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t. HFE is a publi
 key s
heme introdu
ed by Patarin in 1996.An HFE publi
 key is a large system of polynomials in many variablesover a small �nite �eld. This system results from some se
ret 
ompo-sition, based on whi
h the owner 
an solve it to any arbitrary ve
tor.While the se
urity of the 
ryptosystem relies on the di�
ulty of solvingthe publi
 system without the trapdoor information, in 2002 Faugèrefound experimentally that Gröbner basis 
omputations perform mu
hbetter on 
ertain HFE instan
es than on random systems. More spe
i�-
ally, Faugère observed that the regular behaviour of the Gröbner basis
omputation 
ollapses at a mu
h lower degree than expe
ted for randomsystems, letting the 
omputation �nish mu
h earlier. A

ounting for thisdistin
tive property, Faugère and Joux showed in 2003 that mappingHFE systems to some other multivariate ring exhibits the parti
ular al-gebrai
 stru
ture of these systems. Nevertheless, they did not o�er thea
tual 
omputation of the degree of regularity of HFE systems. Later, in2006, Granboulan, Joux and Stern showed an asymptoti
 upper boundon the degree of regularity of HFE systems over GF (2) using indepen-dent results on overdetermined systems of equations. The 
ase of largerground �elds has remained however 
ompletely unsolved. In this paper,we exhibit an additional property of HFE systems that is in
reasinglysigni�
ant as the size of the ground �eld grows. Using this property witha standard 
ombinatorial 
al
ulation yields an arguably tight numeri
albound on the degree of regularity of HFE systems for any parameters.Keywords: multivariate polynomials, HFE, algebrai
 
ryptanalysis.1 Introdu
tionSolving large systems of multivariate equations over a �nite �eld is one of themost re
urrent problems in 
omputer s
ien
e. Although a
hieving this task seemsvery hard in general and 
an only be ta
kled for small sizes by 
urrent best algo-rithms, sparse 
lasses of systems exist that 
an be solved e�
iently. In the last�fteen years, attempts have been made at exploiting this gap to build asymmet-ri
 
ryptographi
 primitives. In a nutshell, the issue has been to �nd se
ure waysof masking stru
tured systems of polynomials.

⋆ This paper is an extended abstra
t. The full version is available from the authors.



The HFE Cryptosystem. One of the most prominent proposals in thisarea has been the Hidden Field Equation 
ryptosystem, introdu
ed by Patarinin 1996. HFE is based on an elegant idea introdu
ed by Matsumoto and Imai in1988 of deriving a set of multivariate equations from a single variable equationover a large extension �eld; this makes use of the ve
tor spa
e stru
ture of thisextension �eld. When the single variable equation 
an be solved e�
iently thesame holds for the multivariate system, and a

ess to the large �eld equation isrestri
ted by applying se
ret linear bije
tions on the variables and equations.More formally, let Fq denote the �nite �eld with q elements and let φ besome linear bije
tion from Fqn , the degree n extension of Fq, to (Fq)
n. Su
h alinear bije
tion is de�ned by a 
hoi
e of a linear basis of Fqn . To any polynomialfun
tion P (X) on Fqn , one asso
iates the fun
tion φ ◦ P ◦ φ−1 on (Fq)

n. InHFE, polynomials P have a small degree to ensure e�
ient root �nding. Also,they have a spe
ial shape whi
h ensures that φ ◦ P ◦ φ−1 is quadrati
. Thisfun
tion is then 
omposed with se
ret linear bije
tions S, T : (Fq)
n → (Fq)

n,
T ◦ (φ ◦ P ◦ φ−1) ◦ S and the result is released as the publi
 fun
tion. HFE 
anbe used as a signature s
heme and also, with some minor arrangements, as anen
ryption s
heme [16℄. Many variations exist and o�er potential enhan
ements.The Se
urity of HFE. The fundamental issue is whether the publi
 fun
tionis a one-way fun
tion. Finding a preimage by the publi
 fun
tion is the same as�nding a solution to the 
orresponding system of quadrati
 equations. Denoteby MQ(q, n) the set of systems of n quadrati
 equations in n variables over
Fq, and by HFE(q, n,D) the subset of HFE systems where D is the parameterthat 
ontrols the degree of the internal polynomial P . Two lines of work haveso far been able to distinguish HFE systems from random MQ systems. Oneline of work, proposed in [8℄, targets so 
alled di�erential properties of HFEfun
tions and was able to produ
e a distinguisher with proven 
omplexity forall parameters (q, n,D). The other line of work, proposed in [4,9,15℄, dire
tlytargets the di�
ulty of the preimage problem on HFE systems. It produ
edexperimental eviden
e that for some parameters the preimage problem is mu
heasier on HFE systems than on random MQ instan
es [12℄. Sin
e the di�
ultyof the preimage problem on HFE systems is ultimately the issue, one wishes to
larify what property is dis
losed by the methods used in the se
ond line of workand how this property depends on the parameters (q, n,D). So far, the availableinformation has been the following.1. The experimental eviden
e has been obtained by using algorithms for 
om-puting Gröbner bases [12,17℄. These algorithms pro
eed through 
ombina-tions with polynomial 
oe�
ients of a given set of polynomials and generateadditional polynomials that 
an be used to solve the system.2. The atta
ks have only 
on
erned systems over F2. Experiments for variousvalues of n and D eviden
ed that the degree of 
ombinations needed to
ompute a Gröbner basis (for a graded ordering of terms) on HFE systemsonly depends on D for large enough n [12℄. Unfortunately, no extension ofthis property to larger values of q has been reported. In fa
t, some authors [7℄2



argued that the size of the �eld should have a strong negative impa
t the
omputation and observed it on experiments using the Magma pa
kage [18℄.3. On the theoreti
al side, a qualitative a

ount was given in [9℄ on how the
ombinations performed on the publi
 polynomials 
orrespond to relatedoperations on the internal polynomial. Although this 
learly initiated a wayof investigating HFE systems, it has not been followed with the 
omputationof theoreti
al 
omplexity bounds. Nevertheless, the authors in [15℄ showedthat when q = 2, 
omplexity bounds 
an be heuristi
ally derived from resultson overdetermined MQ systems.We note that quantitative information has only been obtained from experimentsand on systems over F2. The theoreti
al 
onne
tions have not permitted to derivequantitative information beyond pra
ti
al rea
h. Notably, how the phenomenonthat is observed experimentally varies as q in
reases has remained unknown. Thegain of potential enhan
ements also has, in
identally, remained un
lear.Our 
ontribution. Re
ent studies on the 
omplexity of Gröbner basis algo-rithms fo
us on the notion of degree of regularity of a system of polynomials [2,1℄.Roughly speaking, the degree of regularity is the smallest degree at whi
h a non-trivial degree fall among algebrai
 
ombinations of the input polynomials o

urs.The degree of regularity of HFE systems over F2 was experimentally found withinsome parameter range in [9℄ and asymptoti
ally upper bounded in [15℄ using theresults of [2,1℄. In this paper, we give a way to 
ompute a numeri
al bound onthe degree of regularity of HFE systems over any �eld and for any parameters.This is a
hieved by using previous ideas and methods present in [9,15,1,6℄ in
ombination with an apparently unnoti
ed additional property of HFE systemswhi
h is in
reasingly signi�
ant as the size of the ground �eld grows.Organization of the paper. In Se
tion 2, we de�ne the degree of regular-ity of a system of polynomials and relate this notion to the 
omputation of aGröbner basis. In Se
tion 3, we de�ne HFE systems in greater detail and seta few notations. In Se
tion 4, we map the problem of 
omputing the degree ofregularity to some other multivariate ring where the algebrai
 stru
ture of HFEsystems is apparent. This is only a more pre
ise statement of a property used in[9,15℄ and our upper bound derives from the same observation that the degreeof regularity is upper bounded by the degree of regularity of any subsystem. InSe
tion 5, we show how to 
ompute the degrees of regularity of these subsystemsby using 
lassi
al methods su
h as used in [1,6℄ but with the spe
i�
 propertiesof the polynomials at hand. We dedu
e numeri
al bounds for many parameters.In Se
tion 6, we derive estimates on the 
omplexity of algebrai
 atta
ks on HFE.2 Algebrai
 Properties of a System of PolynomialsWe �rst give an informal presentation of the notions that will be used in thesequel and then give pre
ise de�nitions and statements for our parti
ular setting.3



2.1 Solving a System of Multivariate EquationsSuppose we fa
e the problem of �nding the 
ommon roots of a system of poly-nomials p1, . . . , pk in a multivariate ring R over a �eld. Would this system be infew enough variables to be tried by hand, one would probably try to 
ombinethe given polynomials to derive �simpler� ones, that is, that make it easier todis
over the spa
e of solutions. For instan
e, one may try to obtain a polyno-mial in fewer variables, or with a smaller total degree. In any 
ase, 
ombiningthe given polynomials always 
omes down to 
onsider polynomials of the shape
m1p1 + · · ·+mkpk for some polynomial multiples m1, . . . ,mk. Hen
e, these poly-nomials are linear 
ombinations of p1, . . . , pk with 
oe�
ients in R. And the goalis then to �nd su
h a linear 
ombination within some target subspa
e of R.To do this me
hani
ally, one may 
onsider two main strategies. Either one
hooses a priori sear
h spa
es for the mi (for instan
e, polynomials with degreeunder some bound) and one performs linear algebra on their 
oe�
ients. (This isthe basi
 idea of XL algorithms [5,19℄.) Or one de�nes a priority list among termsto be eliminated (
alled an ordering) and one performs systemati
 leading termredu
tions on polynomials p1, . . . , pk and the new polynomials that are generatedby this pro
ess, until it 
an be predi
ted that any further 
ombination willredu
e to zero. (This is the basi
 idea of Gröbner bases algorithms [3,14,10,11℄.)These two strategies are not as di�erent as it 
ould seem. Indeed, to redu
e thehead terms of polynomials p1, . . . , pk the ones by the others, one determines therespe
tive sets of multipliers {m1}, . . . , {mk} that are needed to do so. Thenit remains to perform linear algebra on the resulting 
ombinations and iteratewith polynomials with new head terms that may be found in this pro
ess. Bothstrategies therefore have a 
lear interse
tion although Gröbner bases algorithmsare natively more 
areful with the number of 
ombinations to be dealt with.In any 
ase, it is 
onvenient to arrange the available 
ombinations with re-spe
t to their total degree. For any integer d ≥ 1, let Vd denote the set of
ombinations of degree d multiples of p1, . . . , pk. It is a linear subspa
e of allpolynomials of degree at most d. This paper fo
uses on an intrinsi
 parameter ofpolynomials, whi
h we 
all degree of regularity. This parameter was introdu
edin [2,1℄. It is 
ommonly 
onsidered as the main 
omplexity parameter for thefollowing intuitive reasons. Let A be an algorithm that 
omputes su
h 
ombi-nations, and indexing its exe
ution steps by t, one may 
onsider the subspa
e
Vd[A(t)] of 
ombinations of degree d multiples that are 
omputed through A upto t. Obviously, Vd[A(t)] ⊆ Vd ⊆ R≤d. Now, 
hoose a target subspa
eWd ⊆ R≤d.There exists an element of Wd among 
ombinations in degree d when the inter-se
tion of Vd andWd is not zero and su
h a 
ombination is found by the algorithm
A before step t if Vd[A(t)]∩Wd 6= {0}. When the polynomials p1, . . . , pk are nottoo spe
i�
, the interse
tion of Vd and Wd is expe
ted to be non-zero only whenthe sum of their respe
tive dimensions ex
eeds the dimension of R≤d itself. Inthis 
ase, any algorithm A 
an just 
onsider 
ombinations in degree d to �nd anon-zero element ofWd. It is assured to �nd one at step t if Vd[A(t)] = Vd. On theother hand, should the interse
tion of Vd and Wd be non-zero at a signi�
antlylower degree than expe
ted for a random subspa
e Vd would suggest that the4



polynomials p1, . . . , pk are not random. Interesting 
hoi
es of a target subspa
e
Wd are polynomials of low degree. For instan
e, one may 
onsider whether thereexists a non-zero polynomial of degree stri
tly lower than d among 
ombinationsin degree d. Su
h a 
ombination is 
alled a degree fall and the smallest degreeat whi
h su
h a degree fall o

urs is essentially the degree of regularity. A pre-
ise de�nition will be given in the sequel. An algorithm A �nds the degree ofregularity when at some step t its subspa
e of 
ombinations in degree d 
ontainsa degree fall. At this point, it is worth noting that when using a Gröbner basisalgorithm it is best to use an ordering that re�nes the degree. Indeed in this 
asenew head terms are 
on�ned among the smallest degree monomials.The degree of regularity permits to distinguish a system of polynomials fromrandom. Furthermore, any degree fall 
an give a new whole set of multiplesin degree d or even below, whi
h 
an be further 
ombined with the existing
ombinations. Moreover, the dimension of V A

d usually takes large steps as onein
rements d and then, many degree falls appear at on
e. These degree falls inturn help the appearan
e of new degree falls in lower degrees. Either these degreefalls are low enough to solve the system (e.g. linear polynomials) or one pushesthe 
omputation until obtaining a 
omplete Gröbner basis.2.2 Systems with Field Equations over a Finite FieldIn the setting of 
ryptographi
 s
hemes, the 
oe�
ient �eld is a �nite �eld Fq(with q elements) and the solutions are sear
hed with 
oordinates in this �nite�eld. Let x1, . . . , xn denote the variables of R. Then one a
tually sear
hes forthe solutions of the system {p1 = 0, . . . , pk = 0} with the additional equations
{xq

1 − x1 = 0, . . . , xq
n − xn = 0}. Equivalently, sin
e the xi des
ribe values in Fq,all monomials in R 
an be redu
ed a

ording to the rules xq

i = xi, i = 1, . . . , n.Then, all 
ombinations of the polynomials p1, . . . , pk 
an be 
onsidered in theredu
ed ring Rq = Fq[x1, . . . , xn]/{xq
1 − x1, . . . , x

q
n − xn}.While in the sequel we 
ompute the degree of regularity of underdeterminedsystems (k ≤ n) in a redu
ed ring, it serves in upperbounding the degree ofregularity of a publi
 HFE system with exa
tly n polynomials. In this 
ase, theexpe
ted number N of solutions is hardly more than one and it 
an be shownthat any Gröbner basis for any ordering that re�nes the degree 
ontains at least

n − N linearly independent degree-1 polynomials (
f full version). Hen
e, oursetting makes it parti
ularly easy to derive the solutions from a Gröbner basis.Sin
e in the sequel we only en
ounter systems of quadrati
 polynomials, for
onvenien
e sake we spe
ialize the following de�nitions to this 
ase. Let p1, . . . , pkbe a system of quadrati
 polynomials in Rq. For any integer d ≥ 2, 
onsider thesubspa
e of 
ombinations m1p1 + · · ·+mkpk where the mi have degree at most
d− 2 in Rq. By de�nition, it is the image spa
e of the map

σd(p1, . . . , pk) : (m1, . . . ,mk) ∈ ((Rq)≤d−2)
k 7−→ m1p1 + · · · +mkpk.An important observation is that the kernel of σd(p1, . . . , pk) always 
ontains pre-di
tible non-zero tuples 
alled trivial syzygies. Examples of trivial syzygies are5



the 
ombinations over Rq of the k-tuples with mi = pj , mj = −pi for some i, jand 0 otherwise. A formal de�nition of trivial syzygies is the following. For in-determinates y1, . . . , yk, let Tq(y1, . . . , yk) denote the set of k-tuples (m1, . . . ,mk)over Rq[y1, . . . , yk]/{yq
1 − y1, . . . , y

q
k − yk} su
h that m1y1 + · · ·+mkyk = 0. Forany polynomials p1, . . . , pk over Rq, we 
all trivial syzygies of p1, . . . , pk theevaluations of the k-tuples in Tq(y1, . . . , yk) at (p1, . . . , pk) .When sear
hing for degree falls, we are only interested in the subspa
e Vdspanned by the highest degree homogeneous part of the image of σd(p1, . . . , pk).This subspa
e is spanned by the degree d homogeneous parts of the 
ombinations

m1p1 + · · · + mkpk where m1, . . . ,mk are homogeneous polynomials of degree
d−2. We de�ne a degree fall in degree d of p1, . . . , pk as a k-tuple (m1, . . . ,mk)of degree d − 2 homogeneous polynomials su
h that the degree d homogeneouspart of m1p1 + · · · +mkpk is zero. The degree d − 2 homogeneous parts of thetrivial syzygies of p1, . . . , pk in degree d− 2 are trivially degree falls and we 
allthem trivial degree falls. We 
all the degree of regularity of p1, . . . , pk thesmallest d su
h that a non trivial degree fall of p1, . . . , pk exists in degree d.3 De�nition of HFE SystemsThe 
onstru
tion of HFE systems is based on the linear isomorphism between
(Fq)

n and Fqn over Fq. Re
all that Fqn is a degree n polynomial extension over
Fq and as a 
onsequen
e is an n dimensional ve
tor spa
e over Fq. Any 
hoi
eof a basis of Fqn de�nes a linear bije
tion S from (Fq)

n to Fqn , and extends toa linear bije
tion ψS from fun
tions on Fqn to fun
tions on (Fq)
n by:

ψS : P 7→ S−1 ◦ P ◦ SRe
all that fun
tions on (Fq)
n are uniquely represented by n-tuples of polynomi-als in Rq = Fq[x1, . . . , xn]/{xq
1 − x1, . . . , x

q
n − xn} and that fun
tions on Fqn areuniquely represented by polynomials in Fqn [X ]/{Xqn

− X}. This gives an ex-pression of ψS on polynomials: ψS : Fqn [X ]/{Xqn

−X} −→ (Rq)
n. Also re
allthat raising to a power of q is linear over Fq and that the n distin
t q-poweringson Fqn are 
alled the Frobenius maps. More generally, for any power fun
tion

Xa in Fqn [X ]/{Xqn

− X}, we 
all q-degree of Xa the sum a0 + · · · + an−1,where (a0, a1, . . . , an−1) is the de
omposition of a in base q. In parti
ular, 
on-stants have q-degree 0 and Frobenius maps have q-degree 1. Sin
e any fun
tionin Fqn [X ]/{Xqn

− X} is a linear 
ombination of power fun
tions, we de�ne q-degree as the maximal q-degree of its terms. The following proposition ensuresthat ψS maps q-degree in Fqn [X ]/{Xqn

−X} to degree in (Rq)
n.Proposition 1. Let S be an arbitrary linear bije
tion from (Fq)

n to Fqn . Forany integer d ≥ 0, ψS de�nes a bije
tion from polynomials in Fqn [X ]/{Xqn

−X}with q-degree d to n-tuples over Rq with degree d.Please refer to the full version for a proof. We are now ready to de�ne HFEsystems. Re
all from the introdu
tion that an HFE publi
 key is the data of the6



n 
oordinate polynomials of a 
omposition T ◦P ◦S where S is a linear bije
tionfrom (Fq)
n to Fqn , T is a linear bije
tion from Fqn to (Fq)

n and P is a fun
tionon Fqn whi
h as a polynomial in Fqn [X ]/{Xqn

−X} has the shape
P (X) =

∑

i,j≤D pijX
qi+qj

+
∑

k≤D λkX
qk

+ cwhere D is a parameter of the s
heme. For any linear bije
tion S, we 
all HFEsystems the systems in (Rq)
n whi
h are the images by ψS of the polynomials

P (X) of the above shape. We see from the above proposition that HFE systemsare quadrati
 and that their only parti
ularity in this 
lass is to 
orrespond to apolynomial P (X) of degree upper bounded by 2qD. Sin
e T is a linear bije
tion,an HFE publi
 key has all the algebrai
 properties of an HFE system.4 Combinations of HFE PolynomialsIn this se
tion, we map 
ombinations of HFE systems to related operations on thede�ning polynomial in Fqn [X ]/(Xqn

−X). This mapping was outlined in [9℄ and ismade pre
ise here. In
identally, it is independent of the parti
ular shape of HFEde�ning polynomials and hen
e is valid for any 
ryptosystem following a similar
onstru
tion. To lighten the notation, we now denote Rqn = Fqn [X ]/(Xqn

−X).This se
tion is a 
hain of te
hni
al points whi
h are ne
essary to make themapping 
omplete. For a qui
k reading, one may jump dire
tly to subse
tion 4.4.4.1 From Combinations in Rq to Combinations in RqnLet P be any polynomial in Rqn and (p1, . . . , pn) = ψS(P ). We have de�ned
ombinations of p1, . . . , pn as linear 
ombinations of p1, . . . , pn with 
oe�
ientsin Rq. Hen
e, n-tuples of linear 
ombinations over Rq are produ
ts by n × nmatri
es over Rq. Proposition 1 implies that ψ−1
S is a linear bije
tion from linearmaps on (Fq)

n to linear 
ombinations over Fqn of the Frobenius maps. We extendthis result when 
oe�
ients are in Rq and Rqn instead of Fq and Fqn .Proposition 2. Let S be an arbitrary linear bije
tion from (Fq)
n to Fqn . Thereexists an Fq-linear bije
tion ψ∗

S from (Rqn)n to n × n matri
es over Rq, su
hthat for any M0, . . . ,Mn−1 and P in Rqn ,
ψ∗

S(M0, . . . ,Mn−1)ψS(P ) = ψS(M0P
q0

+ · · · +Mn−1P
qn−1

). (1)Proof. We simply 
onstru
t ψ∗
S by hand by 
onsidering the above identity overthe set of 
onstant fun
tions P = a with a in Fqn . Sin
e ψS is linear we only needto 
onsider P = a for a over a basis of Fqn . For any i = 1, . . . , n, let ei ∈ Fqn de-note the image by S of the i-th 
anoni
al ve
tor of (Fq)

n. For anyM0, . . . ,Mn−1,
ψ∗

S(M0, . . . ,Mn−1)ψS(ei) is the i-th 
olumn of ψ∗
S(M0, . . . ,Mn−1) and mustbe set to ψS(

∑n−1
k=0 Mk(ei)

qk

). ψ∗
S is linear by the linearity of ψS . Consider

(M0, . . . ,Mn−1) whose image by ψ∗
S is zero. Then, ψS being a linear bije
tion,for any i = 1, . . . , n, we have ∑n−1

k=0 (ei)
qk

.Mk = 0. The only solution to thisinvertible system is M0 = · · · = Mn−1 = 0, whi
h proves that ψ∗
S is inje
tive.Surje
tivity follows ψ∗

S mapping subspa
es of identi
al dimension over Fq. ⊓⊔7



Equation (1) over the 
onstants ei also shows that the q-degree of
(M0, . . . ,Mn−1) equals the degree of ψ∗

S(M0, . . . ,Mn−1). In parti
ular, for any
P of q-degree 2 and d ≥ 2, we de�ne
U≤d(P ) =

{

M0P
q0

+ · · · +Mn−1P
qn−1

| q-deg(Mi) ≤ d− 2, i = 0, . . . , n− 1
}and on the other hand, for (p1, . . . , pn) = ψS(P ),

V≤d(p1, . . . , pn) = {m1p1 + · · · +mnpn | deg(mi) ≤ d− 2, i = 1, . . . , n} .Property 1. For any d ≥ 2, ψS is a bije
tion from U≤d(P ) to (V≤d(p1, . . . , pn))n.Proof. ψ∗
S transforms n-tuples of q-degree ≤ d − 2 to n × n matri
es of degree

≤ d − 2. Both spans have the same dimension over Fq by Proposition 1, hen
e
ψ∗

S is a bije
tion from the one to the other. Finally, the property holds by theidentity satis�ed by ψ∗
S and evaluated at the parti
ular P . ⊓⊔Sin
e the dimension of (V≤d)

n is n times the dimension of V≤d and the dimensionof U≤d over Fq is n times its dimension over Fqn , the property implies
dimFq

(V≤d(p1, . . . , pn)) = dimFqn (U≤d(P )) .4.2 From Degree Falls in Rq to q-Degree Falls in RqnWhen 
onsidering degree falls, one is really interested in the subspa
e spannedby the highest degree homogeneous part of a bounded degree 
ombination spa
e.For any quadrati
 polynomials p1, . . . , pn in Rq and any integer d ≥ 2, let
V h

d (p1, . . . , pn) denote the subspa
e generated by the degree d homogeneous partsof polynomials in V≤d(p1, . . . , pn). Similarly, for any polynomial P of q-degree2 in Rqn and any integer d ≥ 2, let Uh
d (P ) denote the subspa
e of q-degree dhomogeneous parts of polynomials in U≤d(P ). Quite expe
tably, we have:Property 2. Let P in Rqn and (p1, . . . , pn) = ψS(P ). Then, for any d ≥ 2, thereexists an Fq-linear bije
tion from Uh

d (P ) to (V h
d (p1, . . . , pn))n.Proof. The highest degree homogeneous part of a polynomial p in Rq with degree

d ≥ 2 is its 
lass mod (Rq)≤d−1. Hen
e, V h
d (p1, . . . , pn) is V≤d(p1, . . . , pn) mod

(Rq)≤d−1. Similarly Uh
d (P ) is U≤d(P ) mod (Rqn)≤d−1. LetQ andQ′ be arbitrarypolynomials inRqn su
h that Q = Q′ mod (Rqn)≤d−1. Then, Q−Q′ has q-degreeat most d − 1. Sin
e ψS preserves the degree, ψS(Q − Q′) has degree at most

d−1. Hen
e, sin
e ψS is linear, ψS(Q) = ψS(Q′) mod ((Rq)≤d−1)
n. Therefore, ψSindu
es an Fq-linear map from Rqn mod (Rqn)≤d−1 to (Rq)

n mod ((Rq)≤d−1)
n.Sin
e ψS is a bije
tion from U≤d(P ) to (V≤d(p1, . . . , pn))n, the indu
ed map isa bije
tion from Uh

d (P ) to (V h
d (p1, . . . , pn))n. ⊓⊔Let Rh

q denote the set of homogeneous polynomials of Rq. For any polynomial pin Rq and any integer d ≥ 0, let [p]d denote the degree d homogeneous part of8



p. For any system p1, . . . , pn of quadrati
 polynomials in Rq and any d ≥ 2, thedegree falls of p1, . . . , pn in degree d are the kernel of the map
σh

d (p1, . . . , pn) : (m1, . . . ,mn) ∈ ((Rh
q )d−2)

n 7−→ [m1p1 + · · · +mnpn]d.With 
ompletely transposed notations, for any P of q-degree 2 in Rqn and any
d ≥ 2, we de�ne the q-degree falls of P in degree d as the kernel of the map
Σh

d (P ) : (M0, . . . ,Mn−1) ∈ ((Rh
qn )d−2)

n 7→ [M0P +M1P
q + · · · +Mn−1P

qn−1

]dThe image spa
es σh
d (p1, . . . , pn) and Σh

d (P ) respe
tively are V h
d (p1, . . . , pn) and

Uh
d (P ). Property 2 ensures that when (p1, . . . , pn) = ψS(P ) the image spa
es of

(σh
d (p1, . . . , pn))n and Σh

d (P ) have the same 
ardinality. Besides, Proposition 1ensures that the same holds for their input spa
es. Therefore, the kernels of
(σh

d (p1, . . . , pn))n and Σh
d (P ) have the same 
ardinality. Finally,

dimFq
(kerσh

d (p1, . . . , pn)) = dimFqn (kerΣh
d (P )). (2)4.3 Trivial Syzygies and Trivial Degree FallsTrivial syzygies of p1, . . . , pn are n-tuples overRq su
h thatm1p1+· · ·+mnpn = 0even when p1, . . . , pn are indeterminates. They are pre
isely de�ned the followingway. Let R̄q denote the extension of Rq with additional variables y1, . . . , yn,

R̄q = Rq[y1, . . . , yn]/{yq
1 − y1, . . . , y

q
n − yn}. Let Tq(y1, . . . , yn) denote the setof n-tuples (m1, . . . ,mn) over R̄q su
h that m1y1 + · · · + mnyn = 0. For anypolynomials p1, . . . , pn in Rq, we de�ne its trivial syzygies as the evaluations ofthe n-tuples in Tq(y1, . . . , yn) at (p1, . . . , pn). As a shorthand, let Tq(p1, . . . , pn)denote the set of trivial syzygies of p1, . . . , pn.Elements of R̄q are polynomials in both x1, . . . , xn and y1, . . . , yn. For anymonomial in R̄q, let dx, dy denote its degrees in x1, . . . , xn and in y1, . . . , ynrespe
tively. Sin
e variables y1, . . . , yn are intended to be spe
ialized at quadrati
polynomials p1, . . . , pn in Rq, we de�ne the (1, 2)-degree of a monomial in R̄qas dx + 2dy, and the (1, 2)-degree of a polynomial in R̄q as the maximum of the

(1, 2)-degree of its monomials. Hen
e, any element of Tq(y1, . . . , yn) with (1, 2)-degree d yields an element of Tq(p1, . . . , pn) with degree ≤ d. We 
all trivialsyzygies of p1, . . . , pn with designed degree d the elements of Tq(p1, . . . , pn) whose
orresponding element of Tq(y1, . . . , yn) has (1, 2)-degree d. The trivial syzygieswith designed degree ≤ d are denoted by Tq(p1, . . . , pn)�d. On the other hand,one may analogously 
onsider the extension of Rqn with additional variable Y ,
R̄qn = Rqn [Y ]/(Y qn

− Y ), and de�ne Tqn(Y ) as the n-tuples (M0, . . . ,Mn−1)over R̄qn su
h that M0Y +M1Y
q + · · · + Mn−1Y

qn−1

= 0. For any P in Rqn ,let Tqn(P ) denote the evaluations of the n-tuples in Tqn(Y ) at P . Finally, forany P of q-degree 2 and any d ≥ 0, we let Tqn(P )�d denote the elements whose
orresponding elements in Tqn(Y ) have (1, 2)-q-degree d. By a series of simpleextensions of the previous results, we 
an show (
f full version)Property 3. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 0,
dimFq

(Tq(p1, . . . , pn)�d) = dimFqn (Tqn(P )�d).9



The polynomials p1, . . . , pn being quadrati
, for any d ≥ 2, we 
all trivial degreefalls of p1, . . . , pn in degree d the homogeneous parts of (a
tual) degree d − 2of the elements in Tq(p1, . . . , pn)�d−2 and denote them (with a slight abuse ofnotation) by Tq(p1, . . . , pn)h
d−2. Similarly, for P of q-degree 2, we 
all trivial q-degree falls of P in q-degree d the homogeneous parts of q-degree d − 2 of theelements in Tq(P )�d−2 and denote them by Tq(P )h

d−2. We have (
f full version)Property 4. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 2,
dimFq

(Tq(p1, . . . , pn)h
d−2) = dimFqn (Tqn(P )h

d−2).4.4 Mapping the Degree of Regularity from Rq to RqnRe
all that the degree of regularity of a system of quadrati
 polynomials
p1, . . . , pn is the smallest integer d su
h that a non-trivial degree fall exists in de-gree d. With the previous notation, this is the smallest d su
h that the kernel of
σh

d (p1, . . . , pn) is stri
tly larger than Tq(p1, . . . , pn)h
d−2. Now, let S be an arbitrarylinear bije
tion from (Fq)

n to Fqn and P in Rqn su
h that ψS(P ) = (p1, . . . , pn).Then, P has q-degree 2 and, by Equality 2 and Property 3,Property 5. the degree of regularity of p1, . . . , pn is the smallest d su
h that thekernel of Σh
d (P ) is stri
tly larger than Tqn(P )h

d−2.Hen
e, we obtain an equivalent 
hara
terization of the degree of regularity of
p1, . . . , pn in term of the asso
iated polynomial P in Rqn . In the remainderof this se
tion, we slightly modify the above 
hara
terization to make it more
onveniently usable in the analysis of the next se
tion.Multivariate representation of Rqn. Our �rst step is a simple alterna-tive notation for the elements Rqn . This notation was proposed in [9℄. Asalready seen, we 
an split any power of X a

ording to the de
ompositionin base q of the exponent. Now simply introdu
e a distin
t notation for theFrobenius of X : for i = 0, . . . , n − 1, let Xi denote Xqi . Observe that for any
i = 0, . . . , n − 1, Xq

i − Xi+1 = 0 where the indi
es are taken modulo n. Usingthese relations, any power of X 
orresponds to a unique multivariate mono-mial in X0, . . . , Xn−1. It extends trivially to all polynomials in Rqn . Additionand multipli
ation are 
ompatible with this notation. Therefore, Rqn identi�esas a ring with Fqn [X0, . . . , Xn−1]/{X
q
0 −X1, . . . , X

q
n−1 −X0}. Along with thisidenti�
ation, q-degree be
omes degree in the multivariate ring. Also, for anypolynomial P in Rqn , let P0, . . . , Pn−1 denote its su

esssive Frobenius. For any

i = 0, . . . , n−1, P q
i −Pi+1 = 0 where indi
es are modulo n. When P has q-degree

2, its Frobenius are multivariate quadrati
 polynomials. Sin
e the P -termed setsreally express in terms of the Frobenius of P , they are 
onveniently rewrittenwith the above notation. Hen
e, Σh
d (P ) rewrites to

Σh
d (P0, . . . , Pn−1) : (M0, . . . ,Mn−1) ∈ (Rh

qn)d−2 7→ [M0P0 + · · · +Mn−1Pn−1]d.10



The ring R̄qn = Rqn [Y ]/(Y qn

− Y ) rewrites to Rqn [Y0, . . . , Yn−1]/{Y
q
0 −

Y1, . . . , Y
q
n−1 − Y0}. The set Tqn(Y ) rewrites to Tqn(Y0, . . . , Yn−1), the n-tuples

(M0, . . . ,Mn−1) over R̄qn su
h thatM0Y0 + · · ·+Mn−1Yn−1 = 0. Hen
e, Tqn(P )identi�es with Tqn(P0, . . . , Pn−1). And the elements of Tqn(P0, . . . , Pn−1)
h
d arethe degree d homogeneous parts of the elements of Tqn(P0, . . . , Pn−1)�d. Finally,our 
hara
terization (Property 5) rewrites to, when (p1, . . . , pn) = ψS(P ),Property 6. the degree of regularity of p1, . . . , pn equals the degree of regularityof P0, . . . , Pn−1, the n Frobenius of P in the multivariate representation of Rqn .At this point, our task is redu
ed to studying the degree of regularity of thequadrati
 polynomials P0, . . . , Pn−1 in Rqn , and we do not need to address thepolynomials p1, . . . , pn any further. The next paragraph is devoted to re�ningthe 
hara
terization of the degree of regularity of P0, . . . , Pn−1.Chara
terizing the Degree of Regularity of Systems of Rqn . Our �rstobservation is a simple one: the highest degree terms of 
ombinations in degree

d of P0, . . . , Pn−1 only depends on their highest degree terms P̂0, . . . , P̂n−1.Property 7. The degree of regularity of quadrati
 polynomials in Rqn equals thedegree of regularity of their degree 2 homogeneous parts.Proof. For any degree d− 2 homogeneous polynomials M0, . . . ,Mn−1, the asso-
iated 
ombinations of P0, . . . , Pn−1 and P̂0, . . . , P̂n−1 have the same degree dhomogeneous part. Hen
e, degree falls in degree d are the same for both systemsof polynomials. On the other hand, the trivial syzygies of P0, . . . , Pn−1 of de-signed degree d− 2 have the same degree d− 2 homogeneous parts as the trivialsyzygies of P̂0, . . . , P̂n−1 of designed degree d− 2. The property follows. ⊓⊔Our se
ond observation is more subtle: when 
onsidering 
ombinations of thequadrati
 homogeneous polynomials P̂0, . . . , P̂n−1 with degree d−2 homogeneous
oe�
ients, terms of degree smaller than d 
an only appear with redu
tions mod-ulo the polynomials Xq
i − Xi+1, i = 0, . . . , n − 1. Sin
e all terms with degreesmaller than d are dis
arded, the same result is obtained as when performing
ombinations in the ring Rqn = Fqn [X0, . . . , Xn−1]/{X

q
0 , . . . , X

q
n−1}. Consider-ing 
ombinations in Rqn rather than in Rqn , the map Σh

d (P̂0, . . . , P̂n−1) simplyrewrites to Σh
d (P̂0, . . . , P̂n−1):

(M0, . . . ,Mn−1) ∈ ((Rh
qn)d−2)

n 7→ M0P̂0 +M1P̂1 + · · · +Mn−1P̂n−1.Furthermore, we 
an equivalently 
hara
terize the trivial degree falls using thering stru
ture of Rqn . Consider R̄qn = Rqn [Y0, . . . , Yn−1]/{Y
q
0 , . . . , Y

q
n−1} andthe asso
iated set T qn(Y0, . . . , Yn−1). For any d ≥ 0, we 
an de�ne the sets

T qn(P̂0, . . . , P̂n−1)�d and T qn(P̂0, . . . , P̂n−1)
h
d , exa
tly as before.Property 8. For any d ≥ 0, the sets Tqn(P̂0, . . . , P̂n−1)

h
d and T qn(P̂0, . . . , P̂n−1)

h
dare identi
al. Therefore, for any d ≥ 2, the trivial degree falls of P̂0, . . . , P̂n−1 indegree d are the elements of T qn(P̂0, . . . , P̂n−1)

h
d−2.11



Proof. For any (M0, . . . ,Mn−1) in T qn(Y0, . . . , Yn−1), let Q denote the 
ombi-nation M0Y0 + · · · + Mn−1Yn−1 in Rqn [Y0, . . . , Yn−1]. Sin
e Q is zero modulo
Y q

0 , . . . , Y
q
n−1, any of its term is divisible by at least one of Y q

0 , . . . , Y
q
n−1. Sin
e

M0, . . . ,Mn−1 have degree at most q−1 in any Yi, any term of Q 
an have degree
q in only one single indeterminate and at most q−1 in all the others. Therefore,any term of Q exa
tly has degree q is one indeterminate and at most q− 1 in allthe others. Hen
e, Q admits a unique de
omposition A0Y

q
0 + · · · + An−1Y

q
n−1.Using the unique polynomials A0, . . . , An−1 asso
iated to (M0, . . . ,Mn−1), we
onstru
t an element (M ′

0, . . . ,M
′
n−1) of Tqn(Y0, . . . , Yn−1) by setting for all

i = 0, . . . , n − 1, M ′
i = Mi − Ai−1 (indi
es are modulo n). Now, observe thatthe terms of A0, . . . , An−1 
onsist of terms of M0, . . . ,Mn−1 divided by one in-determinate to the power of q − 1. As a 
onsequen
e, ea
h of them has a totaldegree in the Yi variables smaller (by q − 1) than the one it originates from. Inparti
ular, when M0, . . . ,Mn−1 have (1, 2)-degree at most d, M ′

0, . . . ,M
′
n−1 re-spe
tively have the same terms of (1, 2)-degree d as M0, . . . ,Mn−1 be
ause theydi�er by terms of stri
tly smaller (1, 2)-degree. ⊓⊔Hen
e, we end up with the following 
hara
terization whi
h we use in the sequel.Property 9. Let P̂0, . . . , P̂n−1 be homogeneous quadrati
 polynomials in Rqn .The degree of regularity of P̂0, . . . , P̂n−1 
an be 
omputed in Rqn as the smallest

d ≥ 2 su
h that degree d − 2 homogeneous n-tuples (M0, . . . ,Mn−1) satisfying
M0P̂0 + · · · +Mn−1P̂n−1 = 0 exist besides the elements of T qn(P̂0, . . . , P̂n−1)

h
d .5 Bounding the Degree of Regularity of HFE SystemsWe �rst des
ribe the proof prin
iple of our upper bound and then perform the
ombinatorial 
omputations that 
onvey the result.5.1 Upper Bounding the Degree of RegularityFirst 
onsider arbitrary homogeneous quadrati
 polynomials P̂0, . . . , P̂k−1 in

Rqn where k ≤ n. The dimensions of the kernel and the image of the map
Σh

d (P̂0, . . . , P̂k−1) : ((Rqn)h
d−2)

k −→ (Rqn)h
d

(M0, . . . ,Mk−1) 7−→ M0P̂0 +M1P̂1 + · · · +Mk−1P̂k−1relate to ea
h other by
k dim(Rqn)h

d−2 − dimkerΣh
d (P̂0, . . . , P̂k−1) = dim Im(Σh

d (P̂0, . . . , P̂k−1)).Not knowing what the degree of regularity of the system is, one 
an assumethat it is not rea
hed while in
rementing d. In this 
ase, the kernel is assumedto 
ontain only the trivial elements of T qn(P̂0, . . . , P̂k−1)
h
d−2. Sin
e the image is
on�ned in (Rqn)h

d , a 
ontradi
tion to this assumption appears as soon as
k dim(Rqn)h

d−2 − dimT qn(P̂0, . . . , P̂k−1)
h
d−2 > dim(Rqn)h

d12



and then we know that the degree of regularity was rea
hed before. The smallest dsatisfying this �saturation� 
ondition is therefore an upper bound on the degreeof regularity of P̂0, . . . , P̂k−1. Sin
e it is valid for any homogeneous quadrati
polynomials, we refer to it as the MQ bound.We now show how in the 
ase of HFE systems better bounds 
an be obtained.5.2 The Case of HFE SystemsIt was noted in [15℄ that when P̂0, . . . , P̂n−1 are obtained from the Frobeniusof an HFE polynomial P , they express over small shifted sets of 
onse
utivevariables: P̂0 expresses over X0 to XD, P̂1 expresses over X1 to XD+1, . . . ,
P̂n−1 expresses over Xn−1 to XD−1 (indi
es are modulo n). Then, the authorsnoted that a 
onsequen
e of this property is that small subsystems of 
onse
utivepolynomials only involve a small subset of the available variables. Conse
utivesubsystems of a pres
ribed size being all equivalent up to a 
y
li
 shift, we fo
uson the n subsystems Sk = {P̂0, . . . , P̂k−1} for k = 1, . . . , n. The subsystem Skexpresses over the �rst mk variables, where mk = D + k for all k ≤ n−D and
mk = n beyond. The degree of regularity of P̂0, . . . , P̂n−1 is upper bounded bythe respe
tive degrees of regularity dk of the subsystems Sk for all k = 1, . . . , n.Indeed the degree falls of Sk identify with the degree falls of P̂0, . . . , P̂n−1 withzero on the last n−k 
oordinates. On the other hand we will show in Se
tion 5.3(Property 11) that whenever a degree fall is non-trivial for Sk, its 
ompletionwith zero on the last n − k 
oordinates is non-trivial for P̂0, . . . , P̂n−1. At thispoint, the authors of [15℄ estimated the degree of regularity of any subsystem Skby using an asymptoti
 formula from [2℄. This needed restri
ting to q = 2 andassuming that the quadrati
 polynomials P̂0, . . . , P̂k−1, X

2
0 , . . . , X

2
mk−1 satisfythe 
ondition for whi
h the formula holds. Instead, we use the previous saturationbound: we upper bound the degree of regularity of Sk by applying the MQ boundto P̂0, . . . , P̂k−1. Hen
e it is upper bounded by the smallest d su
h that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)
h
d−2 > dim(Rqn|mk

)h
d (3)where Rqn|mk

denotes the restri
tion of Rqn to the �rst mk variables. Sin
e thisupper bound uses a property showed in [15℄, we refer to it as the GJS bound.We now observe an additional property of HFE systems. Sin
e polynomials
P̂0, . . . , P̂n−1 write over monomials XiXi+ℓ with ℓ ≤ D, 
ombinations of thesepolynomials ne
essarily write over the monomials whi
h are divisible by XiXi+ℓfor some i and ℓ ≤ D. Let M

D
q denote the subspa
e spanned by su
h monomials.For any subsystem Sk, we improve the GJS bound by the smallest d su
h that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)
h
d−2 > dim(MD

q |mk)h
d (4)where (MD

q |mk)h
d denotes the subspa
e spanned by degree d monomials of M

D
qin the �rst mk variables. The distin
tion between M

D
q and R

h
qn is in
reasinglysigni�
ant as q grows. Indeed, at �xed n and d, the average Hamming weight ofmultidegrees in degree d de
reases as q grows. Then, the proportion of monomials13




ontaining two variables distant by at most D indi
es (mod n) grows thiner. We
all HFE bound the upper bound on the degree of regularity of P̂0, . . . , P̂n−1obtained from the latter improvement.We now 
ompute for any d ≥ 2 and any k = 1, . . . , n, the above dimensionsby means of indu
tion formulae and dedu
e the related numeri
al upper bound.5.3 Indu
tion Formulae for Computing our Upper BoundWe show how to 
ompute the dimensions of (Rqn|m)h
d , (MD

q |m)h
d and

T qn|m(P̂0, . . . , P̂k−1)
h
d , for any m, k = 1, . . . , n.The dimension H(m, d) of (Rqn|m)h

d is simply the number of homogeneousmonomials of degree d in m variables, where all exponents are bounded between
0 and q − 1. Obviously, it equals H(m, d) = 0 for d < 0, or d > 0 and m ≤ 0,we have H(m, 0) = 1 for all m, and when d > 0,m > 0 it satis�es the indu
tion
H(m, d) =

∑q−1
α=0H(m− 1, d− α) . Equivalently, H(m, d) is the d-th term of theseries ((1 − zq)/(1 − z))u of term z. In parti
ular, for q = 2, H(u, d) =

(

u

d

).The Number of Monomials Arising in Combinations of HFE. For any
d ≥ 0, and u = 1, . . . , n, let C(u, d) denote the dimension the 
omplement of
(MD

q |u)h
d in (Rqn|u)h

d . This is the number of monomials of degree d in u 
onse
u-tive variables, with exponents modulo q, su
h that all variables with non-zero ex-ponents have indi
es (modulo n) distant by at least D+1 positions. First, ignorethat distan
e between indi
es is taken modulo n, and that we allow for instan
e
X0 andXu−1 to have both a non-zero power. Then, C′(u, d) is given by the simple�Pas
al's triangle� formula C′(u, d) = C′(u− 1, d) +

∑q−1
α=1 C

′(u−D − 1, d− α)for any u = 1, . . . , n, where C(u, 0) = 1 and C(u, d) = 0 whenever d < 0 or u ≤ 0.When u is lower than n−D, then the requested dimension C(u, d) is there equalto C′(u, d) sin
e the last D variables have zero exponents. Otherwise, when u >
n−D, the distan
e must be taken modulo n, so we dedu
e all values of C(n, d) by
onsidering the partitions de�ned by monomials 
ontaining X0, plus monomials
ontainingX1, . . . , plus monomials 
ontainingXD−1, plus monomials 
ontainingnone of them. Hen
e, C(u, d) = C′(u −D, d) +D

∑q−1
α=1 C

′(n− 1 − 2D, d− α) .Finally, dim(MD
q |u)h

d = H(u, d) − C(u, d).The Dimension of Trivial Syzygies in Degree d. Simply denote Rqn|m by
Rm. Our �rst step is to exhibit generators for the module T m(Y0, . . . , Yk−1).Property 10. An n-tuple (M0, . . . ,Mk−1) is an element of T m(Y0, . . . , Yk−1) ifand only if it is a 
ombination with polynomial 
oe�
ients of the n-tuples
{

Γij = (0, . . . , 0,Mi = Yj , 0, . . . , 0,Mj = −Yi, 0, . . . , 0), i, j = 0, . . . , k − 1,

Φi = (0, . . . , 0,Mi = Y q−1
i , 0, . . . , 0), i = 0, . . . , k − 1.Proof. For any n-tuple (M0, . . . ,Mk), de
ompose Mi into M̄iY

q−1
i +M ′

i . An n-tuple (M0, . . . ,Mk) is an element of T qn(Y0, . . . , Yk) if and only if M0Y0 + · · ·+14



MkYk is zero modulo Y q
0 , . . . , Y

q
k . This is equivalent to M ′

0Y0 + · · · +M ′
kYk = 0(without modulo). We prove that this latter equality implies that (M ′

0, . . . ,M
′
k)is a 
ombination of (Γij). We do this through indu
tion on k. If k = 1 then, ifM ′
0or M ′

1 is zero they are both zero, otherwise M ′
0 = M ′′Y1 and M ′

1 = −M ′′Y0 and
(M ′

0,M
′
1) = M ′′(Y1,−Y0). Assume the property holds up to k − 1. Then, if M ′

kis zero, we fall on the property at k − 1, otherwise all M ′
i , i = 0, . . . , k − 1 must
ontain Yk and denoting by M ′′

i the quotient, we have M ′
k = −(M ′′

0 Y0 + · · · +
M ′′

k−1Yk−1), from whi
h we get (M ′
0, . . . ,M

′
k) = M ′′

0 Γ0,k + · · · + M ′′
k−1Γk−1,k.Coming ba
k to the main proof, we get(M0, . . . ,Mk) = M̄0Φ0 + · · · + M̄kΦk +

(M ′
0, . . . ,M

′
k)where the last n-tuple de
omposes over (Γij)'s. ⊓⊔Sin
e Γij 's and Φi's are homogeneous in the variables Y0, . . . , Yk−1, the (1, 2)-degree d parts of the elements of T m(Y0, . . . , Yk−1) themselves de
ompose overthese generators. Repla
ing variables Y0, . . . , Yk−1 respe
tively by P̂0, . . . , P̂k−1,trivial syzygies in degree d of P̂0, . . . , P̂k−1 write

T m(P̂0, . . . , P̂k−1)
h
d = (Rm)h

d−2{Γij}0≤i<j≤k−1 + (Rm)h
d−2(q−1){Φi}0≤i≤k−1,where we again denote by Γij 's and Φi's their spe
ializations at (P̂0, . . . , P̂k−1).Unfortunately, de
omposition over the above generators is not unique. Therefore,the dimension of T m(P̂0, . . . , P̂k−1)

h
d 
an not be dire
tly read from the aboveformula. However, we see that this dimension follows a simple indu
tion.Let ∂Γd,k denote the subspa
e spanned by Γi,k, i = 0, . . . , k − 1 (k ≥ 1) and

∂Φd,k denote the subspa
e spanned by Φk. Then, for k ≥ 1,
T m(P̂0, . . . , P̂k)h

d = T m(P̂0, . . . , P̂k−1)
h
d + (∂Γd,k + ∂Φd,k). (5)For k = 1, we simply have T m(P̂0)

h
d = ∂Φ1

d. For all k ≥ 1, the in
rease ofdimension when adding ∂Γd,k + ∂Φd,k is the dimension of the quotient spa
e
(∂Γd,k + ∂Φd,k) mod T m(P̂0, . . . , P̂k−1)

h
d . Now we use the following property.Property 11. For d up to the degree of regularity of P̂0, . . . , P̂k,

T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d = T m(P̂0, . . . , P̂k−1)

h
d .(Hen
e, the degree of regularity of P̂0, . . . , P̂k is upper-bounded by the degree ofregularity of P̂0, . . . , P̂k−1 be
ause a 
an
ellation of P̂0, . . . , P̂k−1 whi
h is non-trivial in the sense of P̂0, . . . , P̂k−1 is non-trivial in the sense of P̂0, . . . , P̂k.)Proof. First re
all that Γij 's have degree 2 and φi's have degree 2(q − 1) ≥ 2.As a 
onsequen
e T m(P̂0, . . . , P̂k−1) has no element in degree 0 or 1.For any 1 ≤ α ≤ q and d ≥ 0, de�ne the set

T
∗α
m (P̂0, . . . , P̂k)h

d =

{

(M0, . . . ,Mk−1, 0)

∣

∣

∣

∣

∣

∃M
(α)
k , (M0, . . . ,Mk−1,M

(α)
k P q−α

k )

∈ T m(P̂0, . . . , P̂k)h
d

}Observe that for α = 1, this set is exa
tly T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d.We show that for d up to the degree of regularity of P̂0, . . . , P̂k, and α ≤ q − 1,

T
∗α
m (P̂0, . . . , P̂k)h

d ⊆ T m(P̂0, . . . , P̂k−1)
h
d + PkT

∗(α+1)
m (P̂0, . . . , P̂k)h

d−2. (6)15



Indeed, let (M0, . . . ,Mk−1, 0) belong to the left handside. By de�nition,there exists Mα
k su
h that (M0, . . . ,Mk−1,M

α
k P

α
k ) is in T m(P̂0, . . . , P̂k)h

d .Refer to the de
omposition 5 of this set. Hen
e there exists an element
Tk of T m(P̂0, . . . , P̂k−1)

h
d (with its last 
oordinate to zero) and 
oe�
ients

µ0, . . . , µk−1, νk su
h that (M0, . . . ,Mk−1,M
α
k P

α
k ) = Tk + µ0Γ0k + · · · +

µk−1Γk−1,k + νkφk. Coordinate-wise identity writes
{

(M0, . . . ,Mk−1, 0) = Tk + Pk(µ0, . . . , µk−1, 0),

−Mα
k P

α
k = µ0P0 + · · · + µk−1Pk−1 − νkP

q−1
k .The se
ond equation implies that (µ0, . . . , µk−1,M

α
k P

α−1
k − νkP

q−2
k ) lies in

T m(P̂0, . . . , P̂k)h
d−2, whi
h shows (6). Now by using (6), from 1 to α ≤ q − 1,

T
∗1
m (P̂0, . . . , P̂k)h

d ⊆ T m(P̂0, . . . , P̂k−1)
h
d + Pα

k T
∗(α+1)
m (P̂0, . . . , P̂k)h

d−2α.The se
ond summand is zero as soon as d− 2α ≤ 1. As α in
reases to q− 1, oneeither en
ounters this 
ase or ends up with P q−1
k T

∗q
m (P̂0, . . . , P̂k)h

d−2(q−1). Butagain any (M0, . . . ,Mk−1, 0) of the set in fa
tor writes Tk +Pk(µ0, . . . , µk−1, 0).In the produ
t set, the se
ond summand vanishes by P q
k = 0. ⊓⊔By Property 11, two n-tuples of T m(P̂0, . . . , P̂k)h

d are equivalent modulo
T m(P̂0, . . . , P̂k−1)

h
d if and only if they have the same (k + 1)-th 
oordinate.Hen
e, the marginal dimension of the se
ond summand in 5 is the dimension of

(Rm)h
d−2{P̂i}0≤i≤k−1 + (Rm)h

d−2(q−1)P̂
q−1
k . Let τk,d = dimT m(P̂0, . . . , P̂k−1)

h
dand let δq−1

k+1,d be the dimension of the above. So far, τk+1,d = τk,d + δq−1
k+1,d.Furthermore, iterating this pro
ess, we 
an show (
f full version for a proof)Lemma 1. For any 1 ≤ α ≤ q − 1, let δα

k+1,d denote the dimension of
(Rm)h

d−2{P̂i}0≤i≤k−1 + (Rm)h
d−2αP̂

α
k . For d up to the degree of regularity of

P̂0, . . . , P̂k, this dimension follows the indu
tion
δα
k+1,d = k dim(Rm)h

d−2 − τk+1,d−2 + δα−1
k+1,d−2,for any α ≥ 2, and δ1k+1,d = (k + 1) dim(Rm)h

d−2 − τk+1,d−2.Using this lemma we �nally �nd the indu
tion de�ning τk,d for any k ≤ n and dup to the degree of regularity of P̂0, . . . , P̂n−1,
τk+1,d = τk,d +

∑q−1
i=1

(

k dim(Rm)h
d−2i − τk+1,d−2i

)

+ dim(Rm)h
d−2(q−1) . (7)5.4 Numeri
al Computation of the Upper BoundsWe numeri
ally 
omputed the above indu
tion formulas using a dynami
 pro-gramming approa
h. A simple 
omplexity analysis 
an be found in the full ver-sion. Figure 1 below represents the upper bounds on the degree of regularity ofHFE systems for many parameters q, n. The 
orresponding value of D was set16



to satisfy qD = n log2 q, that is, the degree of the internal HFE polynomial isindexed on the blo
k size. This 
hoi
e lets s
hemes operating on the same blo
ksize have 
omparable 
omplexity of the se
ret operations (roughly (log2 q)
3n5using the algorithms suggested in [16℄). One 
an note that the surfa
e renderingthe GJS bound initially 
oin
ides with the MQ surfa
e while our bound ensuresa mu
h smaller degree of regularity. Figure 2 below renders (
f full version for
olorful �gures) the improvement of the HFE bound over the GJS bound as qgrows. One 
an per
eive the signi�
an
e of this improvement from the 
urvesbeing massively pulled down. This is espe
ially true for small blo
ksizes wherethe GJS bound is lower bounded by q while the 
orresponding value of the HFEbound is roughly independent of the value of q.Fig. 1. Overview of the three upper bounds for many HFE parameters: MQ, GJS, HFE
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6 Appli
ation to the Se
urity of HFEThe previous dis
ussion has led to the ability to 
ompute an upper bound onthe degree of regularity of HFE systems for any parameters. In this se
tion, wedes
ribe appli
ations of this parameter to the se
urity of HFE.6.1 Computing the Degree of Regularity in Pra
ti
eWe 
onsider a simple algorithm whi
h given the n quadrati
 polynomials and apres
ribed degree d ≥ 2 
omputes a generator basis of 
ombinations in degree dof these polynomials (given by monomial multiples of ea
h polynomial) and putsthem in row e
helon form (any ordering of terms 
an be used). It is then trivialto obtain the dimension spanned by these 
ombinations. As a 
onsequen
e, usingthis algorithm with d in
rementing from 2, one 
an 
ompare the experimentaldimension of 
ombinations with the one predi
ted until the degree of regularity isfound. As soon as these dimensions disagree, 
urrent d is the degree of regularityof the system. Hen
e, this simple pro
edure allows to 
ompute the degree ofregularity is pra
ti
e. Denote by Mq(n, d) the number of monomials of degree
d in n variables with exponents modulo q. In degree d, the 
anoni
al generatorbasis has size Mq(n, d − 2)n. Ea
h su
h ve
tor has at most n(n + 1)/2 non-zero 
oe�
ients. Computing a row e
helon form of these ve
tors therefore hastime 
omplexity aboutMq(n, d−2)2n4 and spa
e 
omplexity at most Sq(n, d) =
Mq(n, d − 2)2n2. When making d range from 2 to some pres
ribed dmax, the
omplexity of the iteration is dominated by the 
omplexity at d = dmax be
ause
Mq(n, d−2) grows exponentially with d. In parti
ular, for HFE(q, n,D) systems,the 
omplexity of 
omputing the degree of regularity is upper bounded by thelatter 
omplexity at d set to the HFE bound δ(q, n,D) 
omputed previously.Sin
e the degree of regularity of random MQ systems is expe
ted very 
loselytied to the MQ bound (whi
h is mu
h higher for pra
ti
al parameters), thedegree of regularity provides a way to algorithmi
ally distinguish HFE systemsfrom random MQ instan
es. This distinguisher was already addressed in [4,9,15℄and we refer to it as the algebrai
 distinguisher. Our result makes it possibleto 
ompute its 
omplexity for any parameters. Comparing this 
omplexity withthe 
omplexity of the di�erential distinguisher presented in [8℄, it turns out thelatter is almost always far more e�
ient (
f full version of the paper).6.2 Estimated Upper Bound for Solving HFE SystemsA more 
riti
al appli
ation uses the heuristi
 that the degree of regularity orig-inates from the saturation of a subspa
e of 
ombinations, yielding many degreefalls at on
e. These degree falls in turn 
ontribute to further saturations andfurther degree falls in smaller degree. When 
omputing a Gröbner basis witha graded ordering, this initiates a pro
ess of new head terms appearing withde
reasing degree and pre
ipitates the end of the 
omputation. Due to theseheuristi
s, it is 
ommonly taken that the degree of regularity estimates the max-imal degree needed in the 
omputation of a Gröbner basis for a graded ordering.18



In our 
ase, this heuristi
 is supported by our upper bound on the degree ofregularity of HFE 
losely mat
hing the experimental maximal degree given for
q = 2 in [12℄. As to the 
omplexity of the Gröbner basis 
omputation, it is also
ommonly estimated as the 
ost of row e
helon form on the 
ombinations ma-trix at the maximal degree. Although, some algorithms o�er improvements toredu
e the 
ombinations matrix by removing trivial syzygies [11,13℄, we keep onthe simple analysis of the pre
edent paragragh. When a more detailed analysisis available for a parti
ular algorithm our upper bound on the degree of regu-larity 
an be readily plugged into it to obtain tighter 
omplexity upper bounds.Figure 3 below represents the obtained upper bound for many HFE parameters,where the degree of the internal parameter is again indexed on the blo
k size by
qD = n log2 q. Within the limits of the above heuristi
s, parameters that do notemerge from the 80-bits se
urity level should not be 
onsidered se
ure.Fig. 3. Estimated Upper Bounds on the Complexity of Algebrai
 Atta
ks on HFE
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7 Con
lusionIn this paper, we provide a rigourous analysis of the degree of regularity ofHFE systems. Under 
ommonly used heuristi
s, this analysis allows to deriveestimates for the 
omplexity of algebrai
 atta
ks on the publi
 key. In parti
ular,using these estimates, hardly any HFE 
ryptosystem with blo
k size 80 bits 
ana
hieve 80 bits se
urity. HFE over GF (2) with blo
ksize 128 does not a
hieve 80bits se
urity. On the other hand, our work 
an not be used to infer the se
urityof HFE parameters, be
ause our estimates are only 
omplexity upper boundsand fo
us on a parti
ular type of atta
k. Finally, we point out that the �rstpart of our work � shifting the analysis to the internal polynomial � 
an be usedfor any 
ryptosystem following a similar 
onstru
tion to HFE. In parti
ular, itpotentially o�ers a useful framework to the analysis of variations of HFE.19
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