groth-Sahai proofs [21]. We prove our encryption scheme secure against chosen
ciphertext attacks under the decisional linear assumption [6]. Our encryption
scheme and protocols also support so-called labels [7] which are public messages
attached to a ciphertext and are important in the scenario we consider in this
paper to bind a decryption policy to the ciphertext.

Our new encryption scheme is well suited to build a variety of protocols.
For instance, with our scheme the following protocol problems can be addressed
which are common stumbling stones when designing advanced cryptographic
protocols:



– Our scheme can be used in the construction of leakage-resilient signatures [20]
which will then enable, for the first time, a user to efficiently prove knowledge
of a leakage-resilient signature.

– A user, who is given a ciphertext and a Groth-Sahai proof that the cipher-
text was correctly computed, is able to prove to a third party that it is in
possession of such a ciphertext without revealing it.

– Two users can jointly compute a ciphertext (of a function) of two plaintexts
such that neither party learns the plain text of the other party and only one
of the parties learns the ciphertext.

The last problem typically appears in protocols that do some kind of con-
flict resolution via a trusted third party. Examples include anonymity lifting
(revocation) in group signatures and in anonymous credential systems [14] and
optimistic fair exchange [3]. In these scenarios, there are typically two parties,
say Alice and Bob, who run a protocol with each other and then provide each
other with ciphertexts that can in case of a mishap (such as abuse of anonymity,
conflict, unfair abortion of the protocol, etc.) be presented to a third party for
resolution by decryption. Hereby, it is of course important that (1) the trusted
third party be involved in case of mishap only and (2) the parties can convince
each other that the ciphertexts indeed contain the right information. Note that
CCA security is crucial here, as the trusted third party effectively acts as a de-
cryption oracle. So far, protocol designers have used verifiable encryption, which
unfortunately has the disadvantage that both parties learn the ciphertext of the
other party. Hence, Alice could for instance take Bob’s ciphertext and bribe the
TTP so that it would act normally for all decryption requests except when Bob’s
ciphertext is presented in which case the TTP would just ignore the request.

To address this problem Camenisch, Gross, and Heydt-Benjamin [10] propose
the concept of oblivious trusted third parties (OTP): here, such conflict resolution
protocols are designed in such a way that the trusted third party is kept oblivious
of the concrete instance of the conflict resolution protocol. This means if Bob
goes to the TTP for resolution, he cannot possibly be discriminated as the TTP
cannot tell whether it is contacted by Bob or some other person. Therefore, if the
TTP would deny such requests too often, that would be known and so there is
no reason for Bob to believe that the TTP will not resolve the conflict for him if
need be. Unfortunately, Camenisch et al. only provide a high-level construction
for such a protocol but do not present a concrete instantiation. Based on our
new encryption scheme, we present the first concrete protocols that implement
OTP.

We prove all our protocols secure under composable simulation-based security
definitions [16, 4, 23].

Related Work. There is of course a lot of related work on encryption schemes,
but our scheme is the first one that is structure preserving. Considering our
second contribution, the protocols for oblivious trusted parties, the only related
work is by Camenisch, Gross, and Heydt-Benjamin [10]. They introduced the
concept of oblivious trusted third parties but, as we mentioned, do not provide
any concrete protocol.



2 Structure Preserving Encryption

In this section, we define the notion of structure-preserving encryption and
present the first instantiation of such a scheme. The term “structure-preserving”
is borrowed from the notion of structure-preserving digital signatures [1], and,
for encryption, represents the idea that ciphertexts are constructed purely using
(bilinear) group operations.

Note that the well known Cramer-Shoup [17, 18] and Camenisch-Shoup [7]
encryption schemes are not structure preserving as they make use of a crypto-
graphic hash function. Even the hash-free variant of Cramer-Shoup is not struc-
ture preserving; that is because its consistency check requires group elements
to be interpreted as exponents, which is not a group operation. The details of
a proof of knowledge of a hash-free ciphertext would depend on the group’s in-
ternal structure, e.g., it might be based on so called double-discrete logarithm
proofs [8], which are bit-wise and thus much less efficient than standard discrete
logarithm representation proofs.

Definition 1. Structure Preserving Encryption. An encryption scheme is said
to be structure-preserving if (1) its public keys, messages, and ciphertexts con-
sist entirely of elements of a bilinear group, (2) its encryption and decryption
algorithm perform only group and bilinear map operations, and (3) it is provably
secure against chosen-ciphertext attacks.

2.1 Basic Notation

We work in a group G of prime order q generated by g and equipped with a
non-degenerate efficiently computable bilinear map ê : G × G → GT . Also,
recall the well-known DLIN assumption [6]:

Definition 2. Decisional Linear Assumption (DLIN). Let G be a group of prime
order q. For randomly chosen g1, g2, g3 ← G and r, s, t ← Zq, the following two
distributions are computationally indistinguishable:

(G, g1, g2, g3, g
r
1, g

s
2, g

t
3) ≈ (G, g1, g2, g3, g

r
1, g

s
2, g

r+s
3 ) .

2.2 Construction

We construct a structure-preserving encryption scheme secure under DLIN. The
scheme shares some similarities with the Cramer-Shoup encryption and with the
Linear Cramer-Shoup encryption described by Shacham [24], neither of which is
structure-preserving (even for their hash-free variants).

For simplicity, we describe the scheme when encrypting a message that is
a single group element in G, but it is easily extended to encrypt vectors of
group elements. The extension is presented in the full version of the paper. Also,
our scheme supports labels. We consider the case when a label L is a single
group element, but the scheme extends trivially for the case of a label which is



a vector of group elements. Labels from the space {0, 1}∗ could be hashed to
one or several group elements, though in such cases they have to be part of the
statement rather than the witness for any NIZK proof.

– KeyGen(1λ): Choose random group generators g1, g2, g3 ← G∗. For ran-
domly chosen α ← Z3

q, set h1 = gα1

1 gα3

3 and h2 = gα2

2 gα3

3 . Then, select

β0, . . . ,β5 ← Z
3
q, and compute fi,1 = g

βi,1

1 g
βi,3

3 , fi,2 = g
βi,2

2 g
βi,3

3 , for i =
0, . . . , 5. Output pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0) and sk = (α, {βi}

5
i=0).

– Enc(pk, L,m): To encrypt a messagem with a label L, choose random r, s←
Zq and set

u1 = gr1, u2 = gs2, u3 = gr+s
3 , c = m · hr1h

s
2,

v =

3∏

i=0

ê(f r
i,1f

s
i,2, ui) · ê(f

r
4,1f

s
4,2, c) · ê(f

r
5,1f

s
5,2, L),

where u0 = g. Output c = (u1, u2, u3, c, v).
– Dec(sk, L, c): Parse c as (u1, u2, u3, c, v). Then check whether

v
?
=

3∏

i=0

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 , ui) · ê(u
β4,1

1 u
β4,2

2 u
β4,3

3 , c) · ê(u
β5,1

1 u
β5,2

2 u
β5,3

3 , L),

where u0 = g. If the latter is unsuccessful, reject the ciphertext as invalid.
Otherwise, output m = c · (uα1

1 uα2

2 uα3

3 )
−1

.

Note that the ciphertext c ∈ G4 ×GT . Using the pairing randomization tech-
niques of [2], v ∈ GT can be replaced by six random group elements v0, . . . , v5 ∈

G for which the following equation holds: v =
∏3

i=0
ê(vi, ui) · ê(v4, c) · ê(v5, L).

This way, the ciphertext would consist only of elements in G. The modification
is straightforward and is described in the full version of this paper [11].

2.3 Correctness and Security

To observe the correctness of the decryption, note that

c · (uα1

1 uα2

2 uα3

3 )
−1

= m · hr1h
s
2 ·
(
(gr1)

α1(gs2)
α2(gr+s

3 )α3

)−1

= m · (gα1

1 gα3

3 )r(gα2

2 gα3

3 )s ·
(
(gr1)

α1(gs2)
α2(gr+s

3 )α3

)−1
= m.

The correctness of the validity element v can be verified similarly.

Next, we show the CCA security of the encryption scheme. Our security
proof follows the high level idea of the Hash Proof System (HPS) paradigm [19].
Essentially, Lemma 1 says the “proof” π, which is used as a one-time pad for
the encryption of the message, has a corresponding HPS which is 1-universal,
whereas Lemma 2 shows that the “proof” ϕ, which constitutes the consistency
check element, has a corresponding HPS that is 2-universal. To make the proof
below more accessible to readers unfamiliar with the HPS paradigm, we opt for
a self-contained proof which can be easily translated into the HPS framework.



Theorem 1. If DLIN holds, the above public key encryption scheme is secure
against chosen-ciphertext attacks (CCA).

Proof sketch of Theorem 1: We proceed in a sequence of games. We start with a
game where the challenger behaves like in the standard IND-CCA game (i.e., the
challenge ciphertext is an encryption of mb, for a randomly chosen bit b, where
m0,m1 are messages given by the adversary), and end up with a game where the
challenge ciphertext is an encryption of a message chosen uniformly at random
from the message space. Then we show that all those games are computationally
indistinguishable. Let Wi denote the event that the adversary A outputs b′ such
that b = b′ in Game i.

Game 0. This is the standard IND-CCA game. Pr[W0] =
1

2
+ AdvA(λ).

Game 1. For (m0,m1, L) chosen by the adversary, the challenge ciphertext
c = (u, c, v) is computed using the “decryption procedure”, i.e., u1 = gr1,

u2 = gs2, u3 = gr+s
3 , c = mb · u

α1

1 uα2

2 uα3

3 and v =
∏3

i=0
ê(u

βi,1

1 u
βi,2

2 u
βi,3

3 , ui) ·

ê(u
β4,1

1 u
β4,2

2 u
β4,3

3 , c) · ê(u
β5,1

1 u
β5,2

2 u
β5,3

3 , L). The change is only syntactical, so the
two games produce the same distributions. Pr[W1] = Pr[W0].

Game 2. The randomness vector u = (u1, u2, u3) of the challenge ciphertext is
computed as non-DLIN tuple, i.e., u1 = gr1 , u2 = gs2, u3 = gt3 where r, s, t← Zq

and r + s 6= t. Game 1 and Game 2 are indistinguishable by DLIN. Therefore,
| Pr[W2]− Pr[W1] | = negl(λ).

Game 3. First note that in the previous game, as well as in this one, any
decryption query with “correct” ciphertext, i.e., which has a randomness vector
a DLIN tuple, yields a unique plaintext. That is, regardless of the concrete choice
of sk which matches pk seen by the adversary, such queries do not reveal any
information about the secret key.

In this game, unlike the previous one, any decryption query with “malformed”
ciphertext, i.e, which has a non-DLIN randomness vector û, is rejected. Let’s
consider two cases:

– (û, ĉ, L̂) = (u, c, L). Such decryption query is rejected because it is either the
challenge ciphertext (when v̂ = v) or the verification predicate fails trivially
(when v̂ 6= v). So, this case is the same in Game 2 and Game 3.

– (û, ĉ, L̂) 6= (u, c, L). By Lemma 2, such decryption query is rejected in Game
2 with overwhelming probability, whereas in Game 3 it is always rejected.

As the number of decryption queries is polynomial, | Pr[W3] − Pr[W2] | =
negl(λ).

Game 4. The challenge ciphertext encrypts a random message from the message
space. Game 3 and Game 4 are (information theoretically) indistinguishable by
Lemma 1. Pr[W4] = Pr[W3].

In the last game, the challenger’s choice b is independent from the cipher-
text, so Pr[W4] =

1

2
. Then, by the indistinguishability of the consecutive games

Pr[W0] =
1

2
+ negl(λ), hence AdvA(λ) = negl(λ). ut



Lemma 1 which we used in the above proof says that the one-time pad of the
message, when computing the challenge ciphertext in Game 4, can be replaced
by a random element. Whereas Lemma 2 shows that any decryption query with
“malformed” ciphertext ĉ is rejected with overwhelming probability because the
adversary A can hardly do better than guess the correct validity element.

For the formulation and proof of the lemmas, let g1, g2, g3 ← G∗ and u1 = gr1,
u2 = gs2, u3 = gt3, where r, s, t are randomly chosen from Zq and r + s 6= t. And
for convenience, denote z1 = dlogg(g1), z2 = dlogg(g2), and z3 = dlogg(g3).

Lemma 1. For randomly chosen α ← Z3
q, let h1 = gα1

1 gα3

3 , h2 = gα2

2 gα3

3 , and
π = uα1

1 uα2

2 uα3

3 . Then, for a randomly chosen ψ ← G it is true that the following
distributions are equivalent: (h1, h2, π) ≡ (h1, h2, ψ).

Proof sketch of Lemma 1: Note that h1 = gα1z1+α3z3 and h2 = gα2z2+α3z3 .
Then, for the tuple (h1, h2, π) the following equation holds:



z1 0 z3
0 z2 z3
rz1 sz2 tz3


 ·



α1

α2

α3


 =




dlogg(h1)
dlogg(h2)
dlogg(π)




Denote the matrix with M . It has a determinant det(M) = z1z2z3(t − r − s)
which is not equal to 0 due to the choice of the parameters. Therefore the matrix
is invertible, and for any π ∈ G, and fixed h1, h2, there exists a unique x which
yields the tuple (h1, h2, π). ut

Lemma 2. Let û = (û1, û2, û3) be any tuple such that û1 = gr̂1, û2 = gŝ2, and

û3 = gt̂3, for r̂ + ŝ 6= t̂. And for randomly chosen β0,β1, . . . ,β5 ← Z3
q, let

fi,1 = g
βi,1

1 g
βi,3

3 , fi,2 = g
βi,2

2 g
βi,3

3 , for i = 0, . . . , 5. For any m and m̂ in G5, let

ϕ =

5∏

i=0

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 ,mi) and ϕ̂ =

5∏

i=0

ê((û1)
βi,1(û2)

βi,2(û3)
βi,3 , m̂i),

where m0 = m̂0 = g. Then, for any m and m̂, m 6= m̂, it is true that the follow-
ing two distributions are equivalent: ({fi,1fi,2}

5
i=0, ϕ, ϕ̂) ≡ ({fi,1fi,2}

5
i=0, ϕ, ψ),

where ψ ← GT is randomly chosen.

Proof sketch of Lemma 2: Similarly to the proof of the previous lemma, let’s
define all variables which depend on {βi}

5
i=0 as the result of a constant matrix

M multiplied by the vector (β>
0 ||β

>
1 || . . . ||β

>
5 )

>. For convenience, denote with



wi = dlogg(mi) and ŵi = dlogg(m̂i), for i = 1, . . . , 5. Then, we have:





z1 0 z3 − − − . . . − − −
0 z2 z3 − − − . . . − − −
− − − z1 0 z3 . . . − − −
− − − 0 z2 z3 . . . − − −
...

...
...

...
...

...
. . .

...
...

...
− − − − − − . . . z1 0 z3
− − − − − − . . . 0 z2 z3
rz1 sz2 tz3 w1rz1 w1sz2 w1tz3 . . . w5rz1 w5sz2 w5tz3

r̂z1 ŝz2 t̂z3 ŵ1r̂z1 ŵ1ŝz2 ŵ1t̂z3 . . . ŵ5r̂z1 ŵ5ŝz2 ŵ5 t̂z3





·





|
β0

|
...
|
β5

|





=





dlog
g
(f0,1)

dlog
g
(f0,2)

dlog
g
(f1,1)

dlog
g
(f2,2)
...

dlog
g
(f5,1)

dlog
g
(f5,2)

dlog(ϕ)
dlog(ϕ̂)





.

We would like to argue that the rows of the matrixM are linearly independent.
As there exists i, i ≥ 1, such that mi 6= m̂i, if we choose the sub-matrix M ′

consisting of the intersection of the last two rows and rows 1, 2, 2i + 1, 2i+ 2
with columns 1, 2, 3, 3i+ 1, 3i+ 2, 3i+ 3, we get:

M ′ =




z1 0 z3 0 0 0
0 z2 z3 0 0 0
0 0 0 z1 0 z3
0 0 0 0 z2 z3
rz1 sz2 tz3 wirz1 wisz2 witz3
r̂z1 ŝz2 t̂z3 ŵir̂z1 ŵiŝz2 ŵi t̂z3



.

If the rows of M are not linearly independent, so are the rows of M ′. However,
M ′ has a determinant det(M ′) = ±z21z

2
2z

2
3(wi − ŵi)(t − r − s)(t̂ − r̂ − ŝ) which

is not equal to 0 due to choice of the parameters. Therefore, the rows of M are
linearly independent. ut

3 Secure Joint Ciphertext Computation

The CCA secure structure preserving encryptions scheme is well suited to build
a variety of protocols. More specifically, it facilitates the construction of proto-
cols that make use of practical ZK protocols to prove properties about partial
ciphertexts. We consider a two-party protocol for the joint computation of a
ciphertext under a third-party public key pk. The encrypted value is a function
of two secrets, each of which remains secret from the other protocol participant.
Moreover, only one participant gets to know the ciphertext. We study the case
where only the first party learns the ciphertext whereas the second one has no
output.

3.1 Preliminaries

Simulatability Model We use strong simulation-based definitions that guar-
antee security under composition in the flavor of [16, 4, 23]. In particular we base
our exposition on [23]. In [23] both ideal systems I and their realizations as



cryptographic protocols P are configurations of multi-tape interactive Turing
machines (ITMs). An ITM is triggered by another ITM if the latter writes a
message on an output tape that corresponds to an input tape of the former.
As a convention we bundle communication tapes into interfaces inf where an
interface consists of named input/output tape pairs. An input/output tape pair
is named inf.R after a combination of the interface name inf and a role name R.
We refer to the set of all roles of an interface as inf.R.

For simulation-based security definitions, the ideal system I and the protocol
P that emulates this ideal system, have to present the same interface inf towards
their environment, i.e., they must be environment compatible. We refer to an
ideal system and a protocol that is environment compatible with respect to
interface inf as Iinf and Pinf , respectively. In addition Iinf and Pinf expose different
network interfaces, the simulator interface infSim and the adversary interface
infAdv, respectively.

Strong simulatability. A proof that Pinf emulates Iinf , short Pinf ≤
SS Iinf will

need to prove existence of a simulator Sim that translates between the interfaces
infSim and infAdv such that for all p.p.t. Env: Env|Pinf ≈ Env|Sim|Iinf . This is for-
malized as strong simulatability which implies other simulatability notions such
as universal composability with dummy adversaries and blackbox simulatability.

Corruption. We consider only static corruption. A corrupted role in the ideal
and in the real world is controlled through infSim.R and infAdv.R respectively,
and acts as a proxy that allows the simulator, respectively, the environment to
send messages to any of its other connected tapes. We consider ideal systems Iinf
that are fully described by a virtual incorruptible party Finf . As the functionality
Finf implements the security critical parts of an ideal system, the ITM’s repre-
senting the different roles of the interface only need to implement forwarding and
corruption. We refer to the dummy party of role R as DR. When operating over
an adversarially controlled network, even an ideal cryptographic system cannot
prevent denial of service attacks. We therefor give the adversary the possibility
to delay messages from the ideal functionality to dummies.

Practical Zero-Knowledge Proof of Knowledge Protocols For the types
of relations required in our protocols, there exist practical ZK protocols. We refer
to Camenisch et al. [9, 13] for details. We will be proving statements of the form
Kw1, . . . , wn : φ(w1, . . . , wn, bases) where wi are exponents and φ is a predicate

defining discrete logarithm representations. For a more detailed description, we
refer to the full version of this paper.

We use a zero-knowledge ideal functionality as defined by Listing 1 that

is a simplification of the FR,R′

ZK functionality of [9] for which we consider only
static corruption. This allows us to reuse their ZK protocol compiler to obtain
efficient multi-session instantiations Pzk of Izk(R) in the hybrid secure channel
and joint-state common reference string model.



Listing 1 Functionality Fzk(R):

Fzk receives input from DPv over Fzk.Pv and provides output to DVf through the
delayed communication tape Fzk.Vf. Variable state is initialized to “ready”.

On (Prove, inst ,wit) from Fzk.Pv where state = “ready” and (inst ,wit) ∈ R

− let state = “final”; send (Prove, inst) to Fzk.Vf

Two-party computation In conformance with the simulatability model dis-
cussed above, Listing 2 defines the ideal functionality for the joint computation
of any function f on verifiable inputs inp1 and inp2. When performing such
a two-party computation, party P1+i is guaranteed that P2−i knows a witness
wit2−i for its input inp2−i such that (inst , (wit2−i, inp2−i)) ∈ R2−i. We restrict
ourselves to tractable relations Ri for which we can give efficient universally
composable proofs of knowledge as described in the full paper.

Listing 2 Functionality Ftpc(f,R1,R2)

Ftpc communicates with DP1
and DP2

through delayed communication tapes
Ftpc.P1 and Ftpc.P2. Variables inst, pub, inp1 store the input of the first party;
variable state is initialized to “ready”.

On (Input1, inst
′, pub′,wit ′1, inp

′
1) from Ftpc.P1 where state = “ready” and (inst ′,

(wit ′1, inp
′
1)) ∈ R1

− let inp1 = inp′
1, inst = inst ′, pub = pub′, and state = “input1”; send

(Input1, inst , pub) to Ftpc.P2

On (Input2,wit2, inp2) from Ftpc.P2 where state = “input1” and (inst , (wit2,
inp2)) ∈ R2

− let state = “final”; send (Result, f(pub, inp1, inp2)) to Ftpc.P1

We model an ideal secure two-party computation system Itpc(f,R1,R2) with
interface tpc as the combination of two dummy Parties DP1

and DP2
and an

ideal two party computation functionality Ftpc.

3.2 Construction

Model The model of our joint ciphertext computation, is fully described by a
secure two party computation as in Listing 2, where inpi = (li,xi), pub = pk,
and f is fJC(pk, (l1,x1), (l2,x2) ) = Enc(pk, gl1+l2 , (gx1,1+x1,2 , . . . , gxn,1+xn,2)) .

Implementation We present the protocol for the special case where the jointly
computed ciphertext encrypts a single message (i.e., n = 1). This extends triv-
ially in the multi-message case.

The idea of the protocol is as follows. The first party computes a partial
and blinded encryption of her secret, she proves that the computation is carried



out correctly, and sends the partial encryption to the other party. The second
party takes the values from the first flow of the protocol and, using its secret and
some randomness, computes a blinded full encryption of the agreed function of
the two plaintext contributions. Then, the second party sends these values and
proves that they are computed correctly. Finally, the first party unblinds the
ciphertext and updates the consistency element to obtain a valid encryption of
the function of the two secrets under jointly chosen randomness. The function can
be a constant to the power of any polynomial of the two secrets; for simplicity,
we consider the function gx1+x2 where g is a fixed group element and x1, x2 are
the two secrets.

Listing 3 Protocol Pjcc(R1,R2)

Party P1 and P2 receive input from jcc.P1 and jcc.P2 respectively and communi-
cate over Izk1 and Izk2 .

On (Input1, inst , pk,wit1, (l1, x1)) from jcc.P1

− if (inst , (wit1, l1, x1)) /∈ R1, P1 aborts

− P1 computes (msg1, aux1)← BlindEnc1(pk, l1, x1) and proves ((msg1, pk, inst),
(wit1, l1, x1, aux1)) ∈ RP1

(R1) to P2 using Izk1(RP1
(R1))

− P2 learns (msg1, pk, inst) from Izk1 and outputs (Input1, inst , pk) to jcc.P2

On (Input2,wit2, (l2, x2)) from jcc.P2

− if (inst , (wit2, l2, x2)) /∈ R2, P2 aborts

− P2 runs (msg2, aux2)← BlindEnc2(pk, l2, x2,msg1)

− P2 proves ((msg2, pk, inst), (wit2, l2, x2, aux2)) ∈ RP2
(R2) to P1 using Izk2(

RP2
(R2))

− P1 learns (msg2, pk, inst) from Izk2 , computes c← UnblindEnc(pk,msg2, aux 1),
and outputs (Result, c) to jcc.P1

Where abstractly, relations RP1
(R1) and RP2

(R2) are defined as

RP1
(R1) = {(msg1, pk, inst), (wit1, l1, x1, aux1)) |

∃r : (msg1, aux 1) = BlindEnc1(pk, l1, x1; r) ∧ (inst , (wit1, l1, x1)) ∈ R1}

RP2
(R2) = {((msg2, pk, inst), (wit2, l2, x2, aux 2)) |

∃r : (msg2, aux 2) = BlindEnc2(pk, l2, x2,msg1; r) ∧ (wit2, l2, x2)) ∈ R2} .

In the full paper, we show how to efficiently prove the relations RP1
(R1))

and RP2
(R2)) by giving a Klanguage statement.

We now give the details for the BlindEnc1, BlindEnc2, and UnblindEnc algo-
rithms.



Listing 4 Algorithms of Pjcc

(msg1, aux1)← BlindEnc1(pk, l1, x1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0).

– pick {γi}
5
i=1, {δi}

2
i=1, r1, and s1 at random and compute

ū′1 = gγ1 · gr11 , ū′2 = gγ2 · gs12 , ū′3 = gγ3 · gr1+s1
3 ,

ū′4 = gγ4 · gx1 · hr11 h
s1
2 , ū′5 = gγ5 · gl1 ,

v̄′1 = ê(g1, g
δ1) ·

∏
i=1

ê(fi,1, g
γi), v̄′2 = ê(g2, g

δ2) ·
∏

i=1
ê(fi,2, g

γi).

– output msg1 = (ū′1, ū
′
2, ū

′
3, ū

′
4, ū

′
5, v̄

′
1, v̄

′
2)

and aux1 = ({γi}
5
i=1, {δi}

2
i=1, r1, s1).

(msg2, aux2)← BlindEnc2(pk, l2, x2,msg1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0) and msg1 as (ū

′
1, ū

′
2, ū

′
3, ū

′
4,

ū′5, v̄
′
1, v̄

′
2).

– pick r2 and s2 at random and compute

ū1 = ū′1 · g
r2
1 , ū2 = ū′2 · g

s2
2 , ū3 = ū′3 · g

r2+s2
3 ,

ū4 = ū′4 · g
x2 · hr21 h

s2
2 , ū5 = ū′5 · g

l2 ,
v̄ = (

∏
i=0

ê(fi,1, ūi)/v̄
′
1)

r2 · (
∏

i=0
ê(fi,2, ūi)/v̄

′
2)

s2 ,

where ū0 = g.
– output msg2 = (ū1, ū2, ū3, ū4, ū5, v̄) and aux2 = (r2, s2).

c← UnblindEnc(pk,msg2, aux1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0), msg2 as (ū1, ū2, ū3, ū4, ū5,

v̄) and aux1 = ({γi}
5
i=1, {δi}

2
i=1, r1, s1).

– compute

u1 = ū1/g
γ1 = gr1 , u2 = ū2/g

γ2 = gs2, u3 = ū3/g
γ3 = gr+s

3 ,
u4 = ū4/g

γ4 = gx1+x2 · hr1h
s
2, u5 = ū5/g

γ5 = gl1+l2 ,
v = v̄ · ê(u1g

−r1
1 , gδ1) · ê(u2g

−s1
2 , gδ2) ·

∏
i=0

ê(f r1
i,1f

s1
i,2, ui),

where u0 = g.
– output c = (u1, u2, u3, u4, v) encrypted with label u5.

Correctness. Recall the structure of the ciphertext of the public-key encryption
scheme described in Section 2: for a public key pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}i=0),
label u5, and randomly chosen r, s← Zq, the ciphertext is computed as

(u1, u2, u3, u4, v) =

(
gr1, g

s
2, g

r+s
3 , m · hr1h

s
2,

5∏

i=0

ê(f r
i,1f

s
i,2, ui)

)
,where u0 = g.

Note that the protocol in Listing 3 computes a valid ciphertext because u1 = gr1
for r = r1 + r2, u2 = gs2 for s = s1 + s2, u3 = gr+s

3 , u4 = m·hr1h
s
2 form = gx1+x2 ,

and v =
∏

i=0
ê(f r

i,1f
s
i,2, ui). To see v is indeed computed this way, note that:

v̄ =

(∏

i=0

ê(fi,1, ūi)/v̄
′
1

)r2

·

(∏

i=0

ê(fi,2, ūi)/v̄
′
2

)s2

=

∏
i=0

ê(f r2
i,1f

s2
i,2, ui)

ê(g1, gδ1)r2 · ê(g2, gδ2)s2



and

v̄ · ê

(
u1
gr11

, gδ1
)
· ê

(
u2
gs12

, gδ2
)

= v̄ · ê(gr21 , g
δ1) · ê(gs22 , g

δ2) =
∏

i=0

ê(f r2
i,1f

s2
i,2, ui).

Theorem 2. The joint ciphertext computation protocol (Listing 3) strongly em-
ulates the ideal two-party computation protocol (Listing 2) for function fJC:
Pjcc(R1,R2) ≤

SS Itpc(fJC,R1,R2). We refer to the full paper for details.

4 Oblivious Third Parties

Modeling oblivious third parties. Transactions in the real world can be in-
tricately related. They may depend on many conditions, of which the verification
can be deferred to a number of (as oblivious as possible) third parties. For the
sake of concreteness, we now formally model a system that involves two oblivious
third parties: a satisfaction authority and a revocation authority. In our example
scenario, after a service enrollment between a user U and a service provider SP,
the user ought to make a payment for the service before tdue. Upon request, the
satisfaction authority SA checks that the user indeed made the payment and
provides the user with a blinded transaction token. The user unblinds the token
and publishes it to prove the satisfaction of the payment. Finally, the revocation
authority RA reveals the user’s identity to the service provider if no payment
has been made before the payment deadline (i.e. no token corresponding to the
enrollment was published).

We model the security and privacy requirements of such a system with the
help of an ideal functionality Fotp. As usual, corruption is modeled via dummies
DU, DSP, DSA, DRA that allow to access the functionality both over the environ-
ment interface (before corruption) and the network interface (after corruption).

The ideal system Iotp is depicted in Figure 1(a) and consists of the ideal
functionality connected to the dummy parties over delayed communication tapes.
Listing 5 specifies the reactive behavior of Fotp. A user that can prove his identity
with the help of a witness such that (inst , (id ,wit)) ∈ R, is allowed to enroll. In
particular, this interface supports the case where wit and inst are the secrets and
the public key of a CL-signature [15] on the user’s identity, i.e., an anonymous
credential [14, 5], or the opening and a commitment to the user’s identity, i.e., a
pseudonym [14]. For all these cases, the relation R is tractable.

Enrollment consists of three rounds. The first round commits the user to her
identity. The second round provides the user with a random satisfaction label
with respect to which she can satisfy the condition, e.g., make the necessary
payment. In this round the user is also made aware of the due date tdue for the
payment. Note that the user has to check that tdue fulfills reasonable uniformity
constraints to protect her privacy. The last round gives the service provider the
possibility to ask the identity revocation authority for the user’s identity. As a
common limitation with other escrow mechanisms for anonymous credentials,
we cannot extract the identity itself, but only the image of a bijection of it. We
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Fig. 1. The ideal OTP system Iotp and its realization as a protocol Potp: The realization
makes use of ideal resources Isci , IzkR , Ireg, Ijcci for secure communication, proofs of
knowledge, key registration, and joint ciphertext computation respectively.

model this by giving the simulator the possibility to choose the bijection. As the
identity space of realistic systems is small enough to allow for exhaustive search,
this is not a serious limitation.

The client interface towards the ideal oblivious parties, i.e., the interface of
the user and the service provider respectively, consists of two messages ReqAction
and TestAction, with Action ∈ {Satisfy, Open}. The obliviousness require-
ment guarantees that oblivious parties do not learn anything about the trans-
actions of their clients. Indeed the decision of an oblivious party cannot be
influenced in a transaction specific way, even if the other transaction participant
colludes with the oblivious party. This is modeled with the help of test requests
that are not related to any transaction. As these requests are indistinguishable



from real requests, they allow the user to check whether the oblivious party
indeed operates as required. 5

Consequently, the decision of an oblivious party can only depend on explicit
and relevant information. For satisfaction, this is the user known satisfaction
label L with respect to which she makes her payment. For the opening, it is the
transaction token T that is secret until after satisfaction, when it is learned by
the user. We abstract from the way through which users make T available to
the revocation authority, but envision some kind of anonymous publicly available
bulletin board. It is in the responsibility of the user to make the token, learned
during satisfaction, available to RA, and in the responsibility of RA to check its
existence. All the protocol guarantees is that RA learns the same T value during
opening as the user learned during satisfaction.

Listing 5 Functionality Fotp

Upon initialization, let state =“ready”,L = T = id = T̂ = îd = F = T= L = ε.
On (SetF, F ′,T′,L′) from otpSim.F where state = “ready”:
− abort if F ′ is not an efficient bijection or T′ or L′ are not of sufficient size;

set F = F ′, T = T′, and L = L′.

On (EnrollU, inst , (id ′, wit′)) from Fotp.U where state = “ready”:
− if (inst , (id ′, wit′)) /∈ R) abort;
− set state = “enrollu”; set id = id ′; send (EnrollU, inst) to FT.SP.

On (DeliverEnrollU, tdue
′) from FT.SP where state = “enrollu”:

− set tdue = tdue
′; set T ,L to random values from T and L respectively;

− set state = “deliverenrollu”; send (DeliverEnrollU,L, tdue) to Fotp.U.

On (DeliverEnrollSP) from Fotp.U where state = “deliverenrollu”:
− set state = “enrolled”; send (DeliverEnrollSP) to Fotp.SP.

On (ReqSatisfy) from Fotp.U where L 6= ε and T̂ = ε:
− set T̂ = T; send (ReqSatisfy,L) to Fotp.SA.

On (TestSatisfy,L′,T ′) from Fotp.U where T̂ = ε:
− set T̂ = T ′; send (ReqSatisfy,L′) to Fotp.SA.

On (Satisfy, satisfied) from Fotp.SA where T̂ 6= ε:
− if satisfied, set m = (Satisfy, T̂ ), otherwise set m = (Satisfy,⊥); set

T̂ = ε; send m to Fotp.U.

On (ReqOpen) from Fotp.SP where state = “enrolled” and îd = ε:
− set îd = id; send (ReqOpen,T , tdue) to Fotp.RA.

On (TestOpen,T ′, id ′, tdue
′) from Fotp.SP where îd = ε:

− set îd = id ′; send (ReqOpen,T ′, tdue
′) to Fotp.RA.

On (Open, open) from Fotp.RA where îd 6= ε:
− if open, set m = (Open, F (îd)), otherwise set m = (Open,⊥); set îd = ε;

send m to Fotp.SP.

5 An extension that allows not only the requester, but arbitrary external parties, e.g.
an auditor, to make test requests is a useful and cryptographically straightforward
extension to this interface.



Implementing oblivious third parties. To construct a protocol that securely
emulates the above functionality we make essential use of (adaptive chosen-
ciphertext attack secure) encryption. As depicted in Figure 1(b) the protocol
makes use of several cryptographic building blocks. But at the core of the pro-
tocol are two joint-ciphertext computations that, as described in Section 3, can
be efficiently realized thanks to structure preserving encryption.

The enrollment protocol has a few more communication rounds, because of
the zero-knowledge proofs, but otherwise closely follows the three phases of the
ideal system. In the first phase the user commits to and proves her identity.
Both the user and the service provider commit to randomness that they will use
to jointly compute the transaction token T . The user proves knowledge of the
opening of her commitment as part of the joint computation of the satisfaction
ciphertext c1 = Enc(pkSA, L, T · g

r). In the second phase, the service provider
transfers tdue, completes the joint ciphertext computation, and starts the com-
putation of the revocation ciphertext c2 = Enc(pkRA, g

tdue , (gid+r′ , T )). In both
cases, he proves knowledge of the opening to his commitment to guarantee that
the transaction token is embedded correctly into both ciphertexts. The user out-
puts the label of c1 as the random satisfaction label L. In the last phase the user
again proves knowledge of openings for her commitments in the computation
of c2 to guarantee that it contains the transaction token T and a blinded user
identity gid under label gtdue .

To satisfy her financial obligations, the user makes a payment with respect to
label L and then asks the satisfaction authority to decrypt c1. The user receives
the blinded transaction token, that she unblinds using her locally stored ran-
domness to learn T . She makes T available to the revocation authority, through
some out-of-band anonymous bulletin board mechanism. Test satisfaction re-
quests are just encryptions of blinded T ′ under label L′. To request the opening
of a user identity, the service provider sends the ciphertext c2 to the revocation
authority, which checks the label tdue, decrypts the ciphertext to learn T and
verifies whether T was posted by the user. If not, the revocation authority re-
turns the blinded identity gid+r′ to the service provider, which can unblind the
identity. Test opening requests are just encryptions of T ′ and blinded gid

′

under
label tdue

′.

The Real System Potp. We omit the details of the protocol and refer to the
full version for the description of Potp and the proof that it securely emulates
Fotp.

5 Conclusion

We propose the first public key encryption scheme that is structure preserving
and secure against adaptive chosen ciphertext attacks. We demonstrate the use-
fulness of this new primitive by the joint ciphertext computation protocol and
our proposal for instantiating oblivious third parties. We conjecture, however,
that the combination of the structure preserving encryption scheme and efficient



zero-knowledge proofs facilitate a much larger set of efficient protocol construc-
tions. All protocols are proven secure in the universal composability model.
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