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Abstract. Blinding is a popular and well-known countermeasure to
protect public-key cryptosystems against side-channel attacks. The high
level idea is to randomize an exponentiation in order to prevent multiple
measurements of the same operation on different data, as such measure-
ments might allow the adversary to learn the secret exponent. Several
variants of blinding have been proposed in the literature, using additive
or multiplicative secret-sharing to blind either the base or the exponent.
These countermeasures usually aim at preventing particular side-channel
attacks (mostly power analysis) and come without any formal security
guarantee.
In this work we investigate to which extend blinding can provide prov-
able security against a general class of side-channel attacks. Surprisingly,
it turns out that in the context of public-key encryption some blinding
techniques are more suited than others. In particular, we consider a mul-
tiplicatively blinded version of ElGamal public-key encryption where
– we prove that the scheme, instantiated over bilinear groups of prime

order p (where p−1 is not smooth) is leakage resilient in the generic-
group model. Here we consider the model of chosen-ciphertext secu-
rity in the presence of continuous leakage, i.e., the scheme remains
chosen-ciphertext secure even if with every decryption query the
adversary can learn a bounded amount (roughly log(p)/2 bits) of
arbitrary, adversarially chosen information about the computation.

– we conjecture that the scheme, instantiated over arbitrary groups of
prime order p (where p− 1 is not smooth) is leakage resilient.

Previous to this work no encryption scheme secure against continuous
leakage was known. Constructing a scheme that can be proven secure in
the standard model remains an interesting open problem.

1 Introduction

Side-channel attacks are cryptanalytic attacks against physical implementations
of cryptosystems that exploit some kind of information leakage from the cryp-
todevice during execution. Traditional security notions (such as chosen-ciphertext
security for encryption schemes) do not provide any security guarantee against
such attacks, and many implementations of provably secure cryptosystems were
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broken by side-channel attacks exploiting side-channels such as running-time
[36], electromagnetic radiation [45, 26], power consumption [38], fault detection
[8, 6] and many more (see, e.g., [46, 43]).

Countermeasures against side channel attacks can either be algorithmic, or
on the hardware level. In the latter case, one generally tries to build hardware
that leaks as few information as possible (e.g., by shielding electromagnetic ra-
diation.) Algorithmic countermeasures means that one designs algorithms, such
that their mere description already provides security against side channel at-
tacks. (E.g., one can protect against timing attacks by making sure that the
running time of the algorithm is independent of the secret.) Traditionally, such
algorithmic countermeasures (such as masking or blinding, cf. [43] for a list of
relevant papers) are mostly ad-hoc in the sense that they defend against some
specific and known attacks.

Leakage Resilient Cryptography. Recently, formal models were proposed
where one does not assume any particular side-channel against which to pro-
tect, but only requires that potential side-channels are in some sense ”resource
bounded.” In the model of leakage resilience [23], one considers adversaries
which, on each invocation of the cryptographic primitive, can learn a bounded
amount of arbitrary information about the secret internal state that was accessed
during invocation. Since the overall amount of leaked information is unbounded
(and may be much larger than the size of the secret state), this model is also
often referred to as continuous leakage (e.g., [15, 9]). As we will discuss below,
this is in sharp contrast to the model of “memory leakage” (e.g., [2, 41, 4, 3,
16]) which has the inherent limitation that the amount of leaked information is
a-priory bounded and therefore cannot exceed the size of the secret state.)

An implementation of a leakage resilient primitive will then be secure against
every side-channel attack that fits our general model, i.e., as long as the amount
of information that is leaked on each invocation is sufficiently bounded, and
moreover the device adheres the “only computation leaks information” axiom
from [40], which states that memory content that is not accessed during an
invocation, does not leak. Security in this bounded leakage model hence means
that the hardware implementation of the cryptosystem only has to be protected
to fit the above model; once that is done, the proof provides security of the
scheme. Using bounded leakage is inspired by the bounded retrieval model [13,
20, 19, 10, 22, 4] which in turn was inspired by the bounded-storage model [39,
21, 53, 30].

So far most theoretical research has focused on preventing memory leakage
[13, 20, 19, 10, 22, 4] and the only known leakage resilient primitives (in our sense
of security against continuous leakage) are stream-ciphers [23, 44], digital signa-
tures [25] and — in a weaker “non-adaptive” model — pseudorandom functions
and permutations [18]. Recently, general compilers have been proposed which
turn any circuit into a leakage-resilient one [28, 33]. Currently, these general
compilers are just a proof of concept and too inefficient to be used in practice,
relying on fully homomorphic encryption [33] or requiring one full encryption
per gate [28].



In this paper, we address the problem of leakage resilient public-key encryp-
tion (PKE). The standard security notion for PKE is indistinguishability under a
chosen plaintext attack (IND-CPA) or the stronger notion of indistinguishability
under a chosen ciphertext attack (IND-CCA).3

Modelling Leakage Resilience. Consider some cryptosystem CS, let S0

denote its initial internal state and Si its state after the ith invocation. On the
ith invocation of CS, the adversary chooses some input Xi and gets Yi where
(Si+1, Yi)← CS(Si, Xi).

In the original definition of leakage resilience [23], the adversary gets the
additional power to choose, besides the regular input Xi, some leakage function
fi whose range is bounded to some fixed λ ∈ N bits with every query. After
the ith invocation she not only gets the regular output Yi, but additionally
the leakage Λi ← fi(S

+
i , R) where R is the randomness that CS used during

its computation, and S+
i is the subset of the state Si that was accessed (i.e.,

read and/or written) during computation. Note that to be leakage resilient, a
primitive must be stateful (i.e. Si 6= Si−1), as otherwise one can just leak the
state λ bits at a time.

In this paper we will use a more fine-grained notion of leakage resilience,
where an invocation of CS (which will be a decryption query) is split in two
phases, and those two phases leak individually. More precisely, the computation
of a decryption can syntactically be split into two phases Dec1∗ and Dec2∗, which
are executed in a sequential order to decrypt the message. As in a CCA attack,
the adversary can make decryption queries with respect to a ciphertext C, and
can furthermore specify two (efficiently computable) leakage functions, f and g,
whose range is bounded by λ bits. (λ is the leakage parameter.) In addition to
the decryption of C the adversary also obtains the output of f and g applied to
all the inputs of Dec1∗ and Dec2∗, respectively, including the algorithm’s internal
random coin tosses.

On Bounded Range and Domain. Summing up, leakage resilience considers
attackers who, with every invocation, can adaptively choose a leakage function
f and then get the output of f applied to the internal secret state (if the system
is probabilistic also all internal coin tosses) of the cryptosystem. The function f
can be arbitrary, but is restricted in its input domain and range:

Bounded range: The range of f is {0, 1}λ for some parameter λ ∈ N.
Bounded domain: f gets as input only the secret state that is actually ac-

cessed during this invocation.

A mathematical model of side-channel leakage is only useful if it captures (and
thus implies security against) leakage that occurs in practice. As f gets the

3 In a CPA the adversary only gets the public-key and then has to distinguish the
encryptions of two different messages. In a CCA [47] the adversary can also ask
for decryptions of ciphertexts of her choice. We distinguish between CCA1 and the
stronger CCA2 security, in the latter the adversary can make decryption queries also
after she got the challenge ciphertext.



same input as the cryptosystem CS, it can simulate the computation of CS on
any conceivable hardware (e.g., all the values carried by wires on a computing
circuit), and thus also compute any kind of leakage that might occur. Though,
the restriction on bounded range might not allow f to actually output the en-
tire leakage, and the restriction on bounded domain might make it impossible
to simulate leakage that depends on earlier invocations, we discuss this points
below.

Bounded range. In practice, it seems hard to quantify how much informa-
tion actual hardware (like a smart-card) actually leaks. In most side-channel
attacks the adversary measures large amounts of data, e.g., an entire power-
consumption curve. So at a glance this assumption might seem unreasonable,
but this is a bit overly pessimistic.
Even though side-channel leakage may contain lots of data, only a small
fraction can actually be exploited in each measurement. The model of leakage
resilience allows only for the leakage of a small number λ of bits, but this
leakage is “worst case” in the sense that the adversary may choose the leakage
function which outputs the most useful information. Below we outline two
ways in which this observation can be made precise. The first shows that
side-channel attacks used in practice are captured by leakage resilience as
they only exploit few bits of information from each actual measurement. The
second is a relaxation of bounded leakage which can reasonably be assumed
to be satisfied in practice.
Side-Channel Attacks Exploit Few Bits. Many side-channel attacks first mea-
sure large amounts of leakage Λ1, Λ2, . . . from every invocation, like a power
consumption curve. Then, in a first step, each leakage Λi is preprocessed in
order to extract some “useful” information Λ′i (this Λ′i could, e.g., be a list
of the most likely sub-keys.) The attack then proceeds by trying to recover
the secret key from Λ′1, Λ

′
2, . . .. Such attacks are covered by leakage resilience

whenever the amount of extracted data |Λ′i| is at most the amount of leakage
λ allowed per invocation.
Relaxing Bounded Range. By inspecting the proofs of our constructions (as
well as the ones from [23, 44, 25]), one sees that a restriction on the leakage
functions is required which is considerably weaker than restricting the range
to λ bits: it is only required that the leakage f(S+) does not decrease the
HILL-pseudoentropy [31, 5]4 the adversary has about the active state S+

by more than λ bits. (More details will be given in the full version.) Thus,
although it may be unreasonable to assume that no more than λ bits leak
per invocation of a smart-card, assuming that this leakage will only degrade
the HILL-pseudoentropy by λ bits seems much more realistic in practice.

Bounded domain. The bounded domain restriction is a very mild restriction.
Unlike for bounded range, it is non-trivial to even imagine a remotely realistic
side-channel attack which would break a scheme by not adhering to it. This

4 HILL-pseudoentropy is a computational analogue of min-entropy. As for min-
entropy, λ bits of information cannot decrease it (in expectation) by more than
λ bits.



restriction (on how leakage functions are mathematically modeled) is implied
by the “only computation leaks information” axiom (which states something
about physical properties of devices) of [40]. But it also covers other practical
attacks which do not satisfy this axiom. For example note that an adversary
can learn any linear function f(S) of the entire state S (which is split in,
say, two parts S1, S2 that are accessed individually) by specifying leakage
functions f1, f2 such that f1(a) + f2(b) = f(a, b) (the adversary can ask to
learn f1(S1) and f2(S2) as S1 and S2 are accessed respectively, and then
compute f(S) locally.) This simple observation already shows that claims
made in the literature arguing that the bounded range & domain restric-
tions do not cover attacks like “cold-boot attacks” [29] or static leakage (as
claimed in [51]) are not well-founded.5 As argued by Dziembowski,6 this re-
striction not only covers all linear function f(a, b) = f1(a) + f2(b), but in
fact any function f(a, b) which has a communication complexity of at most
λ. A good candidate for an actual leakage function that does invalidate this
assumption7 is the inner product f(a, b) =

∑
i ai · bi mod 2 which has linear

communication complexity.

1.1 ElGamal Encryption

The ElGamal encryption scheme [24] over a cyclic group G of prime order p
works as follows. The public key consists of a generator g of G and X = gx,
where x ∈ Zp is the secret key. Encryption defines the ciphertext as C = gr and
uses the symmetric key K = Xr to blind the message. Decryption reconstructs
the key by computing K = Cx. In its hybrid version, ElGamal encryption is
contained in many standard bodies (e.g., [48, 32, 50]) and it is (using the name
Elliptic Curve Integrated Encryption System, “ECIES”) commonly considered
to be the standard method to encrypt over elliptic curves. At this point it may
be instructive to see why the ElGamal encryption scheme is not leakage resilient.
An adversary, in the ith decryption query, can specify a leakage function that
outputs the i-th bit of the secret key x. Therefore, after q = |x| queries to
the leakage oracle the entire secret key can be reconstructed. As we already
pointed out, the inherent reason why the above attack works is that decryption
is stateless.

Let’s first look at a straight forward (but unsuccessful) attempt to make the
ElGamal scheme leakage resilient. To this end we make decryption stateful and

5 In the above argument we implicitly assumed that ultimately the entire secret state
will be touched, although this seems obvious (after all, why would one save a secret
state if it’s not supposed to be ever read), the tokens used in the construction of one-
time programs [27] are an example where exactly this happens. For such primitives
obeying the “only computation leaks information” axiom in its original physical
sense is necessary.

6 at the workshop “Provable security against physical attacks”, February 2010, Leiden.
7 and thus might be used to construct an actual real world counterexample where the

security of an implementation gets broken because the bounded domain restriction
is invalidated.



split it into two parts Dec1∗ and Dec2∗. The secret key is additively shared into
x = σ0 + σ′0 by setting σ0 = x − r0 and σ′0 = x + r0. Decryption works as
follows. The first part Dec1∗ computes σi = σi−1 + ri mod p, K ′ = Cσi and
passes K ′ as input to the second part. Dec2∗ computes σ′i = σ′i−1 − ri mod p

and then K = K ′ · Cσ′i . Note that the state information is randomly re-shared
subject to σi + σ′i = x. However, this scheme is not leakage resilient since an
attacker can adaptively learn certain bits of σi = x+Ri and σ′i = x−Ri (where

Ri =
∑i
j=0 rj) that enable him to fully reconstruct the secret key x.8

1.2 Our results

Conjectured leakage resilient ElGamal encryption. We consider a
practical randomization method to make the ElGamal PKE scheme (or one if
its standardized hybrid variants) leakage resilient under chosen-ciphertext at-
tacks in the above sense. In the context of leakage resilience this method (or
variants thereof) were already proposed in [12, 37, 52]. The central idea is to
use multiplicative secret sharing to share the secret key x, i.e., x is shared as
σi = xR−1i mod p and σ′i = Ri mod p, for some random Ri ∈ Z∗p. More precisely,

the first part of decryption computes σi = σi−1r
−1
i mod p and K ′ = Cσi . The

second part computes σ′i = σ′i−1ri mod p and then K = K ′σ
′
i . Again note that

the state information is randomly reshared subject to σi ·σ′i = x. We remark that
our method does not modify ElGamal’s encryption algorithm, it only modifies
the way ciphertexts are decrypted. In particular, public-keys and ciphertexts are
the same as in ElGamal encryption and therefore our method offers an attrac-
tive way to update existing ElGamal-based systems with algorithmic security
against side-channel attacks. Unfortunately, we are not able to prove that the
above method is provable leakage resilient and therefore we can only state the
scheme’s security as a conjecture.

Provable leakage resilient ElGamal encryption. We also propose to
apply multiplicative secret sharing to the ElGamal encryption scheme instanti-
ated over bilinear groups. Our main theorem (Theorem 1) states that this scheme
is leakage resilient against CCA1 attack in the generic group model. The key ob-
servation is that the secret key is a group element X and decryption performs
a pairing operation with X as one fixed base. This allows us to multiplicatively
share the secret key as a group element, i.e., X = σi · σ′i ∈ G. Intuitively, we use
the fact that in the generic group model some bits of the representation of σi and
σ′i essentially look random and therefore are useless to the leakage adversary. To
formally prove this intuition, however, turns out to be surprisingly difficult.

We also mention that a proof in the generic group model has its obvious
weaknesses. (See, e.g., [35].) In particular in connection with side channel attacks

8 Since x = σi + σ′i mod p, the first t ≈ λ least significant bits of x can be computed
as (σi mod 2t)+(σ′i mod 2t) mod 2t, minus an additive factor p mod 2t in case there
is an overflow modp. (The latter can be checked from the high order bits of σi and
σ′i.) This process can be iterated to learn the entire secret key.



the generic group model may “abstract away” too much important information
an adversary may obtain in a real implementation of the scheme. This should be
taken into account when interpreting our formal security statement. However,
our result seems to be the first PKE scheme that is provably leakage resilient.
Furthermore, the scheme is very practical. Another possible interpretation of
our result is that when protecting the exponentiation function against (a large
class of) side-channel attacks, multiplicative secret sharing techniques seem more
suitable than additive ones.

Leakage Resilient Exponentiation and Pairing Operation. Speaking
more generally, our above mentioned methods how to secure ElGamal against
side-channel attacks show that one can possibly make discrete exponentiation
and a pairing operation leakage resilient. Let G be a group of prime order p
and g be a generator of G. In discrete exponentiation one wants to take public
group elements Yi to some fixed secret power x (which is only leaked through
gx). We propose to share x as x = x′ ·x′′ mod p and compute the values Ki = Y xi
in two iterative steps as K ′i = Y x

′

i followed by Ki = (K ′i)
x′′ . After each such

computation x′ and x′′ get randomly reshared subject to x = x′ · x′′ mod p. In
a pairing operation one is given public group elements Yi and want to compute
e(Yi, X), for some fixed secret group element X (which is only leaked though
e(g,X)). Here e : G×G→ GT is a bilinear pairing. Again we propose to share
X as X = X ′ ·X ′′ ∈ G and compute the values Ki = e(Yi, X) in three iterative
steps as K ′i = e(Yi, X

′), K ′′i = e(Yi, X
′′), and Ki = K ′i ·K ′′i ∈ GT , followed by

a resharing of X = X ′ ·X ′′ ∈ G. Our main result (Theorem 1) shows that our
method to perform a pairing operation is provable leakage resilient in the generic
group model.

Difficulty to prove leakage resilience against CCA2 attacks. It is
well known that the ElGamal encryption scheme, where the key K is hashed and
the one-time pad is replaced with a chosen-ciphertext secure symmetric cipher,
is secure against CCA2 attacks [1]. We remark that this scheme is not leakage
resilient against CCA2 attack since an adversary can adaptively obtain some bits
about the unhashed symmetric key of the challenge ciphertext. Indeed, building
a PKE scheme that is (provably) leakage resilient against CCA2 attacks remains
a challenging open problem.

1.3 Related Work

In the hardware community the usefulness of secret-sharing in the context of side-
channel countermeasures is well known. In particular, secret-sharing has been
proposed as a countermeasure against “differential power analysis attacks” for
exponentiation algorithms in [11, 12, 12, 37, 52], but without any formal analysis.

Most works on side-channel countermeasures, including the ones just men-
tioned, consider countermeasures against particular side-channel attacks. Micali
and Reyzin [40] in their work on “physically observable cryptography” proposed
an influential theoretical framework to capture side-channel attacks on a more
general level.



Besides leakage resilience, there are several other models that consider cryp-
tosystems which remain secure even if a function f(sk) (chosen by the adversary
from a very broad class of functions) of the secret key sk is leaked. We shortly
mention these models below. The main difference to leakage resilience is that
those models consider stateless cryptosystems, and thus cannot tolerate any
kind of “continuous” leakage (an exception is the very recent work on “continu-
ous memory attacks.”) On the other hand, the leakage function in those works
gets the entire state as input, and not just the part of the state that was accessed.

Memory Attacks. Akavia et al. [2] introduce the model of “security against
memory attacks,” where one requires that the scheme remains secure even if
a function f(sk) of the secret sk is leaked once, where the only restriction on
f(·) one makes is its bounded output length. (Clearly the bound must satisfy
|f(sk)| � |sk |. This model is a restricted version of the BRM model discussed
below.) [2, 41] construct public-key encryption schemes in this model, Katz and
Vaikuntanathan [34] constructs digital signatures.

Bounded Retrieval Model. The bounded retrieval model (BRM) [13, 19,
20, 10, 22, 4] is a generalization of the previous model, where one requires that
the secret key can be made huge, while the scheme still remains efficient. Such
schemes can provide security against malware like viruses or Trojans, which tem-
porarily take control over a computer, but do not have enough “bandwidth” to
leak the entire artificially huge key. Most works on intrusion resilient crypto con-
sider symmetric primitives, but after the first success in constructing public-key
cryptosystems secure against memory attacks (mentioned above), Alwen et al.
achieved public-key crypto also in the BRM model. In particular authentication
and signature schemes [4] and public-key encryption [3].

Auxiliary Input. Dodis et al. construct symmetric [17] and public-key [14]
encryption schemes in a model where the range of f(·) may be unbounded, but
one only requires that it is hard to recover sk from f(sk). (i.e. any polynomial
time adversary should output sk with exponentially small probability.)

Continuous Memory Attacks. Very recently, Dodis, Haralambiev, Lopez-
Alt, and Wichs [15] and Brakerski, Kalai, Katz and Vaikuntanathan [9] introduce
the model of “continuous memory attacks.” This model generalizes the notion
of memory attacks. Also here the adversary can learn a bounded amount, λ
bits say, of leakage about the (entire) secret key. But now there’s an additional
“refresh” procedure which takes the secret key sk and outputs a new secret key
sk ′. The adversary can learn λ bits (where λ is c|sk | for some constant c > 0)
in-between any two refresh phases, but the refreshing itself has to be completely
leak-free [15] or leak at most a logarithmic number of bits [9]. Remarkably, in
this model [15] construct authentication and signature schemes, [9] obtain get
public-key encryption. Both papers work in the standard model, the underlying
assumption in both papers is the linear assumption over bilinear groups. The
models of leakage resilience and continuous memory attacks are incomparable:
leakage resilience assumes “only computation leaks” whereas continuous memory
attacks need an (almost) leak-free refresh phase. As mentioned, the constructions



[15, 9] are proven secure in the standard model, whereas we use a strong idealized
model. On the positive side, our scheme is very efficient (only about two times
slower than standard ElGamal) whereas, e.g., [9] needs a constant number of
pairings to encrypt a single bit.

2 Definitions

If A is a deterministic algorithm we write y ← A(x) to denote that A outputs y

on input x. If A is randomized we write y
∗← A(x) or, y

r← A(x) if we want to
make the randomness r used by the algorithm explicit (for future reference).

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM) is
defined similarly to a public-key encryption scheme, except that the encryption
algorithm (called encapsulation) does not take any input, but rather outputs the
encryption of a random key K, which then can be used with as a key in any
symmetric encryption scheme to encrypt the actual message.

Formally, a key-encapsulation mechanism KEM consists of three algorithms
KG,Enc,Dec. KG : {0, 1}∗ → PK × SK is the probabilistic key-generation algo-
rithm, which on input a security parameter κ outputs a public/secret-key pair.
The probabilistic encapsulation algorithm Enc : PK → K×C and decapsulation
algorithm Dec : SK × C → K ∪ ⊥ satisfy the following correctness property for
all κ

Pr[K = K ′ | (pk , sk)
∗← KG(κ); (C,K)

∗← Enc(pk); K ′ ← Dec(sk , C)] = 1

The CCA1 security (aka. security against lunchtime attacks) of a key-encapsulation
mechanism KEM is defined by the following experiment.

Experiment Expcca1
KEM(F , κ)

(pk , sk)
∗← KG(κ)

w
∗← FOsk (·)(pk)

b
∗← {0, 1}

(C∗,K0)
∗← Enc(pk)

K1
∗← K

b′
∗← F(w,C∗,Kb)

Oracle Occa1
sk (C)

K ← Dec(sk , C)
Return K

Let µ denote the probability that b = b′ in the above experiment, then we
define the advantage of F as Advcca1

KEM(F , κ) = 2|1/2−µ|. In CCA2 security, the
adversary is additionally allowed to query the decryption oracle in its second
(guess) stage.

Stateful key encapsulation and leakage resilience. To formally define our
notion of leakage resilience we consider stateful key encapsulation mechanisms
KEM∗ = (KG∗,Enc∗,Dec1∗,Dec2∗) in which decapsulation is stateful and can
formally split into two sequential stages Dec = (Dec1∗,Dec2∗). The input/output
behavior will stay exactly the same as in a standard KEM.



More formally, the key generation algorithm KG∗(κ) generates a public key
and and two initial states, σ0 and σ′0. Intuitively, the states shares the secret
key of the scheme and will be used by the stateful decapsulation algorithms
Dec1∗,Dec2∗.

On the ith invocation of decapsulation, the decapsulated key Ki is computed
as follows

(σi, wi)
ri← Dec1∗(σi−1, Ci) ; (σ′i,Ki)

r′i← Dec2∗(σ′i−1, wi) (1)

Here ri and r′i is the explicit randomness of the two randomized algorithms, σi
and σ′i are the updated states and wi is some state information that is passed
from Dec1∗ to Dec2∗.

We now define leakage resilience. Let λ ∈ N be some leakage parameter. We
will consider attacks, where the adversary can not only query its oracle for the
decapsulated values Ki = Dec(sk , Ci), but additionally gets leakage from the
computation of those values. That is, in the security experiment the adversary
can, additionally to the input Ci, specify two efficiently computable leakage func-
tions fi, gi with bounded range {0, 1}λ, and additionally to the regular output
Ki also gets Λi, Λ

′
i computed as

Λi = fi(σi−1, ri) ; Λ′i = gi(σ
′
i−1, wi, r

′
i) ,

where the notation is as in (1). So the functions fi, gi get as input exactly
the same data as Dec1∗/Dec2∗.9 We define the CCLA1 (chosen ciphertext with
leakage attack) security of KEM by the experiment below. (Note that now we
not only have to specify the security parameter k, but also a leakage bound λ.)

Experiment Expccla
KEM(F , κ, λ)

(pk , σ0, σ
′
0)
∗← KG(κ)

w
∗← FOccla1(·)(pk)

b
∗← {0, 1}

(C∗,K0)
∗← Enc(pk)

K1
∗← K

i← 0

b′
∗← F(w,C∗,Kb)

Oracle Occla1(C, f, g)
If range of f or g is 6= {0, 1}λ return ⊥
i← i+ 1

(σi, wi)
ri← Dec1∗(σi−1, C)

(σ′i,Ki)
r′i← Dec2∗(σ′i−1, wi)

Λi ← fi(σi−1, ri)
Λ′i ← gi(σ

′
i−1, wi, r

′
i)

Return (Ki, Λi, Λ
′
i)

Let µ denote the probability that b = b′ in the above experiment, then we define
the advantage of F as Advccla

KEM(F , κ, λ) = 2|1/2− µ|.
It is well-known that a CCA1 secure KEM plus a one-time secure symmetric

cipher (such as a one-time pad) yields a CCA1-secure PKE scheme. For trivial
reasons the same statement is also true for CCLA1 secure KEMs so for our
purpose it is sufficient to build a CCLA1 secure KEM. On the other hand we
remark that the respective composition theorem is wrong in general for CCLA2

9 Note that Ci need not be explicitly given to fi as the adversary chooses fi and Ci
together, and thus can “hard-code” Ci into fi.



secure KEMs. That is, a CCLA2 secure KEM and a CCA secure DEM will in
general not yield a CCLA2 secure PKE scheme.10

Bilinear Groups We assume the existence of a bilinear group generator BGen
which is a randomized algorithm that outputs a bilinear group PG = (G,GT , g, e, p)
such that the following properties hold.
1. G and GT are (multiplicative) cyclic groups of prime order p.
2. g is a generator of G.
3. e is a bilinear map e : G×G→ GT which is

(a) bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if there exists a group GT and a bilinear map
e : G × G → GT as above, where e and the group action in G and GT can be
computed efficiently. We will use ◦ and ? for the group operation in G and GT
respectively.

Generic Bilinear Groups. In the generic group model [42, 49] one encodes
the group elements by unique, randomly chosen strings. This enforces that the
only property which can be tested by an adversary is equality.

In the generic bilinear model (GBG ) [7] the encoding is given by randomly
chosen injective functions ξ : Zp → Ξ and ξT : Zp → ΞT which give the repre-
sentations of the elements in the base and target group respectively (w.l.o.g. we
will assume that Ξ ∩ ΞT = ∅). The group operation and the bilinear map are
performed by three public oracles O,OT ,Oe, where for any a, b ∈ Zp
– O(ξ(a), ξ(b))→ ξ(a+ b mod p) (group operation on base group).
– OT (ξT (a), ξT (b))→ ξT (a+ b mod p) (group operation on target group).
– Oe(ξ(a), ξ(b))→ ξT (a · b mod p) (bilinear map).

All oracles output ⊥ when queried on an input outside of their domain. For a

fixed generator g of G and gT
def
= e(g, g), one can think of ξ(a) as an encoding of

ga, ξT (a) as an encoding of gaT and ξe(a, b) as an encoding of ga·bT = e(ga, gb). Of
course one also must provide some means of computing the group representation
ξ(a) or ξT (a) for any a ∈ Zp, say by providing oracles to do so. We can get away
without additional oracles, by providing ξ(1) and observing that then ξ(a) can
be computed making ≤ 2 log p queries to O (by square and multiply). ξT (1) (and
thus any ξT (a)) can be computed by ξT (1)← Oe(ξ(1), ξ(1)).

3 Leakage Resilient ElGamal Encryption

In this section we present a general method to secure ElGamal encryption against
leakage attacks. First, we present a modification of the standard ElGamal cryp-
tosystem over any cyclic group of prime order. Unfortunately, we are not able

10 An attacker may make a number of decryption queries only modifying the sym-
metric part of the challenge ciphertext. The decryption algorithm (internally) uses
the challenge symmetric key that can be learned (bit-by-bit) through the leakage
function.



to formally prove the leakage resilience of this scheme so we state its security
as a conjecture. Next, we move to the ElGamal scheme over Bilinear Groups.
Here we are able to prove that our method leads to a leakage resilient public-key
encryption scheme (in the sense of CCLA1) in the generic group model.

3.1 ElGamal Key Encapsulation

Let Gen be a randomized algorithm that outputs a cyclic group G of order p
where p is a strong prime. The ElGamal key-encapsulation mechanism EG =
(KGEG,EncEG,DecEG) is defined as follows.

– KGEG(κ): Compute (G, p) ∗← Gen(κ) and choose random g
∗← G and random

x
∗← Zp. Set X = gx. The public key is pk = (G, p,X) and the secret key is

sk = x.
– EncEG(pk): choose random r

∗← Zp. Set C ← gr ∈ G and K ← Xr ∈ G. The
ciphertext is C and the key is K.

– DecEG(sk , C): Compute the key as K = Cx ∈ G.
As mentioned in the introduction, EG (or any other stateless scheme) cannot be
leakage resilient since in the CCLA1 experiment an adversary can simply obtain
the successive bits of the secret key x.

We will now describe a leakage resilient stateful key encapsulation mechanism
EG∗ = (KG∗EG,Enc

∗
EG,Dec1

∗
EG,Dec2

∗
EG), which is derived from EG. As described

in Section 2, the decapsulation algorithm is stateful and split in two parts.
– KG∗EG(κ): Run (sk , pk)

∗← KGEG(κ). (Recall that sk = x and pk = (G, p,X =

gx).) Choose random σ0
∗← Z∗p and set σ′0 = xσ−10 mod p. The public key is

pk and the two secret states are σ0 and σ′0.
– Enc∗EG(pk): the same as EncEG(pk).

– Dec1∗EG(σi−1, C): choose random ri
∗← Z∗p, set σi = σi−1r

−1
i mod p, K ′ = Cσi

and return (ri,K
′).

– Dec2∗EG(σ′i−1, (ri,K
′)): set σ′i = σ′i−1r

−1
i mod p, and K = K ′σ

′
i . The sym-

metric key is K and the updated state information is σi and σ′i.
We cannot formally prove CCLA1 security of the scheme so we have to resort

to the following conjecture.

Conjecture 1. EG∗ is CCLA1 secure if p−1 has a large prime factor (say, p−1 =
2p′ for a prime p′).11

One can furthermore make ElGamal key-encapsulation CCA2 secure (without
leakage) under the strong Diffie-Hellman assumption in the random oracle model

11 The reason we require p to be not smooth is to prevent the leakage functions to
possibly compute discrete logarithms in Zp−1, as otherwise the multiplicative sharing
σ, σ′ (where σ · σ′ = x) can be efficiently turned into an additive sharing (of the

discrete log of the secret key) σ = hΣ ,σ′ = hΣ
′

where x = hX and X = Σ +Σ′. As
described in Section 1.1, an additive sharing cannot give a leakage resilient scheme.
The above also hints the inherent difficulty of proving this conjecture. Let us mention
that already in [37] it is suggested to use a prime p where (p-1)/2 is prime in a very
similar context. Our result can be seen as a formal justification for this choice.



by hashing the symmetric key symmetric key K [1]. This Hashed ElGamal
scheme is contained in many standard bodies, e.g. [48, 32, 50]. Hashing the sym-
metric key clearly does not affect its CCLA1 security and therefore Hashed
ElGamal is CCLA1 and CCA2 secure.

However, as we will explain now, in our leakage resilience setting hashing
K will not make the scheme CCLA2 secure. The (unhashed) EG scheme is not
CCA2 secure since it is malleable. (An adversary, given the challenge ciphertext
C (enciphering a key K), can ask for a decryption of C2 6= C to obtain K2

from which it can reconstruct K.) Without considering leakage, hashing the
key prevents this attack as now the adversary only sees a hashed key H(K2).
Unfortunately, in the leakage setting hashing will not help at all because the
adversary can specify a leakage function which outputs λ bits of the unhashed
key K2. By asking for the decryption of the same ciphertext C2 several times,
leaking λ different bits of K2 on each invocation, will ultimately reveal the entire
K2.

3.2 Bilinear ElGamal Key Encapsulation

The Bilinear ElGamal key-encapsulation mechanism
BEG = (KGBEG,EncBEG,DecBEG) is defined as follows.

– KGBEG(κ): Compute PG = (G,GT , p, e)
∗← BGen(κ) and choose random

g
∗← G and random x

∗← Zp. Set X = gx and XT = e(g, g)x. The public key
is pk = (PG, g,XT ) and the secret key is sk = X.

– EncBEG(pk): choose random r
∗← Zp. Set C ← gr ∈ G and K ← Xr

T ∈ GT .
The ciphertext is C and the key is K.

– DecBEG(sk , C): Compute the key as K = e(C,X) ∈ GT .

Note that correctness follows from the bilinear property Xr
T = e(g, g)xr =

e(gr, gx) = e(gr, X).

We will now describe a leakage resilient key encapsulation
BEG∗ = (KG∗BEG,Enc

∗
BEG,Dec1

∗
BEG,Dec2

∗
BEG), which is derived from BEG.

– KG∗BEG(κ): Run (sk , pk)
∗← KGBEG(κ). (Recall that sk = X = gx and pk =

(PG, g,XT = e(g, g)x.) Choose random r0
∗← Z∗p and set σ0 ← gr0 , σ′0 ←

gx−r0 . The public key is pk and the secret states are σ0, σ
′
0.

– Enc∗BEG(pk): the same as EncBEG(pk).

– Dec1∗BEG(σi−1, C): choose random ri
∗← Zp, set σi ← σi−1◦gri , K ′ ← e(σi, C)

and return (ri,K
′).

– Dec2∗BEG(σ′i−1, (ri,K
′)): set σ′i ← σ′i−1 ◦ g−ri and K ′′ ← e(σ′i, C). The sym-

metric key is K ← K ′ ? K ′′ ∈ GT .

Note that for every i, Ri
def
=

∑i
j=0 rj , we have σi ◦ σ′i = gRi ◦ gx−Ri = gx, so the

σi, σ
′
i are a secret sharing of the secret key.

Theorem 1. In the bilinear generic group model the scheme BEG∗ is CCLA1
secure: the advantage of a q-query adversary who gets λ bits of leakage per in-

vocation of Dec1∗BEG and Dec2∗BEG, respectively, is at most 22λ+1·q3
p .



Thus, for a statistical security parameter n, we can tolerate λ = log(p)/2 −
3 log(q) − n/2 bits of leakage. For space reasons, here we only can give a proof
outline. The complete proof appears in the full version of this paper.

Proof Outline. For technical reasons, we will consider a setting where the
generic bilinear group is extended with an additional oracle ODL : Ξ ∪ ΞT →
Zp ∪ ⊥, we will call this the extended generic bilinear group model. Intuitively,
ODL is an oracle for the discrete log problem, but only works on inputs that
have not yet appeared since the oracles O,Oe,OT have been initialized.

The proof outline is as follows. We will first show that the discrete logarithm
problem (DL) is hard in the (base group of the) extended GBG model. We then
give a reduction which shows how any adversary that can break the CCA1
security (without leakage) of BEG∗ in the (normal) GBG model, can solve the
discrete log problem in the extended GBG model. Next, we extend this proof to
get our main result, namely a reduction of the CCLA1 security of BEG∗ to the
discrete log problem.

CCA1 security of BEG∗. Let F be an adversary that can break the CCA1
security of BEG∗. We construct an adversary G for DL (using F as a black-box)
by letting G simulate the Expcca1

BEG∗(F , p) experiment, where in this experiment
G uses its DL challenge ξ(y) as either the secret key ξ(x) or the challenge en-
capsulated key ξ(s) with probability 1/2 respectively.

During the CCA1 experiment, F (which initially gets ξT (x), and after the
last decapsulation query gets ξ(s)) will learn the representation of elements
ξT (e1), ξT (e2), . . . from the target group. One can show that just from observing
F ’s oracle queries, G can assign to each ei an equation ei = ai+bi ·x+ci ·s+di ·s2
where it knows the coefficients ai, bi, ci, di ∈ Zp. Similarly, for representations
ξ(e1), ξ(e2), . . . of elements in the base group that F learns, G can extract ai, bi
such that ei = ai + bi · s. To get an idea why this is the case, consider, e.g.,
the case where F makes a query ξT (v · w) ← Oe(ξ(v), ξ(w)). If ξ(v) (same for
ξ(w)) was never seen before, G first calls ODL(ξ(v)) to learn v. (Recall that
G is in the extended GBG model.) Now G knows a, b, a′, b′ s.t. v = a + b · s
and w = a′ + b′ · s, which implies v · w = a′′ + b′′ · x + c′′ · s + d′′ · s2 with
a′′ = a+ a′, b′′ = 0, c′′ = a · b′ + a′ · b, d′′ = b · b′.

Recall that F ’s goal is to distinguish the decapsulated key ξT (x · s) from a
random element. If F has advantage ε in doing so, it actually must compute the
element ξT (x · s) with probability ε. Which means we learn a, b, c, d such that

x · s = a+ b · x+ c · s+ d · s2, (2)

this can be solved for s or x (or both). Thus G will learn the discrete log of ξ(y)
with probability at least ε/2 (as we initially randomly set ξ(y) = s or ξ(y) = x).

CCLA1 security of BEG∗. The proof in the case of leakage attacks is more
delicate. In a CCLA1 attack, with the ith decapsulation query, the adversary F
also learns the output of the leakage functions fi, gi. If we had no upper bound
on the output length of those functions, then fi and gi could just leak ξ(Ri) and
ξ(x − Ri) respectively, from which F then could first compute the secret key



ξ(x) and then ξT (x · s). In this case, the reduction G does not learn an equation
of the form eq.(2), but only the trivial equality x · s = x · s. We will prove that
if the leakage bound λ � log p/2, then the leakage functions will not leak any
representation of an element to F that F could not efficiently compute itself.

To see this, let us first make the simplifying assumption that the leakage
functions fi, gi are not given access to the group oracles O,Oe,OT . Then all
the leakage functions can try to do, is to leak some element they get as input.
Consider any such element, say ξ(Ri). As ξ(Ri) is only given as input to fi−1
and fi, at most 2λ bits about this element can leak. If 2λ � log p, then F will
have high min-entropy about ξ(Ri) even given this 2λ bits of leakage. Thus it is
very unlikely that it can guess ξ(Ri).

Now consider the general case, where the leakage functions can use the group
oracles. Now the leakage functions can trivially leak the representation of some
group element, say f1, f2, . . . all use O to compute ξ(z) for some fixed z and
each leaks λ bit of ξ(z) until F learns the entire ξ(a). Now F does get the
representation of an element ξ(a) without receiving it from the group oracles,
but that is no problem, as G will know an a, b such that a + b · s = z (namely
a = z and b = 0), and that’s all we care about.

Now the fi leakage function (similarly for gi) can use their input ξ(Ri−1)
to compute elements ξ(z) where G only knows a, b (where b 6= 0) such that
z = a+ b · r0. We call such a representation “bound” (as opposed to “free” rep-
resentations ξ(z) where G trivially learns z by just observing fi’s oracle queries).
It would be a problem if a bound representation could leak to F . As said be-
fore, the fi’s can trivially leak 2λ bits about a bound element, as, e.g., fi−1 and
fi have access to ξ(Ri) (recall that Ri =

∑i
j=0 rj where each rj is uniformly

random). But it is not clear how any other leakage function fj (j 6∈ {i − 1, i})
would compute the element ξ(Ri) or any other element derived from it; since
the sharings are randomized during each invocation, the values ξ(Rj−1), rj that
fj has are completely independent of Ri (and thus ξ(Ri)). In fact, we show that
if F manages to choose leakage functions such that the same bound element is
computed by fi and fj (where j > i+ 1) with probability ε, then F can be used
to solve the discrete logarithm problem with probability ε/22λq. The idea is to
use the discrete logarithm challenge ξ(y) as ξ(rj) for a random j. Note that to
simulate the experiment, G only needs ξ(rj) not rj , except to compute the 2λ
bits of leakage from the jth decapsulation query. (As here the leakage functions
fj , gj expect rj as input.) We let G randomly guess this leakage, which will be
correct with probability 2−2λ. Now assume we have two identical bound elements
ξ(z) computed by fi′ and fi′′ where i′′ > i′ + 1. As this query was made by fi′ ,
and up to this point G only used r0, . . . , ri′ that it sampled himself, he will know
z. As this query was also made by i′′, G learns a, b 6= 0 such that z = a+ b · rj ,
and thus can solve this equality to get rj .
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