
The Degree of Regularity of HFE Systems⋆Vivien Dubois1 and Niolas Gama2

1 DGA-MI, Franevivien.dubois�m4x.org
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The HFE Cryptosystem. One of the most prominent proposals in thisarea has been the Hidden Field Equation ryptosystem, introdued by Patarinin 1996. HFE is based on an elegant idea introdued by Matsumoto and Imai in1988 of deriving a set of multivariate equations from a single variable equationover a large extension �eld; this makes use of the vetor spae struture of thisextension �eld. When the single variable equation an be solved e�iently thesame holds for the multivariate system, and aess to the large �eld equation isrestrited by applying seret linear bijetions on the variables and equations.More formally, let Fq denote the �nite �eld with q elements and let φ besome linear bijetion from Fqn , the degree n extension of Fq, to (Fq)
n. Suh alinear bijetion is de�ned by a hoie of a linear basis of Fqn . To any polynomialfuntion P (X) on Fqn , one assoiates the funtion φ ◦ P ◦ φ−1 on (Fq)

n. InHFE, polynomials P have a small degree to ensure e�ient root �nding. Also,they have a speial shape whih ensures that φ ◦ P ◦ φ−1 is quadrati. Thisfuntion is then omposed with seret linear bijetions S, T : (Fq)
n → (Fq)

n,
T ◦ (φ ◦ P ◦ φ−1) ◦ S and the result is released as the publi funtion. HFE anbe used as a signature sheme and also, with some minor arrangements, as anenryption sheme [16℄. Many variations exist and o�er potential enhanements.The Seurity of HFE. The fundamental issue is whether the publi funtionis a one-way funtion. Finding a preimage by the publi funtion is the same as�nding a solution to the orresponding system of quadrati equations. Denoteby MQ(q, n) the set of systems of n quadrati equations in n variables over
Fq, and by HFE(q, n,D) the subset of HFE systems where D is the parameterthat ontrols the degree of the internal polynomial P . Two lines of work haveso far been able to distinguish HFE systems from random MQ systems. Oneline of work, proposed in [8℄, targets so alled di�erential properties of HFEfuntions and was able to produe a distinguisher with proven omplexity forall parameters (q, n,D). The other line of work, proposed in [4,9,15℄, diretlytargets the di�ulty of the preimage problem on HFE systems. It produedexperimental evidene that for some parameters the preimage problem is muheasier on HFE systems than on random MQ instanes [12℄. Sine the di�ultyof the preimage problem on HFE systems is ultimately the issue, one wishes tolarify what property is dislosed by the methods used in the seond line of workand how this property depends on the parameters (q, n,D). So far, the availableinformation has been the following.1. The experimental evidene has been obtained by using algorithms for om-puting Gröbner bases [12,17℄. These algorithms proeed through ombina-tions with polynomial oe�ients of a given set of polynomials and generateadditional polynomials that an be used to solve the system.2. The attaks have only onerned systems over F2. Experiments for variousvalues of n and D evidened that the degree of ombinations needed toompute a Gröbner basis (for a graded ordering of terms) on HFE systemsonly depends on D for large enough n [12℄. Unfortunately, no extension ofthis property to larger values of q has been reported. In fat, some authors [7℄2



argued that the size of the �eld should have a strong negative impat theomputation and observed it on experiments using the Magma pakage [18℄.3. On the theoretial side, a qualitative aount was given in [9℄ on how theombinations performed on the publi polynomials orrespond to relatedoperations on the internal polynomial. Although this learly initiated a wayof investigating HFE systems, it has not been followed with the omputationof theoretial omplexity bounds. Nevertheless, the authors in [15℄ showedthat when q = 2, omplexity bounds an be heuristially derived from resultson overdetermined MQ systems.We note that quantitative information has only been obtained from experimentsand on systems over F2. The theoretial onnetions have not permitted to derivequantitative information beyond pratial reah. Notably, how the phenomenonthat is observed experimentally varies as q inreases has remained unknown. Thegain of potential enhanements also has, inidentally, remained unlear.Our ontribution. Reent studies on the omplexity of Gröbner basis algo-rithms fous on the notion of degree of regularity of a system of polynomials [2,1℄.Roughly speaking, the degree of regularity is the smallest degree at whih a non-trivial degree fall among algebrai ombinations of the input polynomials ours.The degree of regularity of HFE systems over F2 was experimentally found withinsome parameter range in [9℄ and asymptotially upper bounded in [15℄ using theresults of [2,1℄. In this paper, we give a way to ompute a numerial bound onthe degree of regularity of HFE systems over any �eld and for any parameters.This is ahieved by using previous ideas and methods present in [9,15,1,6℄ inombination with an apparently unnotied additional property of HFE systemswhih is inreasingly signi�ant as the size of the ground �eld grows.Organization of the paper. In Setion 2, we de�ne the degree of regular-ity of a system of polynomials and relate this notion to the omputation of aGröbner basis. In Setion 3, we de�ne HFE systems in greater detail and seta few notations. In Setion 4, we map the problem of omputing the degree ofregularity to some other multivariate ring where the algebrai struture of HFEsystems is apparent. This is only a more preise statement of a property used in[9,15℄ and our upper bound derives from the same observation that the degreeof regularity is upper bounded by the degree of regularity of any subsystem. InSetion 5, we show how to ompute the degrees of regularity of these subsystemsby using lassial methods suh as used in [1,6℄ but with the spei� propertiesof the polynomials at hand. We dedue numerial bounds for many parameters.In Setion 6, we derive estimates on the omplexity of algebrai attaks on HFE.2 Algebrai Properties of a System of PolynomialsWe �rst give an informal presentation of the notions that will be used in thesequel and then give preise de�nitions and statements for our partiular setting.3



2.1 Solving a System of Multivariate EquationsSuppose we fae the problem of �nding the ommon roots of a system of poly-nomials p1, . . . , pk in a multivariate ring R over a �eld. Would this system be infew enough variables to be tried by hand, one would probably try to ombinethe given polynomials to derive �simpler� ones, that is, that make it easier todisover the spae of solutions. For instane, one may try to obtain a polyno-mial in fewer variables, or with a smaller total degree. In any ase, ombiningthe given polynomials always omes down to onsider polynomials of the shape
m1p1 + · · ·+mkpk for some polynomial multiples m1, . . . ,mk. Hene, these poly-nomials are linear ombinations of p1, . . . , pk with oe�ients in R. And the goalis then to �nd suh a linear ombination within some target subspae of R.To do this mehanially, one may onsider two main strategies. Either onehooses a priori searh spaes for the mi (for instane, polynomials with degreeunder some bound) and one performs linear algebra on their oe�ients. (This isthe basi idea of XL algorithms [5,19℄.) Or one de�nes a priority list among termsto be eliminated (alled an ordering) and one performs systemati leading termredutions on polynomials p1, . . . , pk and the new polynomials that are generatedby this proess, until it an be predited that any further ombination willredue to zero. (This is the basi idea of Gröbner bases algorithms [3,14,10,11℄.)These two strategies are not as di�erent as it ould seem. Indeed, to redue thehead terms of polynomials p1, . . . , pk the ones by the others, one determines therespetive sets of multipliers {m1}, . . . , {mk} that are needed to do so. Thenit remains to perform linear algebra on the resulting ombinations and iteratewith polynomials with new head terms that may be found in this proess. Bothstrategies therefore have a lear intersetion although Gröbner bases algorithmsare natively more areful with the number of ombinations to be dealt with.In any ase, it is onvenient to arrange the available ombinations with re-spet to their total degree. For any integer d ≥ 1, let Vd denote the set ofombinations of degree d multiples of p1, . . . , pk. It is a linear subspae of allpolynomials of degree at most d. This paper fouses on an intrinsi parameter ofpolynomials, whih we all degree of regularity. This parameter was introduedin [2,1℄. It is ommonly onsidered as the main omplexity parameter for thefollowing intuitive reasons. Let A be an algorithm that omputes suh ombi-nations, and indexing its exeution steps by t, one may onsider the subspae
Vd[A(t)] of ombinations of degree d multiples that are omputed through A upto t. Obviously, Vd[A(t)] ⊆ Vd ⊆ R≤d. Now, hoose a target subspaeWd ⊆ R≤d.There exists an element of Wd among ombinations in degree d when the inter-setion of Vd andWd is not zero and suh a ombination is found by the algorithm
A before step t if Vd[A(t)]∩Wd 6= {0}. When the polynomials p1, . . . , pk are nottoo spei�, the intersetion of Vd and Wd is expeted to be non-zero only whenthe sum of their respetive dimensions exeeds the dimension of R≤d itself. Inthis ase, any algorithm A an just onsider ombinations in degree d to �nd anon-zero element ofWd. It is assured to �nd one at step t if Vd[A(t)] = Vd. On theother hand, should the intersetion of Vd and Wd be non-zero at a signi�antlylower degree than expeted for a random subspae Vd would suggest that the4



polynomials p1, . . . , pk are not random. Interesting hoies of a target subspae
Wd are polynomials of low degree. For instane, one may onsider whether thereexists a non-zero polynomial of degree stritly lower than d among ombinationsin degree d. Suh a ombination is alled a degree fall and the smallest degreeat whih suh a degree fall ours is essentially the degree of regularity. A pre-ise de�nition will be given in the sequel. An algorithm A �nds the degree ofregularity when at some step t its subspae of ombinations in degree d ontainsa degree fall. At this point, it is worth noting that when using a Gröbner basisalgorithm it is best to use an ordering that re�nes the degree. Indeed in this asenew head terms are on�ned among the smallest degree monomials.The degree of regularity permits to distinguish a system of polynomials fromrandom. Furthermore, any degree fall an give a new whole set of multiplesin degree d or even below, whih an be further ombined with the existingombinations. Moreover, the dimension of V A

d usually takes large steps as oneinrements d and then, many degree falls appear at one. These degree falls inturn help the appearane of new degree falls in lower degrees. Either these degreefalls are low enough to solve the system (e.g. linear polynomials) or one pushesthe omputation until obtaining a omplete Gröbner basis.2.2 Systems with Field Equations over a Finite FieldIn the setting of ryptographi shemes, the oe�ient �eld is a �nite �eld Fq(with q elements) and the solutions are searhed with oordinates in this �nite�eld. Let x1, . . . , xn denote the variables of R. Then one atually searhes forthe solutions of the system {p1 = 0, . . . , pk = 0} with the additional equations
{xq

1 − x1 = 0, . . . , xq
n − xn = 0}. Equivalently, sine the xi desribe values in Fq,all monomials in R an be redued aording to the rules xq

i = xi, i = 1, . . . , n.Then, all ombinations of the polynomials p1, . . . , pk an be onsidered in theredued ring Rq = Fq[x1, . . . , xn]/{xq
1 − x1, . . . , x

q
n − xn}.While in the sequel we ompute the degree of regularity of underdeterminedsystems (k ≤ n) in a redued ring, it serves in upperbounding the degree ofregularity of a publi HFE system with exatly n polynomials. In this ase, theexpeted number N of solutions is hardly more than one and it an be shownthat any Gröbner basis for any ordering that re�nes the degree ontains at least

n − N linearly independent degree-1 polynomials (f full version). Hene, oursetting makes it partiularly easy to derive the solutions from a Gröbner basis.Sine in the sequel we only enounter systems of quadrati polynomials, foronveniene sake we speialize the following de�nitions to this ase. Let p1, . . . , pkbe a system of quadrati polynomials in Rq. For any integer d ≥ 2, onsider thesubspae of ombinations m1p1 + · · ·+mkpk where the mi have degree at most
d− 2 in Rq. By de�nition, it is the image spae of the map

σd(p1, . . . , pk) : (m1, . . . ,mk) ∈ ((Rq)≤d−2)
k 7−→ m1p1 + · · · +mkpk.An important observation is that the kernel of σd(p1, . . . , pk) always ontains pre-ditible non-zero tuples alled trivial syzygies. Examples of trivial syzygies are5



the ombinations over Rq of the k-tuples with mi = pj , mj = −pi for some i, jand 0 otherwise. A formal de�nition of trivial syzygies is the following. For in-determinates y1, . . . , yk, let Tq(y1, . . . , yk) denote the set of k-tuples (m1, . . . ,mk)over Rq[y1, . . . , yk]/{yq
1 − y1, . . . , y

q
k − yk} suh that m1y1 + · · ·+mkyk = 0. Forany polynomials p1, . . . , pk over Rq, we all trivial syzygies of p1, . . . , pk theevaluations of the k-tuples in Tq(y1, . . . , yk) at (p1, . . . , pk) .When searhing for degree falls, we are only interested in the subspae Vdspanned by the highest degree homogeneous part of the image of σd(p1, . . . , pk).This subspae is spanned by the degree d homogeneous parts of the ombinations

m1p1 + · · · + mkpk where m1, . . . ,mk are homogeneous polynomials of degree
d−2. We de�ne a degree fall in degree d of p1, . . . , pk as a k-tuple (m1, . . . ,mk)of degree d − 2 homogeneous polynomials suh that the degree d homogeneouspart of m1p1 + · · · +mkpk is zero. The degree d − 2 homogeneous parts of thetrivial syzygies of p1, . . . , pk in degree d− 2 are trivially degree falls and we allthem trivial degree falls. We all the degree of regularity of p1, . . . , pk thesmallest d suh that a non trivial degree fall of p1, . . . , pk exists in degree d.3 De�nition of HFE SystemsThe onstrution of HFE systems is based on the linear isomorphism between
(Fq)

n and Fqn over Fq. Reall that Fqn is a degree n polynomial extension over
Fq and as a onsequene is an n dimensional vetor spae over Fq. Any hoieof a basis of Fqn de�nes a linear bijetion S from (Fq)

n to Fqn , and extends toa linear bijetion ψS from funtions on Fqn to funtions on (Fq)
n by:

ψS : P 7→ S−1 ◦ P ◦ SReall that funtions on (Fq)
n are uniquely represented by n-tuples of polynomi-als in Rq = Fq[x1, . . . , xn]/{xq
1 − x1, . . . , x

q
n − xn} and that funtions on Fqn areuniquely represented by polynomials in Fqn [X ]/{Xqn

− X}. This gives an ex-pression of ψS on polynomials: ψS : Fqn [X ]/{Xqn

−X} −→ (Rq)
n. Also reallthat raising to a power of q is linear over Fq and that the n distint q-poweringson Fqn are alled the Frobenius maps. More generally, for any power funtion

Xa in Fqn [X ]/{Xqn

− X}, we all q-degree of Xa the sum a0 + · · · + an−1,where (a0, a1, . . . , an−1) is the deomposition of a in base q. In partiular, on-stants have q-degree 0 and Frobenius maps have q-degree 1. Sine any funtionin Fqn [X ]/{Xqn

− X} is a linear ombination of power funtions, we de�ne q-degree as the maximal q-degree of its terms. The following proposition ensuresthat ψS maps q-degree in Fqn [X ]/{Xqn

−X} to degree in (Rq)
n.Proposition 1. Let S be an arbitrary linear bijetion from (Fq)

n to Fqn . Forany integer d ≥ 0, ψS de�nes a bijetion from polynomials in Fqn [X ]/{Xqn

−X}with q-degree d to n-tuples over Rq with degree d.Please refer to the full version for a proof. We are now ready to de�ne HFEsystems. Reall from the introdution that an HFE publi key is the data of the6



n oordinate polynomials of a omposition T ◦P ◦S where S is a linear bijetionfrom (Fq)
n to Fqn , T is a linear bijetion from Fqn to (Fq)

n and P is a funtionon Fqn whih as a polynomial in Fqn [X ]/{Xqn

−X} has the shape
P (X) =

∑

i,j≤D pijX
qi+qj

+
∑

k≤D λkX
qk

+ cwhere D is a parameter of the sheme. For any linear bijetion S, we all HFEsystems the systems in (Rq)
n whih are the images by ψS of the polynomials

P (X) of the above shape. We see from the above proposition that HFE systemsare quadrati and that their only partiularity in this lass is to orrespond to apolynomial P (X) of degree upper bounded by 2qD. Sine T is a linear bijetion,an HFE publi key has all the algebrai properties of an HFE system.4 Combinations of HFE PolynomialsIn this setion, we map ombinations of HFE systems to related operations on thede�ning polynomial in Fqn [X ]/(Xqn

−X). This mapping was outlined in [9℄ and ismade preise here. Inidentally, it is independent of the partiular shape of HFEde�ning polynomials and hene is valid for any ryptosystem following a similaronstrution. To lighten the notation, we now denote Rqn = Fqn [X ]/(Xqn

−X).This setion is a hain of tehnial points whih are neessary to make themapping omplete. For a quik reading, one may jump diretly to subsetion 4.4.4.1 From Combinations in Rq to Combinations in RqnLet P be any polynomial in Rqn and (p1, . . . , pn) = ψS(P ). We have de�nedombinations of p1, . . . , pn as linear ombinations of p1, . . . , pn with oe�ientsin Rq. Hene, n-tuples of linear ombinations over Rq are produts by n × nmatries over Rq. Proposition 1 implies that ψ−1
S is a linear bijetion from linearmaps on (Fq)

n to linear ombinations over Fqn of the Frobenius maps. We extendthis result when oe�ients are in Rq and Rqn instead of Fq and Fqn .Proposition 2. Let S be an arbitrary linear bijetion from (Fq)
n to Fqn . Thereexists an Fq-linear bijetion ψ∗

S from (Rqn)n to n × n matries over Rq, suhthat for any M0, . . . ,Mn−1 and P in Rqn ,
ψ∗

S(M0, . . . ,Mn−1)ψS(P ) = ψS(M0P
q0

+ · · · +Mn−1P
qn−1

). (1)Proof. We simply onstrut ψ∗
S by hand by onsidering the above identity overthe set of onstant funtions P = a with a in Fqn . Sine ψS is linear we only needto onsider P = a for a over a basis of Fqn . For any i = 1, . . . , n, let ei ∈ Fqn de-note the image by S of the i-th anonial vetor of (Fq)

n. For anyM0, . . . ,Mn−1,
ψ∗

S(M0, . . . ,Mn−1)ψS(ei) is the i-th olumn of ψ∗
S(M0, . . . ,Mn−1) and mustbe set to ψS(

∑n−1
k=0 Mk(ei)

qk

). ψ∗
S is linear by the linearity of ψS . Consider

(M0, . . . ,Mn−1) whose image by ψ∗
S is zero. Then, ψS being a linear bijetion,for any i = 1, . . . , n, we have ∑n−1

k=0 (ei)
qk

.Mk = 0. The only solution to thisinvertible system is M0 = · · · = Mn−1 = 0, whih proves that ψ∗
S is injetive.Surjetivity follows ψ∗

S mapping subspaes of idential dimension over Fq. ⊓⊔7



Equation (1) over the onstants ei also shows that the q-degree of
(M0, . . . ,Mn−1) equals the degree of ψ∗

S(M0, . . . ,Mn−1). In partiular, for any
P of q-degree 2 and d ≥ 2, we de�ne
U≤d(P ) =

{

M0P
q0

+ · · · +Mn−1P
qn−1

| q-deg(Mi) ≤ d− 2, i = 0, . . . , n− 1
}and on the other hand, for (p1, . . . , pn) = ψS(P ),

V≤d(p1, . . . , pn) = {m1p1 + · · · +mnpn | deg(mi) ≤ d− 2, i = 1, . . . , n} .Property 1. For any d ≥ 2, ψS is a bijetion from U≤d(P ) to (V≤d(p1, . . . , pn))n.Proof. ψ∗
S transforms n-tuples of q-degree ≤ d − 2 to n × n matries of degree

≤ d − 2. Both spans have the same dimension over Fq by Proposition 1, hene
ψ∗

S is a bijetion from the one to the other. Finally, the property holds by theidentity satis�ed by ψ∗
S and evaluated at the partiular P . ⊓⊔Sine the dimension of (V≤d)

n is n times the dimension of V≤d and the dimensionof U≤d over Fq is n times its dimension over Fqn , the property implies
dimFq

(V≤d(p1, . . . , pn)) = dimFqn (U≤d(P )) .4.2 From Degree Falls in Rq to q-Degree Falls in RqnWhen onsidering degree falls, one is really interested in the subspae spannedby the highest degree homogeneous part of a bounded degree ombination spae.For any quadrati polynomials p1, . . . , pn in Rq and any integer d ≥ 2, let
V h

d (p1, . . . , pn) denote the subspae generated by the degree d homogeneous partsof polynomials in V≤d(p1, . . . , pn). Similarly, for any polynomial P of q-degree2 in Rqn and any integer d ≥ 2, let Uh
d (P ) denote the subspae of q-degree dhomogeneous parts of polynomials in U≤d(P ). Quite expetably, we have:Property 2. Let P in Rqn and (p1, . . . , pn) = ψS(P ). Then, for any d ≥ 2, thereexists an Fq-linear bijetion from Uh

d (P ) to (V h
d (p1, . . . , pn))n.Proof. The highest degree homogeneous part of a polynomial p in Rq with degree

d ≥ 2 is its lass mod (Rq)≤d−1. Hene, V h
d (p1, . . . , pn) is V≤d(p1, . . . , pn) mod

(Rq)≤d−1. Similarly Uh
d (P ) is U≤d(P ) mod (Rqn)≤d−1. LetQ andQ′ be arbitrarypolynomials inRqn suh that Q = Q′ mod (Rqn)≤d−1. Then, Q−Q′ has q-degreeat most d − 1. Sine ψS preserves the degree, ψS(Q − Q′) has degree at most

d−1. Hene, sine ψS is linear, ψS(Q) = ψS(Q′) mod ((Rq)≤d−1)
n. Therefore, ψSindues an Fq-linear map from Rqn mod (Rqn)≤d−1 to (Rq)

n mod ((Rq)≤d−1)
n.Sine ψS is a bijetion from U≤d(P ) to (V≤d(p1, . . . , pn))n, the indued map isa bijetion from Uh

d (P ) to (V h
d (p1, . . . , pn))n. ⊓⊔Let Rh

q denote the set of homogeneous polynomials of Rq. For any polynomial pin Rq and any integer d ≥ 0, let [p]d denote the degree d homogeneous part of8



p. For any system p1, . . . , pn of quadrati polynomials in Rq and any d ≥ 2, thedegree falls of p1, . . . , pn in degree d are the kernel of the map
σh

d (p1, . . . , pn) : (m1, . . . ,mn) ∈ ((Rh
q )d−2)

n 7−→ [m1p1 + · · · +mnpn]d.With ompletely transposed notations, for any P of q-degree 2 in Rqn and any
d ≥ 2, we de�ne the q-degree falls of P in degree d as the kernel of the map
Σh

d (P ) : (M0, . . . ,Mn−1) ∈ ((Rh
qn )d−2)

n 7→ [M0P +M1P
q + · · · +Mn−1P

qn−1

]dThe image spaes σh
d (p1, . . . , pn) and Σh

d (P ) respetively are V h
d (p1, . . . , pn) and

Uh
d (P ). Property 2 ensures that when (p1, . . . , pn) = ψS(P ) the image spaes of

(σh
d (p1, . . . , pn))n and Σh

d (P ) have the same ardinality. Besides, Proposition 1ensures that the same holds for their input spaes. Therefore, the kernels of
(σh

d (p1, . . . , pn))n and Σh
d (P ) have the same ardinality. Finally,

dimFq
(kerσh

d (p1, . . . , pn)) = dimFqn (kerΣh
d (P )). (2)4.3 Trivial Syzygies and Trivial Degree FallsTrivial syzygies of p1, . . . , pn are n-tuples overRq suh thatm1p1+· · ·+mnpn = 0even when p1, . . . , pn are indeterminates. They are preisely de�ned the followingway. Let R̄q denote the extension of Rq with additional variables y1, . . . , yn,

R̄q = Rq[y1, . . . , yn]/{yq
1 − y1, . . . , y

q
n − yn}. Let Tq(y1, . . . , yn) denote the setof n-tuples (m1, . . . ,mn) over R̄q suh that m1y1 + · · · + mnyn = 0. For anypolynomials p1, . . . , pn in Rq, we de�ne its trivial syzygies as the evaluations ofthe n-tuples in Tq(y1, . . . , yn) at (p1, . . . , pn). As a shorthand, let Tq(p1, . . . , pn)denote the set of trivial syzygies of p1, . . . , pn.Elements of R̄q are polynomials in both x1, . . . , xn and y1, . . . , yn. For anymonomial in R̄q, let dx, dy denote its degrees in x1, . . . , xn and in y1, . . . , ynrespetively. Sine variables y1, . . . , yn are intended to be speialized at quadratipolynomials p1, . . . , pn in Rq, we de�ne the (1, 2)-degree of a monomial in R̄qas dx + 2dy, and the (1, 2)-degree of a polynomial in R̄q as the maximum of the

(1, 2)-degree of its monomials. Hene, any element of Tq(y1, . . . , yn) with (1, 2)-degree d yields an element of Tq(p1, . . . , pn) with degree ≤ d. We all trivialsyzygies of p1, . . . , pn with designed degree d the elements of Tq(p1, . . . , pn) whoseorresponding element of Tq(y1, . . . , yn) has (1, 2)-degree d. The trivial syzygieswith designed degree ≤ d are denoted by Tq(p1, . . . , pn)�d. On the other hand,one may analogously onsider the extension of Rqn with additional variable Y ,
R̄qn = Rqn [Y ]/(Y qn

− Y ), and de�ne Tqn(Y ) as the n-tuples (M0, . . . ,Mn−1)over R̄qn suh that M0Y +M1Y
q + · · · + Mn−1Y

qn−1

= 0. For any P in Rqn ,let Tqn(P ) denote the evaluations of the n-tuples in Tqn(Y ) at P . Finally, forany P of q-degree 2 and any d ≥ 0, we let Tqn(P )�d denote the elements whoseorresponding elements in Tqn(Y ) have (1, 2)-q-degree d. By a series of simpleextensions of the previous results, we an show (f full version)Property 3. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 0,
dimFq

(Tq(p1, . . . , pn)�d) = dimFqn (Tqn(P )�d).9



The polynomials p1, . . . , pn being quadrati, for any d ≥ 2, we all trivial degreefalls of p1, . . . , pn in degree d the homogeneous parts of (atual) degree d − 2of the elements in Tq(p1, . . . , pn)�d−2 and denote them (with a slight abuse ofnotation) by Tq(p1, . . . , pn)h
d−2. Similarly, for P of q-degree 2, we all trivial q-degree falls of P in q-degree d the homogeneous parts of q-degree d − 2 of theelements in Tq(P )�d−2 and denote them by Tq(P )h

d−2. We have (f full version)Property 4. Let P in Rqn of q-degree 2 and (p1, . . . , pn) = ψS(P ). For any d ≥ 2,
dimFq

(Tq(p1, . . . , pn)h
d−2) = dimFqn (Tqn(P )h

d−2).4.4 Mapping the Degree of Regularity from Rq to RqnReall that the degree of regularity of a system of quadrati polynomials
p1, . . . , pn is the smallest integer d suh that a non-trivial degree fall exists in de-gree d. With the previous notation, this is the smallest d suh that the kernel of
σh

d (p1, . . . , pn) is stritly larger than Tq(p1, . . . , pn)h
d−2. Now, let S be an arbitrarylinear bijetion from (Fq)

n to Fqn and P in Rqn suh that ψS(P ) = (p1, . . . , pn).Then, P has q-degree 2 and, by Equality 2 and Property 3,Property 5. the degree of regularity of p1, . . . , pn is the smallest d suh that thekernel of Σh
d (P ) is stritly larger than Tqn(P )h

d−2.Hene, we obtain an equivalent haraterization of the degree of regularity of
p1, . . . , pn in term of the assoiated polynomial P in Rqn . In the remainderof this setion, we slightly modify the above haraterization to make it moreonveniently usable in the analysis of the next setion.Multivariate representation of Rqn. Our �rst step is a simple alterna-tive notation for the elements Rqn . This notation was proposed in [9℄. Asalready seen, we an split any power of X aording to the deompositionin base q of the exponent. Now simply introdue a distint notation for theFrobenius of X : for i = 0, . . . , n − 1, let Xi denote Xqi . Observe that for any
i = 0, . . . , n − 1, Xq

i − Xi+1 = 0 where the indies are taken modulo n. Usingthese relations, any power of X orresponds to a unique multivariate mono-mial in X0, . . . , Xn−1. It extends trivially to all polynomials in Rqn . Additionand multipliation are ompatible with this notation. Therefore, Rqn identi�esas a ring with Fqn [X0, . . . , Xn−1]/{X
q
0 −X1, . . . , X

q
n−1 −X0}. Along with thisidenti�ation, q-degree beomes degree in the multivariate ring. Also, for anypolynomial P in Rqn , let P0, . . . , Pn−1 denote its suesssive Frobenius. For any

i = 0, . . . , n−1, P q
i −Pi+1 = 0 where indies are modulo n. When P has q-degree

2, its Frobenius are multivariate quadrati polynomials. Sine the P -termed setsreally express in terms of the Frobenius of P , they are onveniently rewrittenwith the above notation. Hene, Σh
d (P ) rewrites to

Σh
d (P0, . . . , Pn−1) : (M0, . . . ,Mn−1) ∈ (Rh

qn)d−2 7→ [M0P0 + · · · +Mn−1Pn−1]d.10



The ring R̄qn = Rqn [Y ]/(Y qn

− Y ) rewrites to Rqn [Y0, . . . , Yn−1]/{Y
q
0 −

Y1, . . . , Y
q
n−1 − Y0}. The set Tqn(Y ) rewrites to Tqn(Y0, . . . , Yn−1), the n-tuples

(M0, . . . ,Mn−1) over R̄qn suh thatM0Y0 + · · ·+Mn−1Yn−1 = 0. Hene, Tqn(P )identi�es with Tqn(P0, . . . , Pn−1). And the elements of Tqn(P0, . . . , Pn−1)
h
d arethe degree d homogeneous parts of the elements of Tqn(P0, . . . , Pn−1)�d. Finally,our haraterization (Property 5) rewrites to, when (p1, . . . , pn) = ψS(P ),Property 6. the degree of regularity of p1, . . . , pn equals the degree of regularityof P0, . . . , Pn−1, the n Frobenius of P in the multivariate representation of Rqn .At this point, our task is redued to studying the degree of regularity of thequadrati polynomials P0, . . . , Pn−1 in Rqn , and we do not need to address thepolynomials p1, . . . , pn any further. The next paragraph is devoted to re�ningthe haraterization of the degree of regularity of P0, . . . , Pn−1.Charaterizing the Degree of Regularity of Systems of Rqn . Our �rstobservation is a simple one: the highest degree terms of ombinations in degree

d of P0, . . . , Pn−1 only depends on their highest degree terms P̂0, . . . , P̂n−1.Property 7. The degree of regularity of quadrati polynomials in Rqn equals thedegree of regularity of their degree 2 homogeneous parts.Proof. For any degree d− 2 homogeneous polynomials M0, . . . ,Mn−1, the asso-iated ombinations of P0, . . . , Pn−1 and P̂0, . . . , P̂n−1 have the same degree dhomogeneous part. Hene, degree falls in degree d are the same for both systemsof polynomials. On the other hand, the trivial syzygies of P0, . . . , Pn−1 of de-signed degree d− 2 have the same degree d− 2 homogeneous parts as the trivialsyzygies of P̂0, . . . , P̂n−1 of designed degree d− 2. The property follows. ⊓⊔Our seond observation is more subtle: when onsidering ombinations of thequadrati homogeneous polynomials P̂0, . . . , P̂n−1 with degree d−2 homogeneousoe�ients, terms of degree smaller than d an only appear with redutions mod-ulo the polynomials Xq
i − Xi+1, i = 0, . . . , n − 1. Sine all terms with degreesmaller than d are disarded, the same result is obtained as when performingombinations in the ring Rqn = Fqn [X0, . . . , Xn−1]/{X

q
0 , . . . , X

q
n−1}. Consider-ing ombinations in Rqn rather than in Rqn , the map Σh

d (P̂0, . . . , P̂n−1) simplyrewrites to Σh
d (P̂0, . . . , P̂n−1):

(M0, . . . ,Mn−1) ∈ ((Rh
qn)d−2)

n 7→ M0P̂0 +M1P̂1 + · · · +Mn−1P̂n−1.Furthermore, we an equivalently haraterize the trivial degree falls using thering struture of Rqn . Consider R̄qn = Rqn [Y0, . . . , Yn−1]/{Y
q
0 , . . . , Y

q
n−1} andthe assoiated set T qn(Y0, . . . , Yn−1). For any d ≥ 0, we an de�ne the sets

T qn(P̂0, . . . , P̂n−1)�d and T qn(P̂0, . . . , P̂n−1)
h
d , exatly as before.Property 8. For any d ≥ 0, the sets Tqn(P̂0, . . . , P̂n−1)

h
d and T qn(P̂0, . . . , P̂n−1)

h
dare idential. Therefore, for any d ≥ 2, the trivial degree falls of P̂0, . . . , P̂n−1 indegree d are the elements of T qn(P̂0, . . . , P̂n−1)

h
d−2.11



Proof. For any (M0, . . . ,Mn−1) in T qn(Y0, . . . , Yn−1), let Q denote the ombi-nation M0Y0 + · · · + Mn−1Yn−1 in Rqn [Y0, . . . , Yn−1]. Sine Q is zero modulo
Y q

0 , . . . , Y
q
n−1, any of its term is divisible by at least one of Y q

0 , . . . , Y
q
n−1. Sine

M0, . . . ,Mn−1 have degree at most q−1 in any Yi, any term of Q an have degree
q in only one single indeterminate and at most q−1 in all the others. Therefore,any term of Q exatly has degree q is one indeterminate and at most q− 1 in allthe others. Hene, Q admits a unique deomposition A0Y

q
0 + · · · + An−1Y

q
n−1.Using the unique polynomials A0, . . . , An−1 assoiated to (M0, . . . ,Mn−1), weonstrut an element (M ′

0, . . . ,M
′
n−1) of Tqn(Y0, . . . , Yn−1) by setting for all

i = 0, . . . , n − 1, M ′
i = Mi − Ai−1 (indies are modulo n). Now, observe thatthe terms of A0, . . . , An−1 onsist of terms of M0, . . . ,Mn−1 divided by one in-determinate to the power of q − 1. As a onsequene, eah of them has a totaldegree in the Yi variables smaller (by q − 1) than the one it originates from. Inpartiular, when M0, . . . ,Mn−1 have (1, 2)-degree at most d, M ′

0, . . . ,M
′
n−1 re-spetively have the same terms of (1, 2)-degree d as M0, . . . ,Mn−1 beause theydi�er by terms of stritly smaller (1, 2)-degree. ⊓⊔Hene, we end up with the following haraterization whih we use in the sequel.Property 9. Let P̂0, . . . , P̂n−1 be homogeneous quadrati polynomials in Rqn .The degree of regularity of P̂0, . . . , P̂n−1 an be omputed in Rqn as the smallest

d ≥ 2 suh that degree d − 2 homogeneous n-tuples (M0, . . . ,Mn−1) satisfying
M0P̂0 + · · · +Mn−1P̂n−1 = 0 exist besides the elements of T qn(P̂0, . . . , P̂n−1)

h
d .5 Bounding the Degree of Regularity of HFE SystemsWe �rst desribe the proof priniple of our upper bound and then perform theombinatorial omputations that onvey the result.5.1 Upper Bounding the Degree of RegularityFirst onsider arbitrary homogeneous quadrati polynomials P̂0, . . . , P̂k−1 in

Rqn where k ≤ n. The dimensions of the kernel and the image of the map
Σh

d (P̂0, . . . , P̂k−1) : ((Rqn)h
d−2)

k −→ (Rqn)h
d

(M0, . . . ,Mk−1) 7−→ M0P̂0 +M1P̂1 + · · · +Mk−1P̂k−1relate to eah other by
k dim(Rqn)h

d−2 − dimkerΣh
d (P̂0, . . . , P̂k−1) = dim Im(Σh

d (P̂0, . . . , P̂k−1)).Not knowing what the degree of regularity of the system is, one an assumethat it is not reahed while inrementing d. In this ase, the kernel is assumedto ontain only the trivial elements of T qn(P̂0, . . . , P̂k−1)
h
d−2. Sine the image ison�ned in (Rqn)h

d , a ontradition to this assumption appears as soon as
k dim(Rqn)h

d−2 − dimT qn(P̂0, . . . , P̂k−1)
h
d−2 > dim(Rqn)h

d12



and then we know that the degree of regularity was reahed before. The smallest dsatisfying this �saturation� ondition is therefore an upper bound on the degreeof regularity of P̂0, . . . , P̂k−1. Sine it is valid for any homogeneous quadratipolynomials, we refer to it as the MQ bound.We now show how in the ase of HFE systems better bounds an be obtained.5.2 The Case of HFE SystemsIt was noted in [15℄ that when P̂0, . . . , P̂n−1 are obtained from the Frobeniusof an HFE polynomial P , they express over small shifted sets of onseutivevariables: P̂0 expresses over X0 to XD, P̂1 expresses over X1 to XD+1, . . . ,
P̂n−1 expresses over Xn−1 to XD−1 (indies are modulo n). Then, the authorsnoted that a onsequene of this property is that small subsystems of onseutivepolynomials only involve a small subset of the available variables. Conseutivesubsystems of a presribed size being all equivalent up to a yli shift, we fouson the n subsystems Sk = {P̂0, . . . , P̂k−1} for k = 1, . . . , n. The subsystem Skexpresses over the �rst mk variables, where mk = D + k for all k ≤ n−D and
mk = n beyond. The degree of regularity of P̂0, . . . , P̂n−1 is upper bounded bythe respetive degrees of regularity dk of the subsystems Sk for all k = 1, . . . , n.Indeed the degree falls of Sk identify with the degree falls of P̂0, . . . , P̂n−1 withzero on the last n−k oordinates. On the other hand we will show in Setion 5.3(Property 11) that whenever a degree fall is non-trivial for Sk, its ompletionwith zero on the last n − k oordinates is non-trivial for P̂0, . . . , P̂n−1. At thispoint, the authors of [15℄ estimated the degree of regularity of any subsystem Skby using an asymptoti formula from [2℄. This needed restriting to q = 2 andassuming that the quadrati polynomials P̂0, . . . , P̂k−1, X

2
0 , . . . , X

2
mk−1 satisfythe ondition for whih the formula holds. Instead, we use the previous saturationbound: we upper bound the degree of regularity of Sk by applying the MQ boundto P̂0, . . . , P̂k−1. Hene it is upper bounded by the smallest d suh that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)
h
d−2 > dim(Rqn|mk

)h
d (3)where Rqn|mk

denotes the restrition of Rqn to the �rst mk variables. Sine thisupper bound uses a property showed in [15℄, we refer to it as the GJS bound.We now observe an additional property of HFE systems. Sine polynomials
P̂0, . . . , P̂n−1 write over monomials XiXi+ℓ with ℓ ≤ D, ombinations of thesepolynomials neessarily write over the monomials whih are divisible by XiXi+ℓfor some i and ℓ ≤ D. Let M

D
q denote the subspae spanned by suh monomials.For any subsystem Sk, we improve the GJS bound by the smallest d suh that

k dim(Rqn|mk
)h
d−2 − dimT qn|mk

(P̂0, . . . , P̂k−1)
h
d−2 > dim(MD

q |mk)h
d (4)where (MD

q |mk)h
d denotes the subspae spanned by degree d monomials of M

D
qin the �rst mk variables. The distintion between M

D
q and R

h
qn is inreasinglysigni�ant as q grows. Indeed, at �xed n and d, the average Hamming weight ofmultidegrees in degree d dereases as q grows. Then, the proportion of monomials13



ontaining two variables distant by at most D indies (mod n) grows thiner. Weall HFE bound the upper bound on the degree of regularity of P̂0, . . . , P̂n−1obtained from the latter improvement.We now ompute for any d ≥ 2 and any k = 1, . . . , n, the above dimensionsby means of indution formulae and dedue the related numerial upper bound.5.3 Indution Formulae for Computing our Upper BoundWe show how to ompute the dimensions of (Rqn|m)h
d , (MD

q |m)h
d and

T qn|m(P̂0, . . . , P̂k−1)
h
d , for any m, k = 1, . . . , n.The dimension H(m, d) of (Rqn|m)h

d is simply the number of homogeneousmonomials of degree d in m variables, where all exponents are bounded between
0 and q − 1. Obviously, it equals H(m, d) = 0 for d < 0, or d > 0 and m ≤ 0,we have H(m, 0) = 1 for all m, and when d > 0,m > 0 it satis�es the indution
H(m, d) =

∑q−1
α=0H(m− 1, d− α) . Equivalently, H(m, d) is the d-th term of theseries ((1 − zq)/(1 − z))u of term z. In partiular, for q = 2, H(u, d) =

(

u

d

).The Number of Monomials Arising in Combinations of HFE. For any
d ≥ 0, and u = 1, . . . , n, let C(u, d) denote the dimension the omplement of
(MD

q |u)h
d in (Rqn|u)h

d . This is the number of monomials of degree d in u onseu-tive variables, with exponents modulo q, suh that all variables with non-zero ex-ponents have indies (modulo n) distant by at least D+1 positions. First, ignorethat distane between indies is taken modulo n, and that we allow for instane
X0 andXu−1 to have both a non-zero power. Then, C′(u, d) is given by the simple�Pasal's triangle� formula C′(u, d) = C′(u− 1, d) +

∑q−1
α=1 C

′(u−D − 1, d− α)for any u = 1, . . . , n, where C(u, 0) = 1 and C(u, d) = 0 whenever d < 0 or u ≤ 0.When u is lower than n−D, then the requested dimension C(u, d) is there equalto C′(u, d) sine the last D variables have zero exponents. Otherwise, when u >
n−D, the distane must be taken modulo n, so we dedue all values of C(n, d) byonsidering the partitions de�ned by monomials ontaining X0, plus monomialsontainingX1, . . . , plus monomials ontainingXD−1, plus monomials ontainingnone of them. Hene, C(u, d) = C′(u −D, d) +D

∑q−1
α=1 C

′(n− 1 − 2D, d− α) .Finally, dim(MD
q |u)h

d = H(u, d) − C(u, d).The Dimension of Trivial Syzygies in Degree d. Simply denote Rqn|m by
Rm. Our �rst step is to exhibit generators for the module T m(Y0, . . . , Yk−1).Property 10. An n-tuple (M0, . . . ,Mk−1) is an element of T m(Y0, . . . , Yk−1) ifand only if it is a ombination with polynomial oe�ients of the n-tuples
{

Γij = (0, . . . , 0,Mi = Yj , 0, . . . , 0,Mj = −Yi, 0, . . . , 0), i, j = 0, . . . , k − 1,

Φi = (0, . . . , 0,Mi = Y q−1
i , 0, . . . , 0), i = 0, . . . , k − 1.Proof. For any n-tuple (M0, . . . ,Mk), deompose Mi into M̄iY

q−1
i +M ′

i . An n-tuple (M0, . . . ,Mk) is an element of T qn(Y0, . . . , Yk) if and only if M0Y0 + · · ·+14



MkYk is zero modulo Y q
0 , . . . , Y

q
k . This is equivalent to M ′

0Y0 + · · · +M ′
kYk = 0(without modulo). We prove that this latter equality implies that (M ′

0, . . . ,M
′
k)is a ombination of (Γij). We do this through indution on k. If k = 1 then, ifM ′
0or M ′

1 is zero they are both zero, otherwise M ′
0 = M ′′Y1 and M ′

1 = −M ′′Y0 and
(M ′

0,M
′
1) = M ′′(Y1,−Y0). Assume the property holds up to k − 1. Then, if M ′

kis zero, we fall on the property at k − 1, otherwise all M ′
i , i = 0, . . . , k − 1 mustontain Yk and denoting by M ′′

i the quotient, we have M ′
k = −(M ′′

0 Y0 + · · · +
M ′′

k−1Yk−1), from whih we get (M ′
0, . . . ,M

′
k) = M ′′

0 Γ0,k + · · · + M ′′
k−1Γk−1,k.Coming bak to the main proof, we get(M0, . . . ,Mk) = M̄0Φ0 + · · · + M̄kΦk +

(M ′
0, . . . ,M

′
k)where the last n-tuple deomposes over (Γij)'s. ⊓⊔Sine Γij 's and Φi's are homogeneous in the variables Y0, . . . , Yk−1, the (1, 2)-degree d parts of the elements of T m(Y0, . . . , Yk−1) themselves deompose overthese generators. Replaing variables Y0, . . . , Yk−1 respetively by P̂0, . . . , P̂k−1,trivial syzygies in degree d of P̂0, . . . , P̂k−1 write

T m(P̂0, . . . , P̂k−1)
h
d = (Rm)h

d−2{Γij}0≤i<j≤k−1 + (Rm)h
d−2(q−1){Φi}0≤i≤k−1,where we again denote by Γij 's and Φi's their speializations at (P̂0, . . . , P̂k−1).Unfortunately, deomposition over the above generators is not unique. Therefore,the dimension of T m(P̂0, . . . , P̂k−1)

h
d an not be diretly read from the aboveformula. However, we see that this dimension follows a simple indution.Let ∂Γd,k denote the subspae spanned by Γi,k, i = 0, . . . , k − 1 (k ≥ 1) and

∂Φd,k denote the subspae spanned by Φk. Then, for k ≥ 1,
T m(P̂0, . . . , P̂k)h

d = T m(P̂0, . . . , P̂k−1)
h
d + (∂Γd,k + ∂Φd,k). (5)For k = 1, we simply have T m(P̂0)

h
d = ∂Φ1

d. For all k ≥ 1, the inrease ofdimension when adding ∂Γd,k + ∂Φd,k is the dimension of the quotient spae
(∂Γd,k + ∂Φd,k) mod T m(P̂0, . . . , P̂k−1)

h
d . Now we use the following property.Property 11. For d up to the degree of regularity of P̂0, . . . , P̂k,

T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d = T m(P̂0, . . . , P̂k−1)

h
d .(Hene, the degree of regularity of P̂0, . . . , P̂k is upper-bounded by the degree ofregularity of P̂0, . . . , P̂k−1 beause a anellation of P̂0, . . . , P̂k−1 whih is non-trivial in the sense of P̂0, . . . , P̂k−1 is non-trivial in the sense of P̂0, . . . , P̂k.)Proof. First reall that Γij 's have degree 2 and φi's have degree 2(q − 1) ≥ 2.As a onsequene T m(P̂0, . . . , P̂k−1) has no element in degree 0 or 1.For any 1 ≤ α ≤ q and d ≥ 0, de�ne the set

T
∗α
m (P̂0, . . . , P̂k)h

d =

{

(M0, . . . ,Mk−1, 0)

∣

∣

∣

∣

∣

∃M
(α)
k , (M0, . . . ,Mk−1,M

(α)
k P q−α

k )

∈ T m(P̂0, . . . , P̂k)h
d

}Observe that for α = 1, this set is exatly T m(P̂0, . . . , P̂k)h
d ∩ {(∗, . . . , ∗, 0)}d.We show that for d up to the degree of regularity of P̂0, . . . , P̂k, and α ≤ q − 1,

T
∗α
m (P̂0, . . . , P̂k)h

d ⊆ T m(P̂0, . . . , P̂k−1)
h
d + PkT

∗(α+1)
m (P̂0, . . . , P̂k)h

d−2. (6)15



Indeed, let (M0, . . . ,Mk−1, 0) belong to the left handside. By de�nition,there exists Mα
k suh that (M0, . . . ,Mk−1,M

α
k P

α
k ) is in T m(P̂0, . . . , P̂k)h

d .Refer to the deomposition 5 of this set. Hene there exists an element
Tk of T m(P̂0, . . . , P̂k−1)

h
d (with its last oordinate to zero) and oe�ients

µ0, . . . , µk−1, νk suh that (M0, . . . ,Mk−1,M
α
k P

α
k ) = Tk + µ0Γ0k + · · · +

µk−1Γk−1,k + νkφk. Coordinate-wise identity writes
{

(M0, . . . ,Mk−1, 0) = Tk + Pk(µ0, . . . , µk−1, 0),

−Mα
k P

α
k = µ0P0 + · · · + µk−1Pk−1 − νkP

q−1
k .The seond equation implies that (µ0, . . . , µk−1,M

α
k P

α−1
k − νkP

q−2
k ) lies in

T m(P̂0, . . . , P̂k)h
d−2, whih shows (6). Now by using (6), from 1 to α ≤ q − 1,

T
∗1
m (P̂0, . . . , P̂k)h

d ⊆ T m(P̂0, . . . , P̂k−1)
h
d + Pα

k T
∗(α+1)
m (P̂0, . . . , P̂k)h

d−2α.The seond summand is zero as soon as d− 2α ≤ 1. As α inreases to q− 1, oneeither enounters this ase or ends up with P q−1
k T

∗q
m (P̂0, . . . , P̂k)h

d−2(q−1). Butagain any (M0, . . . ,Mk−1, 0) of the set in fator writes Tk +Pk(µ0, . . . , µk−1, 0).In the produt set, the seond summand vanishes by P q
k = 0. ⊓⊔By Property 11, two n-tuples of T m(P̂0, . . . , P̂k)h

d are equivalent modulo
T m(P̂0, . . . , P̂k−1)

h
d if and only if they have the same (k + 1)-th oordinate.Hene, the marginal dimension of the seond summand in 5 is the dimension of

(Rm)h
d−2{P̂i}0≤i≤k−1 + (Rm)h

d−2(q−1)P̂
q−1
k . Let τk,d = dimT m(P̂0, . . . , P̂k−1)

h
dand let δq−1

k+1,d be the dimension of the above. So far, τk+1,d = τk,d + δq−1
k+1,d.Furthermore, iterating this proess, we an show (f full version for a proof)Lemma 1. For any 1 ≤ α ≤ q − 1, let δα

k+1,d denote the dimension of
(Rm)h

d−2{P̂i}0≤i≤k−1 + (Rm)h
d−2αP̂

α
k . For d up to the degree of regularity of

P̂0, . . . , P̂k, this dimension follows the indution
δα
k+1,d = k dim(Rm)h

d−2 − τk+1,d−2 + δα−1
k+1,d−2,for any α ≥ 2, and δ1k+1,d = (k + 1) dim(Rm)h

d−2 − τk+1,d−2.Using this lemma we �nally �nd the indution de�ning τk,d for any k ≤ n and dup to the degree of regularity of P̂0, . . . , P̂n−1,
τk+1,d = τk,d +

∑q−1
i=1

(

k dim(Rm)h
d−2i − τk+1,d−2i

)

+ dim(Rm)h
d−2(q−1) . (7)5.4 Numerial Computation of the Upper BoundsWe numerially omputed the above indution formulas using a dynami pro-gramming approah. A simple omplexity analysis an be found in the full ver-sion. Figure 1 below represents the upper bounds on the degree of regularity ofHFE systems for many parameters q, n. The orresponding value of D was set16



to satisfy qD = n log2 q, that is, the degree of the internal HFE polynomial isindexed on the blok size. This hoie lets shemes operating on the same bloksize have omparable omplexity of the seret operations (roughly (log2 q)
3n5using the algorithms suggested in [16℄). One an note that the surfae renderingthe GJS bound initially oinides with the MQ surfae while our bound ensuresa muh smaller degree of regularity. Figure 2 below renders (f full version forolorful �gures) the improvement of the HFE bound over the GJS bound as qgrows. One an pereive the signi�ane of this improvement from the urvesbeing massively pulled down. This is espeially true for small bloksizes wherethe GJS bound is lower bounded by q while the orresponding value of the HFEbound is roughly independent of the value of q.Fig. 1. Overview of the three upper bounds for many HFE parameters: MQ, GJS, HFE
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6 Appliation to the Seurity of HFEThe previous disussion has led to the ability to ompute an upper bound onthe degree of regularity of HFE systems for any parameters. In this setion, wedesribe appliations of this parameter to the seurity of HFE.6.1 Computing the Degree of Regularity in PratieWe onsider a simple algorithm whih given the n quadrati polynomials and apresribed degree d ≥ 2 omputes a generator basis of ombinations in degree dof these polynomials (given by monomial multiples of eah polynomial) and putsthem in row ehelon form (any ordering of terms an be used). It is then trivialto obtain the dimension spanned by these ombinations. As a onsequene, usingthis algorithm with d inrementing from 2, one an ompare the experimentaldimension of ombinations with the one predited until the degree of regularity isfound. As soon as these dimensions disagree, urrent d is the degree of regularityof the system. Hene, this simple proedure allows to ompute the degree ofregularity is pratie. Denote by Mq(n, d) the number of monomials of degree
d in n variables with exponents modulo q. In degree d, the anonial generatorbasis has size Mq(n, d − 2)n. Eah suh vetor has at most n(n + 1)/2 non-zero oe�ients. Computing a row ehelon form of these vetors therefore hastime omplexity aboutMq(n, d−2)2n4 and spae omplexity at most Sq(n, d) =
Mq(n, d − 2)2n2. When making d range from 2 to some presribed dmax, theomplexity of the iteration is dominated by the omplexity at d = dmax beause
Mq(n, d−2) grows exponentially with d. In partiular, for HFE(q, n,D) systems,the omplexity of omputing the degree of regularity is upper bounded by thelatter omplexity at d set to the HFE bound δ(q, n,D) omputed previously.Sine the degree of regularity of random MQ systems is expeted very loselytied to the MQ bound (whih is muh higher for pratial parameters), thedegree of regularity provides a way to algorithmially distinguish HFE systemsfrom random MQ instanes. This distinguisher was already addressed in [4,9,15℄and we refer to it as the algebrai distinguisher. Our result makes it possibleto ompute its omplexity for any parameters. Comparing this omplexity withthe omplexity of the di�erential distinguisher presented in [8℄, it turns out thelatter is almost always far more e�ient (f full version of the paper).6.2 Estimated Upper Bound for Solving HFE SystemsA more ritial appliation uses the heuristi that the degree of regularity orig-inates from the saturation of a subspae of ombinations, yielding many degreefalls at one. These degree falls in turn ontribute to further saturations andfurther degree falls in smaller degree. When omputing a Gröbner basis witha graded ordering, this initiates a proess of new head terms appearing withdereasing degree and preipitates the end of the omputation. Due to theseheuristis, it is ommonly taken that the degree of regularity estimates the max-imal degree needed in the omputation of a Gröbner basis for a graded ordering.18



In our ase, this heuristi is supported by our upper bound on the degree ofregularity of HFE losely mathing the experimental maximal degree given for
q = 2 in [12℄. As to the omplexity of the Gröbner basis omputation, it is alsoommonly estimated as the ost of row ehelon form on the ombinations ma-trix at the maximal degree. Although, some algorithms o�er improvements toredue the ombinations matrix by removing trivial syzygies [11,13℄, we keep onthe simple analysis of the preedent paragragh. When a more detailed analysisis available for a partiular algorithm our upper bound on the degree of regu-larity an be readily plugged into it to obtain tighter omplexity upper bounds.Figure 3 below represents the obtained upper bound for many HFE parameters,where the degree of the internal parameter is again indexed on the blok size by
qD = n log2 q. Within the limits of the above heuristis, parameters that do notemerge from the 80-bits seurity level should not be onsidered seure.Fig. 3. Estimated Upper Bounds on the Complexity of Algebrai Attaks on HFE

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

lo
g
2

o
f
C

o
m

p
le

x
it
y

Blocksize n log2(q)

q=2
q=4
q=7
q=11
q=16
q=19
q=27

280 ops

7 ConlusionIn this paper, we provide a rigourous analysis of the degree of regularity ofHFE systems. Under ommonly used heuristis, this analysis allows to deriveestimates for the omplexity of algebrai attaks on the publi key. In partiular,using these estimates, hardly any HFE ryptosystem with blok size 80 bits anahieve 80 bits seurity. HFE over GF (2) with bloksize 128 does not ahieve 80bits seurity. On the other hand, our work an not be used to infer the seurityof HFE parameters, beause our estimates are only omplexity upper boundsand fous on a partiular type of attak. Finally, we point out that the �rstpart of our work � shifting the analysis to the internal polynomial � an be usedfor any ryptosystem following a similar onstrution to HFE. In partiular, itpotentially o�ers a useful framework to the analysis of variations of HFE.19
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