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Abstract. HFE is a public key scheme introduced by Patarin in 1996.
An HFE public key is a large system of polynomials in many variables
over a small finite field. This system results from some secret compo-
sition, based on which the owner can solve it to any arbitrary vector.
While the security of the cryptosystem relies on the difficulty of solving
the public system without the trapdoor information, in 2002 Faugere
found experimentally that Groébner basis computations perform much
better on certain HFE instances than on random systems. More specifi-
cally, Faugere observed that the regular behaviour of the Grobner basis
computation collapses at a much lower degree than expected for random
systems, letting the computation finish much earlier. Accounting for this
distinctive property, Faugeére and Joux showed in 2003 that mapping
HFE systems to some other multivariate ring exhibits the particular al-
gebraic structure of these systems. Nevertheless, they did not offer the
actual computation of the degree of regularity of HFE systems. Later, in
2006, Granboulan, Joux and Stern showed an asymptotic upper bound
on the degree of regularity of HFE systems over GF'(2) using indepen-
dent results on overdetermined systems of equations. The case of larger
ground fields has remained however completely unsolved. In this paper,
we exhibit an additional property of HFE systems that is increasingly
significant as the size of the ground field grows. Using this property with
a standard combinatorial calculation yields an arguably tight numerical
bound on the degree of regularity of HFE systems for any parameters.
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1 Introduction

Solving large systems of multivariate equations over a finite field is one of the
most recurrent problems in computer science. Although achieving this task seems
very hard in general and can only be tackled for small sizes by current best algo-
rithms, sparse classes of systems exist that can be solved efficiently. In the last
fifteen years, attempts have been made at exploiting this gap to build asymmet-
ric cryptographic primitives. In a nutshell, the issue has been to find secure ways
of masking structured systems of polynomials.

* This paper is an extended abstract. The full version is available from the authors.



The HFE Cryptosystem. One of the most prominent proposals in this
area has been the Hidden Field Equation cryptosystem, introduced by Patarin
in 1996. HFE is based on an elegant idea introduced by Matsumoto and Imai in
1988 of deriving a set of multivariate equations from a single variable equation
over a large extension field; this makes use of the vector space structure of this
extension field. When the single variable equation can be solved efficiently the
same holds for the multivariate system, and access to the large field equation is
restricted by applying secret linear bijections on the variables and equations.
More formally, let F, denote the finite field with ¢ elements and let ¢ be
some linear bijection from Fg», the degree n extension of F,, to (F,)™. Such a
linear bijection is defined by a choice of a linear basis of Fy». To any polynomial
function P(X) on Fyn, one associates the function ¢ o P o ¢! on (F,)". In
HFE, polynomials P have a small degree to ensure efficient root finding. Also,
they have a special shape which ensures that ¢ o P o ¢~ ! is quadratic. This
function is then composed with secret linear bijections S, T : (Fy)" — (Fg)",
To(poPog~t)oS and the result is released as the public function. HFE can
be used as a signature scheme and also, with some minor arrangements, as an
encryption scheme [16]. Many variations exist and offer potential enhancements.

The Security of HFE. The fundamental issue is whether the public function
is a one-way function. Finding a preimage by the public function is the same as
finding a solution to the corresponding system of quadratic equations. Denote
by MQ(g,n) the set of systems of n quadratic equations in n variables over
F,, and by HFE(gq,n, D) the subset of HFE systems where D is the parameter
that controls the degree of the internal polynomial P. Two lines of work have
so far been able to distinguish HFE systems from random MQ systems. One
line of work, proposed in [8], targets so called differential properties of HFE
functions and was able to produce a distinguisher with proven complexity for
all parameters (¢,n, D). The other line of work, proposed in [4,9,15], directly
targets the difficulty of the preimage problem on HFE systems. It produced
experimental evidence that for some parameters the preimage problem is much
easier on HFE systems than on random MQ instances [12]. Since the difficulty
of the preimage problem on HFE systems is ultimately the issue, one wishes to
clarify what property is disclosed by the methods used in the second line of work
and how this property depends on the parameters (¢, n, D). So far, the available
information has been the following.

1. The experimental evidence has been obtained by using algorithms for com-
puting Grobner bases [12,17]. These algorithms proceed through combina-
tions with polynomial coefficients of a given set of polynomials and generate
additional polynomials that can be used to solve the system.

2. The attacks have only concerned systems over Fs. Experiments for various
values of n and D evidenced that the degree of combinations needed to
compute a Grobner basis (for a graded ordering of terms) on HFE systems
only depends on D for large enough n [12]. Unfortunately, no extension of
this property to larger values of ¢ has been reported. In fact, some authors [7]



argued that the size of the field should have a strong negative impact the
computation and observed it on experiments using the Magma package [18].

3. On the theoretical side, a qualitative account was given in [9] on how the
combinations performed on the public polynomials correspond to related
operations on the internal polynomial. Although this clearly initiated a way
of investigating HFE systems, it has not been followed with the computation
of theoretical complexity bounds. Nevertheless, the authors in [15] showed
that when ¢ = 2, complexity bounds can be heuristically derived from results
on overdetermined MQ systems.

We note that quantitative information has only been obtained from experiments
and on systems over Fy. The theoretical connections have not permitted to derive
quantitative information beyond practical reach. Notably, how the phenomenon
that is observed experimentally varies as ¢ increases has remained unknown. The
gain of potential enhancements also has, incidentally, remained unclear.

Our contribution. Recent studies on the complexity of Grébner basis algo-
rithms focus on the notion of degree of regularity of a system of polynomials [2,1].
Roughly speaking, the degree of regularity is the smallest degree at which a non-
trivial degree fall among algebraic combinations of the input polynomials occurs.
The degree of regularity of HFE systems over Fo was experimentally found within
some parameter range in [9] and asymptotically upper bounded in [15] using the
results of [2,1]. In this paper, we give a way to compute a numerical bound on
the degree of regularity of HFE systems over any field and for any parameters.
This is achieved by using previous ideas and methods present in [9,15,1,6] in
combination with an apparently unnoticed additional property of HFE systems
which is increasingly significant as the size of the ground field grows.

Organization of the paper. In Section 2, we define the degree of regular-
ity of a system of polynomials and relate this notion to the computation of a
Grobner basis. In Section 3, we define HFE systems in greater detail and set
a few notations. In Section 4, we map the problem of computing the degree of
regularity to some other multivariate ring where the algebraic structure of HFE
systems is apparent. This is only a more precise statement of a property used in
[9,15] and our upper bound derives from the same observation that the degree
of regularity is upper bounded by the degree of regularity of any subsystem. In
Section 5, we show how to compute the degrees of regularity of these subsystems
by using classical methods such as used in [1,6] but with the specific properties
of the polynomials at hand. We deduce numerical bounds for many parameters.
In Section 6, we derive estimates on the complexity of algebraic attacks on HFE.

2 Algebraic Properties of a System of Polynomials

We first give an informal presentation of the notions that will be used in the
sequel and then give precise definitions and statements for our particular setting.



2.1 Solving a System of Multivariate Equations

Suppose we face the problem of finding the common roots of a system of poly-
nomials pq, ..., pg in a multivariate ring R over a field. Would this system be in
few enough variables to be tried by hand, one would probably try to combine
the given polynomials to derive “simpler” ones, that is, that make it easier to
discover the space of solutions. For instance, one may try to obtain a polyno-
mial in fewer variables, or with a smaller total degree. In any case, combining
the given polynomials always comes down to consider polynomials of the shape
mip1+- - -+mgpg for some polynomial multiples m, ..., my. Hence, these poly-
nomials are linear combinations of py, ..., pr with coefficients in R. And the goal
is then to find such a linear combination within some target subspace of R.

To do this mechanically, one may consider two main strategies. Either one
chooses a priori search spaces for the m; (for instance, polynomials with degree
under some bound) and one performs linear algebra on their coefficients. (This is
the basic idea of XL algorithms [5,19].) Or one defines a priority list among terms
to be eliminated (called an ordering) and one performs systematic leading term
reductions on polynomials py, . .., p; and the new polynomials that are generated
by this process, until it can be predicted that any further combination will
reduce to zero. (This is the basic idea of Grobner bases algorithms [3,14,10,11].)
These two strategies are not as different as it could seem. Indeed, to reduce the
head terms of polynomials p1, ..., pr the ones by the others, one determines the
respective sets of multipliers {mi},...,{m} that are needed to do so. Then
it remains to perform linear algebra on the resulting combinations and iterate
with polynomials with new head terms that may be found in this process. Both
strategies therefore have a clear intersection although Grobner bases algorithms
are natively more careful with the number of combinations to be dealt with.

In any case, it is convenient to arrange the available combinations with re-
spect to their total degree. For any integer d > 1, let V; denote the set of
combinations of degree d multiples of pi,...,pk. It is a linear subspace of all
polynomials of degree at most d. This paper focuses on an intrinsic parameter of
polynomials, which we call degree of regularity. This parameter was introduced
in [2,1]. It is commonly considered as the main complexity parameter for the
following intuitive reasons. Let A be an algorithm that computes such combi-
nations, and indexing its execution steps by ¢, one may consider the subspace
Va[A(t)] of combinations of degree d multiples that are computed through A up
to t. Obviously, Vy[A(t)] C Vi C R<q. Now, choose a target subspace Wy C R<q.
There exists an element of W; among combinations in degree d when the inter-
section of Vz and W is not zero and such a combination is found by the algorithm
A before step t if V[ A(t)]N W4 # {0}. When the polynomials p1, ..., py are not
too specific, the intersection of V; and Wy is expected to be non-zero only when
the sum of their respective dimensions exceeds the dimension of R< itself. In
this case, any algorithm A can just consider combinations in degree d to find a
non-zero element of Wy. It is assured to find one at step ¢ if V5[ A(t)] = V. On the
other hand, should the intersection of V; and W, be non-zero at a significantly
lower degree than expected for a random subspace V; would suggest that the



polynomials pq, ..., pr are not random. Interesting choices of a target subspace
W4 are polynomials of low degree. For instance, one may consider whether there
exists a non-zero polynomial of degree strictly lower than d among combinations
in degree d. Such a combination is called a degree fall and the smallest degree
at which such a degree fall occurs is essentially the degree of regularity. A pre-
cise definition will be given in the sequel. An algorithm A finds the degree of
regularity when at some step ¢ its subspace of combinations in degree d contains
a degree fall. At this point, it is worth noting that when using a Grébner basis
algorithm it is best to use an ordering that refines the degree. Indeed in this case
new head terms are confined among the smallest degree monomials.

The degree of regularity permits to distinguish a system of polynomials from
random. Furthermore, any degree fall can give a new whole set of multiples
in degree d or even below, which can be further combined with the existing
combinations. Moreover, the dimension of VdA usually takes large steps as one
increments d and then, many degree falls appear at once. These degree falls in
turn help the appearance of new degree falls in lower degrees. Either these degree
falls are low enough to solve the system (e.g. linear polynomials) or one pushes
the computation until obtaining a complete Grébner basis.

2.2 Systems with Field Equations over a Finite Field

In the setting of cryptographic schemes, the coeflicient field is a finite field F,
(with ¢ elements) and the solutions are searched with coordinates in this finite
field. Let x1,...,x, denote the variables of R. Then one actually searches for
the solutions of the system {p; = 0,...,pr = 0} with the additional equations
{2{ —21=0,...,2% — 2, = 0}. Equivalently, since the x; describe values in F,,
all monomials in R can be reduced according to the rules o] = z;, i = 1,...,n.
Then, all combinations of the polynomials pi,...,pr can be considered in the
reduced ring Ry = Fylz1,...,x,]/{z] —z1,..., 2% — z,}.

While in the sequel we compute the degree of regularity of underdetermined
systems (k < n) in a reduced ring, it serves in upperbounding the degree of
regularity of a public HFE system with exactly n polynomials. In this case, the
expected number N of solutions is hardly more than one and it can be shown
that any Grobner basis for any ordering that refines the degree contains at least
n — N linearly independent degree-1 polynomials (¢f full version). Hence, our
setting makes it particularly easy to derive the solutions from a Groébner basis.

Since in the sequel we only encounter systems of quadratic polynomials, for
convenience sake we specialize the following definitions to this case. Let p1, . .., p
be a system of quadratic polynomials in R,. For any integer d > 2, consider the
subspace of combinations mip; + - - - + mypr where the m; have degree at most
d — 2 in R,. By definition, it is the image space of the map

Jd(pla v ?pk) : (mlv s 7mk) € ((Rq)§d72)k — mip1 + -+ MEPk-

An important observation is that the kernel of o4(p1, . . ., pr) always contains pre-
dictible non-zero tuples called trivial syzygies. Examples of trivial syzygies are



the combinations over R, of the k-tuples with m; = p;, m; = —p; for some 7, j
and 0 otherwise. A formal definition of trivial syzygies is the following. For in-
determinates y1, . .., Yk, let Ty(y1, - . ., yx) denote the set of k-tuples (mq, ..., my)
over Rgly1, .-, yrl/{y! —v1,. ..,y — yr} such that myy; +--- 4+ myy, = 0. For
any polynomials p1,...,px over R4, we call trivial syzygies of pi,...,pr the
evaluations of the k-tuples in T, (y1,...,yx) at (p1,...,Dk) -

When searching for degree falls, we are only interested in the subspace Vj
spanned by the highest degree homogeneous part of the image of o4(p1, ..., pr)-
This subspace is spanned by the degree d homogeneous parts of the combinations
mip1 + -+ + mgpr where my, ..., my are homogeneous polynomials of degree
d—2. We define a degree fall in degree d of p1, ..., px as a k-tuple (mq,...,mg)
of degree d — 2 homogeneous polynomials such that the degree d homogeneous
part of mypy + - - - + mygpg is zero. The degree d — 2 homogeneous parts of the
trivial syzygies of pi,...,py in degree d — 2 are trivially degree falls and we call
them trivial degree falls. We call the degree of regularity of pi,...,py the
smallest d such that a non trivial degree fall of py,..., py exists in degree d.

3 Definition of HFE Systems

The construction of HFE systems is based on the linear isomorphism between
(Fq)"™ and Fg» over Fy. Recall that Fy» is a degree n polynomial extension over
F, and as a consequence is an n dimensional vector space over F,. Any choice
of a basis of Fyn defines a linear bijection S from (Fy)™ to Fyn, and extends to
a linear bijection ¢ g from functions on Fy» to functions on (F,)" by:

g: P+— S1oPoS

Recall that functions on (F,)" are uniquely represented by n-tuples of polynomi-
als in Ry = Fylzq, ..., z,)/{af —21,...,2% — 2, } and that functions on Fy» are
uniquely represented by polynomials in Fgn [X]/{X ¢" _ X}. This gives an ex-
pression of 15 on polynomials: 1g : F,«[X]/{X?" — X} — (R,)". Also recall
that raising to a power of ¢ is linear over I, and that the n distinct g-powerings
on Fyn are called the Frobenius maps. More generally, for any power function
X% in Fn[X]/{X?" — X}, we call g-degree of X the sum ag + -+ + ap_1,
where (ag,a1,...,a,-1) is the decomposition of a in base ¢. In particular, con-
stants have ¢g-degree 0 and Frobenius maps have g-degree 1. Since any function
in T« [X]/{X9" — X} is a linear combination of power functions, we define g-
degree as the maximal ¢g-degree of its terms. The following proposition ensures
that ¢s maps g-degree in Fyn[X]/{X?" — X} to degree in (R,)".

Proposition 1. Let S be an arbitrary linear bijection from (Fy)™ to Fyn. For
any integer d > 0, vg defines a bijection from polynomials in Fyn [(X]/{X? - X}
with q-degree d to n-tuples over R, with degree d.

Please refer to the full version for a proof. We are now ready to define HFE
systems. Recall from the introduction that an HFE public key is the data of the



n coordinate polynomials of a composition 70 Po .S where S is a linear bijection
from (F,)™ to Fyn, T is a linear bijection from Fyn to (F,)™ and P is a function
on F» which as a polynomial in F«[X]/{X?" — X} has the shape

P(X) =Y, ;<ppiXUH0 + 3, p WX +c

where D is a parameter of the scheme. For any linear bijection S, we call HFE
systems the systems in (R,)™ which are the images by ¥g of the polynomials
P(X) of the above shape. We see from the above proposition that HFE systems
are quadratic and that their only particularity in this class is to correspond to a
polynomial P(X) of degree upper bounded by 2¢”. Since T is a linear bijection,
an HFE public key has all the algebraic properties of an HFE system.

4 Combinations of HFE Polynomials

In this section, we map combinations of HFE systems to related operations on the
defining polynomial in F» [X]/(X %" —X). This mapping was outlined in [9] and is
made precise here. Incidentally, it is independent of the particular shape of HFE
defining polynomials and hence is valid for any cryptosystem following a similar
construction. To lighten the notation, we now denote Ryn = Fyn [X]/(X?" — X).
This section is a chain of technical points which are necessary to make the
mapping complete. For a quick reading, one may jump directly to subsection 4.4.

4.1 From Combinations in R, to Combinations in Rg»

Let P be any polynomial in Ry» and (p1,...,pn) = ¥s(P). We have defined
combinations of p1,...,p, as linear combinations of p1,...,p, with coefficients
in R,. Hence, n-tuples of linear combinations over R, are products by n x n
matrices over R,. Proposition 1 implies that 1/151 is a linear bijection from linear
maps on (F,)™ to linear combinations over Fy» of the Frobenius maps. We extend
this result when coefficients are in R, and Ry~ instead of F, and Fyn.

Proposition 2. Let S be an arbitrary linear bijection from (Fq)™ to Fgn. There
ezists an Fy-linear bijection V5 from (Rgn)™ to n x n matrices over Ry, such
that for any My, ..., My—1 and P in Rgn,

V5(Mo,..., My_1)$s(P) = s(MoP? + -+ M, PT ). (1)

Proof. We simply construct 15 by hand by considering the above identity over
the set of constant functions P = a with a in Fy». Since 9g is linear we only need
to consider P = a for a over a basis of Fyn. Forany i =1,...,n,let e; € Fgn de-
note the image by S of the i-th canonical vector of (F,)". For any My, ..., M,_1,
Y&(Mo, ..., My—1)Ys(e;) is the i-th column of ¢%(My,...,M,—1) and must
be set to Ps(3r—e My(e;)?"). % is linear by the linearity of ¢g. Consider
(Mo, ..., My,_1) whose image by v% is zero. Then, 1)g being a linear bijection,
for any i = 1,...,n, we have ZZ;Ol(ei)qk.Mk = 0. The only solution to this
invertible system is My = --- = M,,_; = 0, which proves that g is injective.
Surjectivity follows 1% mapping subspaces of identical dimension over IF,. a



Equation (1) over the constants e; also shows that the ¢-degree of
(Mo, ..., My,_1) equals the degree of ¥5(Mo,..., M,_1). In particular, for any
P of g-degree 2 and d > 2, we define

U<a(P) = {MOqu bt My P gedeg(Mi) <d —2,i=0,...,n— 1}
and on the other hand, for (p1,...,pn) = ¥s(P),

Vea(P1s-- o o) = {map1 + - + mppy [deg(m;) <d —2,i=1,...,n}.
Property 1. For any d > 2, ¢ is a bijection from U<q(P) to (V<a(p1,...,pn))".

Proof. 1% transforms n-tuples of g-degree < d — 2 to n x n matrices of degree
< d — 2. Both spans have the same dimension over IF, by Proposition 1, hence
1§ is a bijection from the one to the other. Finally, the property holds by the
identity satisfied by ¢ and evaluated at the particular P. ]

Since the dimension of (V<q)™ is n times the dimension of V<4 and the dimension
of U<4 over F, is n times its dimension over Fy», the property implies

dim]}:‘q (ng(pl, e ,pn)) = dim]pqn (Ugd(P)) .

4.2 From Degree Falls in R, to g-Degree Falls in R4n

When considering degree falls, one is really interested in the subspace spanned
by the highest degree homogeneous part of a bounded degree combination space.
For any quadratic polynomials pi,...,p, in R, and any integer d > 2, let
th (p1,- - .,pn) denote the subspace generated by the degree d homogeneous parts
of polynomials in V<4(p1,...,py). Similarly, for any polynomial P of ¢-degree
2 in R4» and any integer d > 2, let UQ(P) denote the subspace of ¢-degree d
homogeneous parts of polynomials in U<q(P). Quite expectably, we have:

Property 2. Let P in Ryn and (p1,...,pn) = ¥s(P). Then, for any d > 2, there
exists an F-linear bijection from UZ(P) to (V) (p1,...,pn))"

Proof. The highest degree homogeneous part of a polynomial p in R, with degree
d > 2 is its class mod (R,)<q—1. Hence, V' (p1,...,pn) is V<a(p1,...,pn) mod
(Rg)<d—1- Similarly U (P) is U<4(P) mod (Ryn)<d—1. Let Q and Q' be arbitrary
polynomials in R4» such that @ = Q' mod (Rgn)<aq—1. Then, Q—Q’ has g-degree
at most d — 1. Since 1g preserves the degree, 15(Q — Q') has degree at most
d—1. Hence, since g is linear, s (Q) = 1s(Q") mod ((Rq)<d—1)". Therefore, ¢g
induces an F-linear map from Rg» mod (Rgn)<a—1 to (Rg)™ mod ((Rg)<a—1)".
Since g is a bijection from U<q(P) to (V<q(p1,-...,pn))", the induced map is
a bijection from UM(P) to (V' (p1,...,pn))" O

Let R’; denote the set of homogeneous polynomials of R,. For any polynomial p
in R, and any integer d > 0, let [p]q denote the degree d homogeneous part of



p. For any system pq, ..., p, of quadratic polynomials in R, and any d > 2, the
degree falls of py1,...,p, in degree d are the kernel of the map

al(p1,...,pn): (Ma,...,my) € ((Rg)dfg)n — [map1 + - + Mnpnla-

With completely transposed notations, for any P of ¢g-degree 2 in Ry» and any
d > 2, we define the g-degree falls of P in degree d as the kernel of the map

SH(P): (Mo, ..., My—1) € (Rh)a—2)™ = [MoP + MyP? + -+ M,_1 P ']

The image spaces 0% (p1,...,p,) and X% (P) respectively are V' (p1,...,p,) and
Ul(P). Property 2 ensures that when (p1,...,pn) = ¢s(P) the image spaces of
(ch(p1,...,pn))" and X"(P) have the same cardinality. Besides, Proposition 1
ensures that the same holds for their input spaces. Therefore, the kernels of
(o (p1,...,pn))™ and L"(P) have the same cardinality. Finally,

dimp, (ker UZ (p1,-..,pn)) = dimg,, (ker ES(P)). (2)

4.3 Trivial Syzygies and Trivial Degree Falls

Trivial syzygies of p1, . .., p, are n-tuples over R, such that mipi+- - -+m,p, =0
even when p1, ..., p, are indeterminates. They are precisely defined the following
way. Let R, denote the extension of R, with additional variables y1,...,yn,

Ry = Ryly1, - ynl /Ayl — v15- - yL — Yn}- Let Ty(yr, ..., yn) denote the set
of n-tuples (m1,...,m,) over R, such that miy1 + --- + mpy, = 0. For any
polynomials p1,...,p, in Ry, we define its trivial syzygies as the evaluations of
the n-tuples in Ty(y1,...,yn) at (p1,...,pn). As a shorthand, let T, (p1,...,pn)
denote the set of trivial syzygies of p1,...,pn.

Elements of R, are polynomials in both z1,...,7, and y1,...,y,. For any
monomial in Rq, let d,d, denote its degrees in x,...,2, and in y,...,yx
respectively. Since variables y1, .. ., y, are intended to be specialized at quadratic
polynomials p1,...,p, in Ry, we define the (1,2)-degree of a monomial in Rq
as d, +2d,, and the (1,2)-degree of a polynomial in R, as the maximum of the
(1,2)-degree of its monomials. Hence, any element of T, (y1,...,y,) with (1,2)-
degree d yields an element of T,(p1,...,pn) with degree < d. We call trivial
syzygies of p1, ..., p, with designed degree d the elements of T, (p1, . .., p,) whose
corresponding element of T4 (y1, .. .,yn) has (1,2)-degree d. The trivial syzygies
with designed degree < d are denoted by Ty(p1,...,pn)=a. On the other hand,
one may analogously consider the extension of R,» with additional variable Y,
Rgn = R [Y]/(Y?" —Y), and define 7, (Y) as the n-tuples (Mo, ..., M,_1)
over Rgn such that MY + MiY? + - + M,_1Y?" " = 0. For any P in Ry,
let 7,»(P) denote the evaluations of the n-tuples in 7,»(Y") at P. Finally, for
any P of ¢-degree 2 and any d > 0, we let Tyn (P)<4 denote the elements whose
corresponding elements in 7y~ (Y) have (1,2)-g-degree d. By a series of simple
extensions of the previous results, we can show (¢f full version)

Property 3. Let P in Ryn of g-degree 2 and (p1, ... ,pn) = ¢s(P). For any d > 0,
dim]pq (Tq(pl, e apn)jd) = dim]}:‘qn (7:1" (P)jd).



The polynomials p1, ..., p, being quadratic, for any d > 2, we call trivial degree
falls of p1,...,p, in degree d the homogeneous parts of (actual) degree d — 2
of the elements in Ty(p1,...,Pn)<d—2 and denote them (with a slight abuse of
notation) by Ty(p1,...,pn)" . Similarly, for P of g-degree 2, we call trivial g-
degree falls of P in ¢-degree d the homogeneous parts of ¢g-degree d — 2 of the
elements in 7,(P)<4—2 and denote them by 7,(P)"_,. We have (cf full version)

Property 4. Let P in Ry of g-degree 2 and (p1, ... ,p,) = ¢g(P). For any d > 2,

dimg, (Ty(p1, .-, Pn)id—2) = dimg, . (Tg» (P)g_).

4.4 Mapping the Degree of Regularity from R, to Ry~

Recall that the degree of regularity of a system of quadratic polynomials
P1,---,Pn is the smallest integer d such that a non-trivial degree fall exists in de-
gree d. With the previous notation, this is the smallest d such that the kernel of
ol (p1,...,pn) isstrictly larger than Ty (p1, . .., pn)"t_,. Now, let S be an arbitrary
linear bijection from (F,)" to Fgn and P in R4~ such that ¢s(P) = (p1,...,pn).
Then, P has g-degree 2 and, by Equality 2 and Property 3,

Property 5. the degree of regularity of pi,...,p, is the smallest d such that the
kernel of X/*(P) is strictly larger than Ty» (P)" .

Hence, we obtain an equivalent characterization of the degree of regularity of
Di,-..,Pp in term of the associated polynomial P in Rg». In the remainder
of this section, we slightly modify the above characterization to make it more
conveniently usable in the analysis of the next section.

Multivariate representation of Rg4~. Our first step is a simple alterna-
tive notation for the elements R4». This notation was proposed in [9]. As
already seen, we can split any power of X according to the decomposition
in base g of the exponent. Now simply introduce a distinct notation for the
Frobenius of X: for i = 0,...,n — 1, let X; denote X9 . Observe that for any
i=0,...,n—1, X! — X;41 = 0 where the indices are taken modulo n. Using
these relations, any power of X corresponds to a unique multivariate mono-
mial in Xo,...,X,—1. It extends trivially to all polynomials in R,». Addition
and multiplication are compatible with this notation. Therefore, Ry identifies
as a ring with Fyn [Xo, ..., X, 1]/{X] — X1,..., X! | — Xo}. Along with this
identification, g-degree becomes degree in the multivariate ring. Also, for any
polynomial P in Rgn, let Fy, ..., P,_1 denote its successsive Frobenius. For any
i=0,...,n—1, P!— P11 = 0 where indices are modulo n. When P has g-degree
2, its Frobenius are multivariate quadratic polynomials. Since the P-termed sets
really express in terms of the Frobenius of P, they are conveniently rewritten
with the above notation. Hence, X" (P) rewrites to

SH(Poy. ., Pac1) t (Mo, ..., Mu_1) € (Rf;n)d_2 = [MoPy + -+ 4+ My_1P,—1]a.
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The ring Ryn = Rp[Y]/(Y? —Y) rewrites to Ryn[Yo,. .., Yn_1]/{Y —
Yi,..., 0 — Yb} The set Tyn (Y') rewrites to Tyn (Yo, ..., Y,—1), the n-tuples
(Mo, ..., M,_1) over Ryn such that MoYy+- -+ M,,_1Y,,—1 = 0. Hence, Tyn (P)
identifies with Zgn (Py,..., P,—1). And the elements of Zyn (P, ..., P,—1)" are
the degree d homogeneous parts of the elements of Tyn (Fy, ..., Pp—1)<q. Finally,

our characterization (Property 5) rewrites to, when (p1,...,p,) = ¥s(P),

Property 6. the degree of regularity of p1, ..., p, equals the degree of regularity
of Py, ..., Py—1, the n Frobenius of P in the multivariate representation of Ry

At this point, our task is reduced to studying the degree of regularity of the
quadratic polynomials Fj, ..., P,_1 in R4», and we do not need to address the
polynomials pi,...,p, any further. The next paragraph is devoted to refining
the characterization of the degree of regularity of Py, ..., P,_1.

Characterizing the Degree of Regularity of Systems of R4~. Our first
observation is a simple one: the highest degree terms of combinations in degree
dof Py,...,P,_1 only depends on their highest degree terms PO, . Pn 1.

Property 7. The degree of regularity of quadratic polynomials in R4» equals the
degree of regularity of their degree 2 homogeneous parts.

Proof. For any degree d — 2 homogeneous polynomials My, ..., M, _1, the asso-
ciated combinations of P,..., P,_1 and ]50, ey P,_1 have the same degree d
homogeneous part. Hence, degree falls in degree d are the same for both systems
of polynomials. On the other hand, the trivial syzygies of Pp,..., P,—1 of de-
signed degree d — 2 have the same degree d — 2 homogeneous parts as the trivial
syzygies of Py,..., P,y of designed degree d — 2. The property follows. a

Our second observation is more subtle: when considering combinations of the
quadratic homogeneous polynomials By, ..., P,_; with degree d—2 homogeneous
coefficients, terms of degree smaller than d can only appear with reductions mod-
ulo the polynomials X! — X; 11, ¢ = 0,...,n — 1. Since all terms with degree
smaller than d are discarded, the same result is obtained as when performing
combinations in the ring Ryn = Fyn[Xo, ..., Xp—1]/{X{,..., X! _,}. Consider-
ing combinations in Ry rather than in Rg», the map EZ}(I:’O, . 7Pn—1) simply
rewrites to X7 (P, ..., Pu_1):

(Mo, R ,Mn—l) S ((RZﬂ)d-Q)n — MOPO + Mlpl + -4 Mn_lpnfl.

Furthermore, we can equivalently characterize the trivial degree falls using the
ring structure of R,n. Consider Ryn = Ryn[Yo, .., Yu-1]/{Ys, ..., Y2 |} and
the associated set 7 ¢n(Yp,...,Y,_1). For any d > 0, we can define the sets
Ty (Po,...,Py1)<a and T g (P, ..., P, 1)k, exactly as before.
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Property 8. For any d > 0, the sets Tyn (P, ..., Po_1)" and T yn (P, . .
are identical. Therefore, for any d > 2, the trivial degree falls of By, ..
degree d are the elements of T gn (P, ..., Pr1)l .

P
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Proof. For any (Mo, ..., My—1) in T (Yo,...,Y,—1), let Q denote the combi-
nation MoYy + -+ + My,—1Y,—1 in Ryn[Y0,...,Y,—1]. Since @ is zero modulo

Yy, ..., Y.L, any of its term is divisible by at least one of Y{/,...,Y,? ;. Since
Moy, ..., M,,_1 have degree at most ¢—1 in any Y;, any term of () can have degree

q in only one single indeterminate and at most ¢ — 1 in all the others. Therefore,
any term of ) exactly has degree ¢ is one indeterminate and at most ¢ — 1 in all
the others. Hence, @ admits a unique decomposition AgYy + -+ + A, Y, .
Using the unique polynomials Ag,..., A,_1 associated to (Moy,..., M,_1), we
construct an element (M},..., M) _;) of Ty (Yy,..., Y1) by setting for all
i=0,...,n—1, M = M; — A;_; (indices are modulo n). Now, observe that
the terms of Ag,..., A,_1 consist of terms of My,..., M, _1 divided by one in-
determinate to the power of ¢ — 1. As a consequence, each of them has a total
degree in the Y; variables smaller (by ¢ — 1) than the one it originates from. In
particular, when My, ..., M,_1 have (1,2)-degree at most d, M{,..., M, _; re-
spectively have the same terms of (1,2)-degree d as My, ..., M, _1 because they
differ by terms of strictly smaller (1,2)-degree. O

Hence, we end up with the following characterization which we use in the sequel.

Property 9. Let ]50, .. .,Pn,l be homogeneous quadratic polynomials in Rgn.

The degree of regularity of Py, ..., P,_1 can be computed in R, as the smallest
d > 2 such that degree d — 2 homogeneous n-tuples (Mo, ... ,M@,l) satAisfying
MoyPy+ -+ M,_1P,_1 =0 exist besides the elements of T n (Fp,. .. ,Pn,l)g.

5 Bounding the Degree of Regularity of HFE Systems

We first describe the proof principle of our upper bound and then perform the
combinatorial computations that convey the result.

5.1 Upper Bounding the Degree of Regularity

First consider arbitrary homogeneous quadratic polynomials Py, ...,Py_q in
Ry where k < n. The dimensions of the kernel and the image of the map

EQ(POw-kafl) : ((an)g_2)k - (’R'qf)g ~ R
(Mo, ...,My_1) — MoPy+ M Py + -+ + My_1 Py

relate to each other by
kdim(Ryn ) 5 — dimker X% (Py, ..., Pr_1) = dimIm(X%(Py, ..., Pr_1)).

Not knowing what the degree of regularity of the system is, one can assume
that it is not reached while incrementing d. In this case, the kernel is assumed
to contain only the trivial elements of T yn (P, ..., Py_1)% . Since the image is
confined in (’R,qn)g, a contradiction to this assumption appears as soon as

kdim(Ryn )t 5 — dim T g (Po, ..., Pe1)l 5 > dim(Ryn )k
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and then we know that the degree of regularity was reached before. The smallest d
satisfying this “saturation” condition is therefore an upper bound on the degree
of regularity of Py, ..., Pe_y. Since it is valid for any homogeneous quadratic
polynomials, we refer to it as the MQ bound.

We now show how in the case of HFE systems better bounds can be obtained.

5.2 The Case of HFE Systems

It was noted in [15] that when Py,...,P,_; are obtained from the Frobenius
of an HFE polynomial P, they express over small shifted sets of consecutive
variables: 150 expresses over Xg to Xp, P expresses over X1 to Xpi1, ...,
P,_1 expresses over X,_1 to Xp_1 (indices are modulo n). Then, the authors
noted that a consequence of this property is that small subsystems of consecutive
polynomials only involve a small subset of the available variables. Consecutive
subsystems of a prescribed size being all equivalent up to a cyclic shift, we focus
on the n subsystems Sy = {Po, .. ,Pk_l} for k = 1,...,n. The subsystem Sy
expresses over the first m; variables, where mp = D + k for all K <n — D and
my = n beyond. The degree of regularity of 150, ey P, 1 is upper bounded by
the respective degrees of regularity dj of the subsystems Sy, for all k =1,...,n.
Indeed the degree falls of Sy identify with the degree falls of Py, ..., P,_1 with
zero on the last n — k coordinates. On the other hand we will show in Section 5.3
(Property 11) that whenever a degree fall is non-trivial for Sy, its completion
with zero on the last n — k coordinates is non-trivial for Py,..., P,_1. At this
point, the authors of [15] estimated the degree of regularity of any subsystem S
by using an asymptotic formula from [2]. This needed restricting to ¢ = 2 and
assuming that the quadratic polynomials Py, ..., Py 1, X2,... , X7, 1 satisfy
the condition for which the formula holds. Instead, we use the previous saturation
bound: we upper bound the degree of regularity of Sy by applying the MQ bound
to 150, ceey Py,_1. Hence it is upper bounded by the smallest d such that

ke dim (R g, )i_o — A T gy (Poy -, Poct)i_y > dim(Rynj, )i (3)

where R |, denotes the restriction of Ry» to the first my variables. Since this
upper bound uses a property showed in [15], we refer to it as the GJS bound.
We now observe an additional property of HFE systems. Since polynomials
PO, R P,_1 write over monomials X;X;+e with ¢ < D, combinations of these
polynomials necessarily write over the monomials which are divisible by X; X,
for some 7 and ¢ < D. Let MqD denote the subspace spanned by such monomials.
For any subsystem Sy, we improve the GJS bound by the smallest d such that

ke dim(Regn )iy — dim T gy, (Po, ..., Poc1)i_y > dim(MP|my)i (4)

where (Mf |mi,)"t denotes the subspace spanned by degree d monomials of Mf

in the first my, variables. The distinction between MqD and ’R,Zn is increasingly
significant as ¢ grows. Indeed, at fixed n and d, the average Hamming weight of
multidegrees in degree d decreases as ¢ grows. Then, the proportion of monomials
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containing two variables distant by at most D indices (mod n) grows thiner. We
call HFE bound the upper bound on the degree of regularity of PO, .. .,Pn_l
obtained from the latter improvement.

We now compute for any d > 2 and any k = 1,...,n, the above dimensions
by means of induction formulae and deduce the related numerical upper bound.

5.3 Induction Formulae for Computing our Upper Bound

We show how to compute the dimensions of (Rynjm)h, (MqD|m)Z and
an|m(P0, cee pk—1)2, for any m,k=1,...,n.

The dimension H(m,d) of (Rgn|;m)} is simply the number of homogeneous
monomials of degree d in m variables, where all exponents are bounded between
0 and ¢ — 1. Obviously, it equals H(m,d) = 0 for d < 0, or d > 0 and m < 0,
we have H(m,0) = 1 for all m, and when d > 0,m > 0 it satisfies the induction
H(m,d) = Y%_{ H(m — 1,d — «) . Equivalently, H (m, d) is the d-th term of the

series (1 —29)/(1 — 2))* of term z. In particular, for ¢ = 2, H(u,d) = (}}).

The Number of Monomials Arising in Combinations of HFE. For any
d>0,and u =1,...,n, let C(u,d) denote the dimension the complement of
(MqD [u)k in (Rgn|,)%. This is the number of monomials of degree d in u consecu-
tive variables, with exponents modulo ¢, such that all variables with non-zero ex-
ponents have indices (modulo n) distant by at least D+ 1 positions. First, ignore
that distance between indices is taken modulo n, and that we allow for instance
X and X,,_1 to have both a non-zero power. Then, C’(u, d) is given by the simple
“Pascal’s triangle” formula C’(u,d) = C'(u — 1,d) + Zi_:ll C'(u—D—-1,d—«)
foranyu =1,...,n, where C(u,0) = 1 and C(u,d) = 0 whenever d < 0 or u < 0.
When w is lower than n— D, then the requested dimension C(u,d) is there equal
to C’(u, d) since the last D variables have zero exponents. Otherwise, when u >
n— D, the distance must be taken modulo n, so we deduce all values of C(n, d) by
considering the partitions defined by monomials containing X, plus monomials
containing X1, ..., plus monomials containing X p_1, plus monomials containing
none of them. Hence, C(u,d) = C'(u—D,d) + DY} C'(n—1—-2D,d —a).
Finally, dim(Mﬂu)Z = H(u,d) — C(u,d).

The Dimension of Trivial Syzygies in Degree d. Simply denote R |, by
R Our first step is to exhibit generators for the module 7 ,,(Yp, ..., Yi_1).

Property 10. An n-tuple (Mg, ..., M;_1) is an element of 7T, (Yp,..., Y;—1) if
and only if it is a combination with polynomial coefficients of the n-tuples

Iy =(0,...,0,M; =Y;,0,...,0,M; = —Y;,0,...,0), i,j7=0,....k—1,
@ =(0,...,0,M; =Y"10,...,0), i=0,....k—1.

Proof. For any n-tuple (M, ..., My), decompose M; into MiYiq*l + M/. An n-
tuple (Mo, ..., M) is an element of T 4n (Y, ..., Y}) if and only if MoYy+---+
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MY, is zero modulo Yy, ..., Y2, This is equivalent to MYy +---+ MY, =0
(without modulo). We prove that this latter equality implies that (M, ..., M)
is a combination of (I5;). We do this through induction on k. If k = 1 then, if M
or Mj is zero they are both zero, otherwise M) = M"Y; and M{ = —M"Y; and
(Mg, M{) = M"(Y1,—Yp). Assume the property holds up to k — 1. Then, if M],
is zero, we fall on the property at k — 1, otherwise all M/, i =0,...,k — 1 must
contain Yj and denoting by M/ the quotient, we have M| = —(M{Yy + -+ +
M Yi_1), from which we get (M{,...,M}) = M{Tox+ -+ M Th—1-
Coming back to the main proof, we get(My, ..., M) = Mq®Po + - - - + Mp®y +
(Mg, ..., Mj)where the last n-tuple decomposes over (I5;)’s. O

Since I3;’s and @;’s are homogeneous in the variables Yp,...,Y;_1, the (1,2)-
degree d parts of the elements of 7 ,,(Yp,...,Ys_1) themselves decompose over
these generators. Replacing variables Yy, ..., Yi_1 respectively by 150, . ,Pk,l,
trivial syzygies in degree d of Py, ..., Pe_q write

Tn(Po,. o, Poo)l = (Rin)i_a{TigYocicjcimt + (Run)li_aq 1) {Pito<izi1,

where we again denote by I5;’s and @;’s their specializations at (150, e ,Pk—l)-
Unfortunately, decomposition over the above generators is not unique. Therefore,
the dimension of ’Tm(lso, e Pk_l)g can not be directly read from the above
formula. However, we see that this dimension follows a simple induction.

Let 0@y denote the subspace spanned by I 5, ¢ =0,...,k—1 (k> 1) and
0%, denote the subspace spanned by @;,. Then, for £ > 1,

Tm(PO, RN pk)g = Tm(PO, . ,Pk,l)g + (8Fd,k + 845(17}@). (5)

For k = 1, we simply have T ,,(Py)" = d®}. For all & > 1, the increase of
dimension when adding 0141 + 0Pq, is the dimension of the quotient space
(0I4 + 0Pg 1) mod T, (150, ce Pk,l)g. Now we use the following property.

Property 11. For d up to the degree of regularity of Py, ..., Py,
To(Boyo o B {5, 6,00 a = T (Po, ..., Pe_1)h.

(Hence, the degree of regularity of Py, ..., Py is upper-bounded by the degree of
regularity of Py, ..., Py—1 because a cancellation of Fy,..., P,—1 which is non-
trivial in the sense of Py,..., P;_1 is non-trivial in the sense of Py, ..., Px.)

Proof. First recall that I5;’s have degree 2 and ¢;’s have degree 2(¢ — 1) > 2.

As a consequence T ,, (150, ceey Pk,l) has no element in degree O or 1.
For any 1 < a < ¢ and d > 0, define the set

T(Py,..., B = {(MO,...,Mkl,O)

M, (Mo, ..., Mgy, M PE™)
ETm(P057Pk)Z

Observe that for o« = 1, this set is exactly Tm(I:’O, . .,Pk)’; N {0 %,0)}a.
We show that for d up to the degree of regularity of Py,..., Py, and o < ¢ — 1,

T:Po,..., B CTo(Po,..., Bo)l + BT (P, PO, (6)
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Indeed, let (My,..., M;_1,0) belong to the left handside. By definition,
there exists M such that (Mo,..., My_1, MEP®) is in T,,(Pp,..., Py)h.
Refer to the decomposition 5 of this set. Hence there exists an element
Ty of T(Po,...,Pe_1) (with its last coordinate to zero) and coefficients
Koy« vy k=1, Vi such that (Mo,...,Mkfl,M]?Pka) = Ty + polor + -+ +
tk—11%—1k + Vi @r. Coordinate-wise identity writes

{(MOa"'aMk—laO):Tk+Pk(,u'Oa"'7uk—laol)a
—MPPY = poPo+ - + p—1Po—1 — v P

The second equation implies that (uo,...,uk_l,M,g‘Pko"l — ykPg”) lies in
T (Po,. .., Pyl _,, which shows (6). Now by using (6), from 1 to o < ¢ — 1,

TPy, ..., PO CT (P, ..., B )t + PETH (B, PO,

The second summand is zero as soon as d —2a < 1. As « increases to ¢ — 1, one

either encounters this case or ends up with Pg_lT;‘f(Po, R Pk)giz(qil). But
again any (Mo, ..., My_1,0) of the set in factor writes Ty + Pi (o, - - -, ftk—1,0).
In the product set, the second summand vanishes by P! = 0. O

By Property 11, two n-tuples of Tm(PO, ce Pk)’; are equivalent modulo
Tm(Po,...,Pr_1) if and only if they have the same (k + 1)-th coordinate.
Hence, the marginal dimension of the second summand in 5 is the dimension of
(Ron)li_o{Pitocich1 + (Rum)s_gqny B Let g = dim T (B, .., Pe1))y
and let 52;1@ be the dimension of the above. So far, 74114 = Twa + 513;}@'
Furthermore, iterating this process, we can show (¢f full version for a proof)

Lemma 1. For any 1 < a < q — 1, let 63, , denote the dimension of
(Ro)_o{P}o<ich1 + (Rt _, Pe. For d up to the degree of regularity of
]50, e pk, this dimension follows the induction

Oht1,a= ke dim(Ron )5 — That,d—2 + 513:11,11—2’
for any o > 2, and 5;“@ = (k+1)dim(R)" 5 — Tht1,a-2-

Using this lemma we finally find the induction defining 7, 4 for any £ < n and d
up to the degree of regularity of Py,...,Po_1,

Thrtd = Tha + Sty (K dim(Rn)h_y; — Thg1.d—2i) + dim(Ru)j o1y (7)

5.4 Numerical Computation of the Upper Bounds

We numerically computed the above induction formulas using a dynamic pro-
gramming approach. A simple complexity analysis can be found in the full ver-
sion. Figure 1 below represents the upper bounds on the degree of regularity of
HFE systems for many parameters ¢,n. The corresponding value of D was set
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to satisfy ¢ = nlog, g, that is, the degree of the internal HFE polynomial is
indexed on the block size. This choice lets schemes operating on the same block
size have comparable complexity of the secret operations (roughly (log, q)3n®
using the algorithms suggested in [16]). One can note that the surface rendering
the GJS bound initially coincides with the MQ surface while our bound ensures
a much smaller degree of regularity. Figure 2 below renders (¢f full version for
colorful figures) the improvement of the HFE bound over the GJS bound as ¢
grows. One can perceive the significance of this improvement from the curves
being massively pulled down. This is especially true for small blocksizes where
the GJS bound is lower bounded by ¢ while the corresponding value of the HFE
bound is roughly independent of the value of q.

Fig. 1. Overview of the three upper bounds for many HFE parameters: MQ, GJS, HFE
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Fig. 2. Comparing the two upper bounds specific to HFE: GJS, HFE bounds
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6 Application to the Security of HFE

The previous discussion has led to the ability to compute an upper bound on
the degree of regularity of HFE systems for any parameters. In this section, we
describe applications of this parameter to the security of HFE.

6.1 Computing the Degree of Regularity in Practice

We consider a simple algorithm which given the n quadratic polynomials and a
prescribed degree d > 2 computes a generator basis of combinations in degree d
of these polynomials (given by monomial multiples of each polynomial) and puts
them in row echelon form (any ordering of terms can be used). It is then trivial
to obtain the dimension spanned by these combinations. As a consequence, using
this algorithm with d incrementing from 2, one can compare the experimental
dimension of combinations with the one predicted until the degree of regularity is
found. As soon as these dimensions disagree, current d is the degree of regularity
of the system. Hence, this simple procedure allows to compute the degree of
regularity is practice. Denote by M,(n,d) the number of monomials of degree
d in n variables with exponents modulo ¢. In degree d, the canonical generator
basis has size My(n,d — 2)n. Each such vector has at most n(n + 1)/2 non-
zero coefficients. Computing a row echelon form of these vectors therefore has
time complexity about M, (n,d —2)?n* and space complexity at most S, (n, d) =
My (n,d — 2)?>n?. When making d range from 2 to some prescribed d,q., the
complexity of the iteration is dominated by the complexity at d = d,q, because
M, (n,d—2) grows exponentially with d. In particular, for HFE(q, n, D) systems,
the complexity of computing the degree of regularity is upper bounded by the
latter complexity at d set to the HFE bound §(g,n, D) computed previously.
Since the degree of regularity of random MQ systems is expected very closely
tied to the MQ bound (which is much higher for practical parameters), the
degree of regularity provides a way to algorithmically distinguish HFE systems
from random MQ instances. This distinguisher was already addressed in [4,9,15]
and we refer to it as the algebraic distinguisher. Our result makes it possible
to compute its complexity for any parameters. Comparing this complexity with
the complexity of the differential distinguisher presented in [8], it turns out the
latter is almost always far more efficient (¢f full version of the paper).

6.2 Estimated Upper Bound for Solving HFE Systems

A more critical application uses the heuristic that the degree of regularity orig-
inates from the saturation of a subspace of combinations, yielding many degree
falls at once. These degree falls in turn contribute to further saturations and
further degree falls in smaller degree. When computing a Grobner basis with
a graded ordering, this initiates a process of new head terms appearing with
decreasing degree and precipitates the end of the computation. Due to these
heuristics, it is commonly taken that the degree of regularity estimates the max-
imal degree needed in the computation of a Grébner basis for a graded ordering.
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In our case, this heuristic is supported by our upper bound on the degree of
regularity of HFE closely matching the experimental maximal degree given for
g =2 in [12]. As to the complexity of the Grobner basis computation, it is also
commonly estimated as the cost of row echelon form on the combinations ma-
trix at the maximal degree. Although, some algorithms offer improvements to
reduce the combinations matrix by removing trivial syzygies [11,13], we keep on
the simple analysis of the precedent paragragh. When a more detailed analysis
is available for a particular algorithm our upper bound on the degree of regu-
larity can be readily plugged into it to obtain tighter complexity upper bounds.
Figure 3 below represents the obtained upper bound for many HFE parameters,
where the degree of the internal parameter is again indexed on the block size by
qP = nlog, q. Within the limits of the above heuristics, parameters that do not
emerge from the 80-bits security level should not be considered secure.

Fig. 3. Estimated Upper Bounds on the Complexity of Algebraic Attacks on HFE
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7 Conclusion

In this paper, we provide a rigourous analysis of the degree of regularity of
HFE systems. Under commonly used heuristics, this analysis allows to derive
estimates for the complexity of algebraic attacks on the public key. In particular,
using these estimates, hardly any HFE cryptosystem with block size 80 bits can
achieve 80 bits security. HFE over GF(2) with blocksize 128 does not achieve 80
bits security. On the other hand, our work can not be used to infer the security
of HFE parameters, because our estimates are only complexity upper bounds
and focus on a particular type of attack. Finally, we point out that the first
part of our work — shifting the analysis to the internal polynomial — can be used
for any cryptosystem following a similar construction to HFE. In particular, it
potentially offers a useful framework to the analysis of variations of HFE.
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