
The Semi-Generic Group Model and Applications to
Pairing-Based Cryptography?

Tibor Jager1 and Andy Rupp2

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
tibor.jager@rub.de

2 University of Trier, Germany
andy.rupp@rub.de

Abstract. In pairing-based cryptography the Generic Group Model (GGM) is
used frequently to provide evidence towards newly introduced hardness assump-
tions. Unfortunately, the GGM does not reflect many known properties of bilinear
group settings and thus hardness results in this model are of limited significance.
This paper proposes a novel computational model for pairing-based cryptogra-
phy, called the Semi-Generic Group Model (SGGM), that is closer to the standard
model and allows to make more meaningful security guarantees. In fact, the best
algorithms currently known for solving pairing-based problems are semi-generic
in nature. We demonstrate the usefulness of our new model by applying it to study
several important assumptions (BDDH, Co-DH). Furthermore, we develop mas-
ter theorems facilitating an easy analysis of other (future) assumptions. These
master theorems imply that (unless there are better algorithms than the semi-
generic ones) great parts of the zoo of novel assumptions over bilinear groups
are reducible to just two (more or less) standard assumptions over finite fields.
Finally, we examine the appropriateness of the SGGM as a tool for analyzing the
security of practical cryptosystems without random oracles by applying it to the
BLS signature scheme.

Keywords. Restricted models of computation, generic groups, semi-generic group
model, cryptographic assumptions, master theorems, provable security, pairing-
based cryptography.

1 Introduction

Assuming that certain computational problems, mostly from algebra, number theory,
and coding theory, are intractable builds the foundation of public-key cryptography.
However, proving the validity of these assumptions in the standard model of computa-
tion seems to be impossible with currently available techniques.

Why do we believe in such hardness assumptions, though they are not provable in
general? For classic number-theoretic problems, such as integer factorization (IF) or
the discrete logarithm (DL) problem, this is certainly due to the absence of efficient
algorithms in spite of intensive long-term research by many brilliant people. However,
? This is an extended abstract, see [20] for the full version. This research has been supported by

the European Community (FP7/2007-2013) under grant agreement number ICT-2007-216646
- European Network of Excellence in Cryptology II (ECRYPT II).



besides such well-known assumptions, there frequently appear new assumptions build-
ing the basis for novel cryptosystems with original properties. What can be done to
provide evidence for these assumptions apart from trying to find efficient algorithms
over decades? Clearly, we should try to underpin the belief in novel assumptions by
searching for reductions to a more mature assumption; but unfortunately finding such a
reduction often fails.

An important approach to (nevertheless) gain immediate evidence towards hardness
assumptions is to prove them with respect to a restricted but still meaningful class of
algorithms. This is the motivation behind the invention of black-box models for alge-
braic structures like groups, fields, and rings, where algorithms are limited to perform
only operations “commonly” available over these structures. Probably, the most famous
of these models is the generic group model (GGM) introduced by Shoup in his semi-
nal paper [34] from 1997, and refined by Maurer in [28]. In this model one considers
algorithms – so-called generic group algorithms – that, given a group G as black-box,
may only perform a set of basic operations on the elements of G such as applying the
group law, inversion of group elements and equality testing. Since the group is treated
as a black-box, the algorithms cannot exploit any special properties of a concrete group
representation. As a consequence, such algorithms are generic in the sense that they can
be applied to any concrete instantiation of a group (e.g., Z∗p or E(Fp)) in order so solve
a problem. Natural examples of this class of algorithms are the Pohlig-Hellman [30]
and Pollard’s Rho [31] algorithm for computing discrete logarithms.

It should be noted that one has to take care when interpreting results in the GGM
like intractability results as evidence in practice, since this model abstracts away from
potentially many properties an algorithm might be able to exploit in the real world [15].
On the one hand, there exist cryptographic groups (such as certain elliptic curve groups)
for which not many properties beyond the axioms of an algebraic group are known.
Hence, modeling such groups as generic can be seen as a reasonable abstraction. On
the other hand, there are groups, also used in cryptography, featuring many further
properties, which clearly makes the generic model an inappropriate reflection for them.
A prime example are multiplicative groups of finite fields or rings. These structures offer
many well-understood properties beyond the group axioms, such as additional efficient
algebraic operations (e.g., addition in the field or ring), and other properties of the group
representation (e.g., the notion of prime integers and irreducible polynomials), that are
simply ignored by the generic group model, but give rise to more efficient algorithms for
certain problems (e.g., index calculus algorithms for computing discrete logarithms).

But should a minimal requirement on such an idealized model of computation not
be that at least all currently known algorithms are captured? There exist some first
approaches in the cryptographic literature to tackle this issue: The pseudo-free group
model proposed by Hohenberger [19] and Rivest [32] does not treat a group as a black-
box. Unfortunately, the definition of pseudo-freeness is very restrictive in the sense
that a number of important groups (like all known-order groups) are immediately ex-
cluded and important problems, such as Diffie-Hellman-type problems, seem not to
be covered. Other approaches due to Leander and Rupp [27] and Aggarwal and Mau-
rer [1] take into account that the RSA group Z∗n is embedded in the ring Zn. They use
a generic ring model, where algorithms may perform both multiplication and addition



operations on Zn to show that breaking RSA is equivalent to factoring. Unfortunately,
recent work [21] shows that even computing the Jacobi symbol is equivalent to factoring
in this model. So this approach has not led to a satisfying abstraction of Z∗n yet.

Over the last decade a considerable number of innovative cryptosystems, such as
identity-based encryption [7] or short digital signatures with strong security [9, 10],
have been proposed over bilinear groups. A bilinear group setting consists of groups
G1, G2, and G3, with a bilinear map e : G1 × G2 → G3, called a pairing. Along with
these cryptosystems also many new assumptions have been introduced, e.g., Bilinear
Diffie-Hellman (BDH) [23, 24], q-Strong Diffie-Hellman [4, 14, 22], Decision Linear
Diffie-Hellman (DLIN) [6], Co-Diffie-Hellman (Co-DH) [9, 8], and many more. Un-
fortunately, for virtually all of them no reduction to a well-analyzed assumption like
DL is known. In fact, finding such reductions seems to be a difficult task, since the
algebraic settings underlying classic problems (e.g., a single cyclic group for DL) sig-
nificantly differ from bilinear settings. Hence, given an instance of a classic problem, it
appears to be hard to transform this instance to one of the bilinear problem in order to
leverage an algorithm for the latter.

Consequently, the only way to provide some immediate evidence for such novel
assumptions consists in proofs in restricted models of computation. So far, the only
such model for bilinear settings is a straightforward extension of the generic group
model, where all three groups G1, G2, and G3 are modeled as generic groups [33,
11, 25]. In all known instances of bilinear settings the groups G1 and G2 are elliptic
curve groups, thus modeling these groups as generic may be considered as a reason-
able abstraction. However, in contrast to that, the group G3 is usually a subgroup of the
multiplicative group of a finite field. So there definitely exist non-generic algorithms
for cryptographic problems like BDH, Co-DH, etc. featuring a running time which is
at most sub-exponential: these sub-exponential algorithms map the inputs over G1 and
G2 (given as part of a problem instance) to G3 using the bilinear mapping (MOV re-
duction [29]) and determine the discrete logarithms of these elements over G3 using
index calculus. Knowledge of these discrete logarithms allows to compute the solution
to the problem instance using a few exponentiations. Note that there might be even
more efficient algorithms especially for potentially easier problems like decisional or
gap problems. Hence, modeling bilinear settings in this way is clearly inappropriate.

OUR CONTRIBUTION We propose the Semi-Generic Group Model (SGGM) which
leverages this observation as follows: The elliptic curve groups G1 and G2 are modeled
as generic groups, while G3 is given in the standard model, i.e., algorithms may perform
any computation over G3 that is possible in the subgroup of a finite field. The SGGM
is thus closer to the standard model than the GGM and can provide stronger evidence
towards hardness assumptions in pairing-based cryptography. In fact, to the best of
our knowledge all algorithms currently known for solving pairing-based problems are
semi-generic in nature. In particular, the sub-exponential algorithms applying a MOV
reduction described above are covered by the SGGM.

We analyzed some of the most important computational and decisional assumptions
of pairing-based cryptography in our new model. In this extended abstract we restrict
to consider Co-DH and decisional BDH. The full version of the paper [20] covers addi-
tional problems, including q-strong DH and DLIN. We are able to reduce the considered



assumptions (with respect to semi-generic algorithms) to fairly standard assumptions
over finite fields like Square DH and a slight variation of DL. That means, the bilinear
assumptions are at least as hard as certain more standard assumption over G3 provided
that there are no non-semi-generic algorithms. Furthermore, we developed master theo-
rems ensuring the hardness of broad classes of computational and decisional problems
in the SGGM. Studying such generalizations is not only important in order to structure
and facilitate the analysis of the rapidly growing set of cryptographic assumptions as
motivated in [3], but improves our understanding of the properties which need to be
satisfied by a problem to be intractable. Results like [12, 33, 11] are in this vein. Boyen
[11] (see also [5]) developed master theorems for the hardness of some general classes
of decisional problems in the generic group model for bilinear settings. Rupp et al. [33]
provide hardness conditions for even broader classes of computational problems and
algebraic settings, but still in the GGM. Bresson et al. [12] study a general class of
decisional assumptions over a single group in the standard model and show that this
class can be reduced to DDH (under certain restrictions). In the scope of the proof of
our master theorem for decisional problems we enhance Bresson et al.’s results for the
standard model and apply them to the SGGM.

The security of public-key cryptosystems, especially of practical cryptosystems,
can often only be proven in an idealized model, such as the random oracle model
(ROM) [2]. An issue with the ROM is that it idealizes a hash function in a way such that
it has all properties of a “perfect” hash function (collision resistance, (second) preimage
resistance, random output, ...) at the same time. When the cryptosystem (and thus the
random oracle) is implemented in practice, one has to choose an adequate hash func-
tion instantiating the random oracle. An important question is whether providing all
properties of the random oracle at the same time is really necessary to provide security.

We examine the useability of the SGGM as a tool complementing the ROM. We are
able to prove the security of the Boneh-Lynn-Shacham (BLS) short signature scheme [9,
10] against semi-generic adversaries without random oracles, however, requiring non-
standard properties for the employed hash function. It is left as an interesting open
problem to study whether these requirements can actually be satisfied by a reasonably
efficient practical hash function.

2 The Semi-Generic Group Model

Let G1, G2, and G3 be groups of prime order p and g1 ∈ G1, g2 ∈ G2 be corre-
sponding generators. For the sake of simplicity of the subsequent formalizations we use
multiplicative notation for all groups.

Definition 1. A pairing is a map e : G1 ×G2 → G3 with the following properties:

1. Bilinearity: ∀(a, b) ∈ G1×G2 and x1, x2 ∈ Zp holds that e(ax1 , bx2) = e(a, b)x1x2 .
2. Non-degeneracy: g3 := e(g1, g2) is a generator of G3, i.e., g3 6= 1.
3. e is efficiently computable.

Following [17], we distinguish three different types of bilinear group settings:

– Type 1: G1 = G2. We will call this the setting with symmetric bilinear map.



– Type 2: G1 6= G2, there is an efficiently computable isomorphism ψ : G1 → G2.
– Type 3: G1 6= G2, there is no efficiently computable isomorphism ψ : G1 → G2.

FORMAL DEFINITION OF THE SGGM We base our formal description of the SGGM
for bilinear settings on the generic group model introduced by Maurer [28], though our
proofs can be adapted to Shoup’s GGM [34] as well. The main difference between Mau-
rer’s and Shoup’s formalization is that in the first model group elements are encoded
deterministically whereas in the second model encodings are random.

An algorithm A in the SGGM interacts with a semi-generic group oracle O, which
computes the group operations and evaluates the pairing and isomorphism on behalf of
A. O receives as input two vectors of group elements (the problem instance)

I1 = (a1,1, . . . , a1,k1) ∈ Gk11 and I2 = (a2,1, . . . , a2,k2) ∈ Gk22 .

It maintains two lists E1 ⊆ G1 and E2 ⊆ G2, with Ei,j denoting the j-th entry of
list Ei, which are initialized such that Ei,j := ai,j for all possible (i, j). We denote
with [a]i the smallest index j (also called encoding) such that Ei,j = a. Index [a]i is
undefined, if a 6∈ Ei. We may always assume that semi-generic algorithms only provide
defined indices as input to the oracle. During initialization of the lists E1 and E2, the
corresponding indices pointing to the contained elements are sent to the algorithm.

The oracle implements the following public procedures, which may be called byA:

– GroupOp([a]i, [b]i, i): This procedure takes as input two indices [a]i, [b]i and a list
index i. It determines the group elements a, b ∈ Gi by list lookup, computes c =
a · b ∈ Gi, appends c to Ei, and returns [c]i.

– BilinearMap([a]1, [b]2): This procedure takes as input two indices [a]1, [b]2. It
determines the corresponding group elements a ∈ G1, b ∈ G2 by list lookup and
returns e(a, b) in the standard representation of G3 (i.e., as finite field element).

When considering Type 2 settings the algorithm may also query to apply the isomor-
phism ψ to an element of G1:

– Isomorphism([a]1): This procedure takes as input an index [a]1, determines the
element a ∈ G1, computes b = ψ(a), appends b to E2 and returns [b]2.

Note that a random group element can be efficiently sampled by a semi-generic algo-
rithm by using GroupOp(·) to raise the generator (which is always part of a problem
instance) to some r $← Zp.

2.1 Essential Ingredients for Proofs in the SGGM

This section describes a few general observations that will turn out to be the essential
ingredients for proofs in the semi-generic model.

Observation 1: Components inside oracle are exchangeable. Semi-generic algo-
rithms due to its nature are “blind” with respect to the internal details of the groups G1

and G2 as well as the pairing e and the isomorphism ψ. These components are hidden
within a black-box. Hence, we can plug-in “something else” for these components as



long as these replacements behave like cyclic groups with a bilinear map and an iso-
morphism. We will utilize this observation in a novel way to map inputs given over G3

back to G1 and G2 by setting G1 := G2 := G3 internally and simulating a virtual
bilinear map e : G3 ×G3 → G3 and isomorphism ψ : G3 → G3.

Observation 2: Computed elements over G1 and G2 are linear polynomials in
initial inputs. Let I1 ∈ Gm1 and I2 ∈ Gn2 be inputs given to the semi-generic oracle
(as part of a problem instance). We have I2 = I1 in the case of a Type 1 setting. In
the following, we always assume that at least the generators g1 and g2 are given (as the
first components of these input tuples). So we can write I1 = (g1, g

x2
1 , . . . , gxm

1 ) and
I2 = (g2, g

y2
2 , . . . , g

yn
2 ) for some unknown xj , yk ∈ Zp (no assumptions about their

distribution are made here) and ψ(g1) = g2 in the case of a Type 2 setting. Then we
define the tuple I ′1 := I1 and the tuple I ′2 := I2 in the case of a Type 1 and Type 3
setting or I ′2 := (g2, g

x2
2 , . . . , gxm

2 , gy22 , . . . , g
yn
2 ) for a Type 2 setting. These tuples are

called the initial inputs to semi-generic algorithms. Using this notation, we can describe
the following observation: Over G1 and G2 a semi-generic algorithm can only perform
the group law on the initial inputs. Thus, any element a ∈ Gi (i ∈ {1, 2}) computed
by a semi-generic algorithm is a product of the elements in I ′i . Hence we can represent
such an element as a = g

P (x2,...,xm,y2,...,yn)
i for some linear multivariate polynomial

P = α1 +
∑m
j=2 αjXj +

∑n
j=2 βjYj , where the βj are zero in the case i = 1 or

if we consider a Type 1 setting. It is important to observe that all coefficients of this
polynomial are known to the oracle.

Observation 3: Pairing is simulatable knowing images of initial inputs. Let a ∈
G1 and b ∈ G2 be two elements computed by a semi-generic algorithm. Then by using
the above observation and setting x1 := 1 it is easy to see that

e(a, b) = e(g
∑m

i=1 αixi

1 , g
∑m

j=1 α
′
jxj+

∑n
k=2 β

′
kyk

2 )

=

m∏
i=1

m∏
j=1

e(gxi
1 , g

xj

2 )αiα
′
j ·

m∏
i=1

n∏
k=2

e(gxi
1 , g

yk
2 )αiβ

′
k

From this equation it follows that by knowing the images of the initial inputs under the
pairing, one can compute the output of e on arbitrary inputs provided by a semi-generic
algorithm without actually evaluating the pairing explicitly. In other words, an oracle
equipped with a table containing e(a, b) for all combinations of a in I ′1 and b in I ′2
would be able to handle all BilinearMap queries.

3 Analysis of Selected Problems in the Semi-Generic Model

In this section we exemplarily analyze the hardness of the computational Co-DH and
the decisional BDH problem. Certainly, the list of problems we are considering here is
by no means complete. Our main purpose is to give concrete analyses of some important
problems of bilinear cryptography, thereby illustrating the basic ideas and techniques
underlying proofs in this model, before dealing with the more intricate case of general
classes of problems in Section 4.



3.1 Reducing 2-DL to Co-DH

The Co-DH problem has been used in [9, 8] for the construction of short and aggregate
signatures over bilinear groups. Over a Type 2 setting it can be defined as follows: Given
(g1, g

x0
1 , g2, g

x1
2 , g3), where (x0, x1)

$← Z2
p are secret random choices, output gx0x1

2 .
It is easy to see that in order to prove something about the hardness of Co-DH, we

definitely need to make the assumption that the discrete logarithm problem over G3 is
intractable. But is this enough? Our answer is “not quite”: We are going to relate the
hardness of Co-DH to the 2-DL problem over G3, a slightly easier variant of DL. The
q-DL problem can be defined as follows: Given (g3, g

x1

3 , . . . , gx
q

3 ), where x $← Zp is a
secret random value, output x. The additional input gx

2

3 (in comparison to standard DL)
is needed in order to be able to simulate the pairing when running the Co-DH algorithm.

Theorem 1. Suppose there exists a semi-generic group algorithm A solving Co-DH
over a Type 2 bilinear group setting in time t with success probability ε. Then there
exists an algorithm B solving the 2-DL problem over G3 in time t′ ≈ t with success
probability ε′ ≥ 1

2ε.

Proof. Given an instance of the 2-DL problem, B sets up an instance of the Co-DH
problem in the semi-generic model in a way that it can leverage a solution to Co-DH
computed by A to solve the 2-DL instance. In particular, B will play the role of the
semi-generic oracle. We exploit Observation 1 from Section 2.1 to setup such an useful
instance: Since A is “blind” with respect to the internal details of G1, G2, e, and ψ, we
set G1 := G2 := G3 and try to simulate a virtual bilinear map e : G3 ×G3 → G3.

We are now ready to describe our reduction algorithmB.B takes as input an instance
a0 := g3, a1 := gx3 , a3 := gx

2

3 of the 2-DL problem over G3. Then it chooses i∗ $←
{0, 1}, x1−i∗

$← Zp and sets a2 := g
x1−i∗
3 . The wanted discrete logarithm x is now

embedded as the implicit secret choice xi∗ in an instance of the Co-DH problem. More
precisely, B sets up a problem instance and simulates the oracle O as follows:

– The lists E1 and E2 are initialized with g3, gx0
3 and g3, gx1

3 , respectively, where gxi∗
3

is set to be a1. The indices [g3]1, [gx0
3 ]1, [g3]2, [g

x1
3 ]2, and g3 are sent out to A.

– GroupOp can be simulated since B knows how to perform the group law over G3.
– Isomorphism([a]1) can be simulated by looking up a in E1, appending it to E2,

and then determining the index [a]2.
– Using Observation 3 from Section 2.1, we can easily see that BilinearMap can be

simulated: Let [b]1, [c]2 be the two indices given as input to the procedure by A.
Then we can write

e(b, c) = e(g
∑0

j=−1 zjxj

3 , g
∑1

k=−1 z
′
kxk

3 ) =

0∏
j=−1

1∏
k=−1

(g
xjxk

3 )zjz
′
k

where x−1 := 1 and zj and z′k are known to B. Since B is given a0, . . . , a3 and

knows i∗, x1−i∗ , it can compute the required elements g3, gx0
3 , gx1

3 , g
x2
0

3 , gx0x1
3 to

simulate the pairing: g3 = a0, gxi∗
3 = a1, gx1−i∗

3 = a2, gx
2
0

3 = a3 if i∗ = 0 and

g
x2
0

3 = ax0
2 else, gx0x1

3 = a
x1−i∗
1 .



Given some instance of Co-DH, algorithm A eventually outputs some valid index
[c]2. The corresponding element c ∈ G2 can be written as c = g

P (x0,x1)
2 for some

known polynomial P = z0 + z1X0 + z2X1 ∈ Zp[X0, X1] (Observation 2, Section
2.1). So alternatively we can say that A wins if (P −X0X1)(x0, x1) ≡ 0 mod p. This
success event can be split up into the following disjoint events:

– Event S1: The univariate polynomial (P − X0X1)(x0), i.e., the polynomial P −
X0X1 where we only evaluate the variable X0 with x0, is zero modulo p. Let the
probability of this event be denoted by α1.

– Event S2: The univariate polynomial (P − X0X1)(x0) is not zero modulo p but
(P −X0X1)(x0, x1) is. Let the probability of this event be denoted by α2.

Clearly, we have ε = α1 + α2.
Let us consider the events S1 and S2 when B runs A for certain choices of i∗. Note

that B knows the coefficients of P since it responded to A’s queries. With probability
1
2α1, we have i∗ = 0 and S1. This means z0 + z1x + z2X1 − xX1 ≡ 0. But in this
case z2 needs to be equal to x. So B wins by simply returning the known coefficient z2.
Furthermore, with probability 1

2α2, we have i∗ = 1 and S2. Hence, the wanted DL is
the root of the uni-variate non-zero polynomial z0 + z1x0 + z2X1−x0X1 known to B.
It can thus be determined as x ≡ (z0 + z1x0)(x0 − z2)−1 mod p. It is easy to verify
that the inverse (x0 − z2)−1 always exists.

To summarize, if i∗ happens to be zero, B outputs z2, otherwise it outputs (z0 +
z1x0)(x0 − z2)−1. In this way, its success probability is at least 1

2α1 +
1
2α2 = 1

2ε. ut

3.2 Reducing SqDDH to BDDH

The bilinear decisional Diffie-Hellman problem (BDDH) is certainly among the most
well-known problems over bilinear groups. It has originally been introduced in a sem-
inal paper by Joux [23] and, e.g., further been used by Boneh and Franklin [7] to con-
struct an identity based encryption scheme. Let us consider BDDH over a Type 1 setting
where it can be defined as follows: Given (g1, g

x1
1 , gx2

1 , gx3
1 , grb3 ), where (x1, x2, x3)

$←
Z3
p, b $← {0, 1}, r1 = x1x2x3, and r0

$← Zp are secret choices, output b.
We relate the hardness of BDDH with respect to semi-generic algorithms to the

hardness of the well-known decisional Diffie-Hellman (DDH) problem and the square
decisional Diffie-Hellman (SqDDH) problem over G3. SqDDH is a potentially easier
variant of DDH: Given (g3, g

x
3 , g

rb
3 ), where x $← Zp, b $← {0, 1}, r1 = x2, and r0

$← Zp
are secret choices, output b. Our result is formalized in Theorem 2. It is worth mention-
ing that in contrast to computational problems (like Co-DH) for decisional problems
usually multiple reduction steps are required. In the proof we apply the idea of DDH-
steps [12] to the bilinear setting and introduce the new concept of SqDDH-steps. Since
the DDH assumption reduces to the SqDDH assumption [38] the hardness of BDDH
can be formulated with respect to SqDDH only (Corollary 1).

Theorem 2. Suppose there exists a semi-generic group algorithm A solving BDDH
over a Type 1 setting in time t with advantage ε. Then there exists an algorithm BSqDDH

solving SqDDH over G3 in time tSqDDH ≈ t with advantage εSqDDH and an algorithm



Table 1. Transforming a semi-generic oracle for real BDDH into one for random BDDH using
SqDDH and DDH steps.

Game
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

g
rb
3 g

x1x2x3
3 g

x1x2x3
3 g

x1x2x3
3 g

x1x2x3
3 g

x7x3
3 g

x8
3 g

x8
3 g

x8
3 g

x8
3 g

x8
3

e(g1, g1) g3 g3 g3 g3 g3 g3 g3 g3 g3 g3

e(g1, g
x1
1 ) g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3 g

x1
3

e(g1, g
x2
1 ) g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3 g

x2
3

e(g1, g
x3
1 ) g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3 g

x3
3

e(g
x1
1 , g

x1
1 ) g

x2
1

3 g
x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x4
3 g

x2
1

3

e(g
x2
1 , g

x2
1 ) g

x2
2

3 g
x2
2

3 g
x5
3 g

x5
3 g

x5
3 g

x5
3 g

x5
3 g

x5
3 g

x2
2

3 g
x2
2

3

e(g
x3
1 , g

x3
1 ) g

x2
3

3 g
x2
3

3 g
x2
3

3 g
x6
3 g

x6
3 g

x6
3 g

x6
3 g

x2
3

3 g
x2
3

3 g
x2
3

3

e(g
x1
1 , g

x2
1 ) g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x7
3 g

x7
3 g

x1x2
3 g

x1x2
3 g

x1x2
3 g

x1x2
3

e(g
x1
1 , g

x3
1 ) g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3 g

x1x3
3

e(g
x2
1 , g

x3
1 ) g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3 g

x2x3
3

SqDDH SqDDH SqDDH DDH DDH DDH SqDDH SqDDH SqDDH
Justification

BDDH solving DDH over G3 in time tDDH ≈ t with advantage εDDH such that ε ≤
3εDDH + 6εSqDDH.

Corollary 1. If SqDDH is (ε, t)-hard over G3, then BDDH is (9ε, t)-hard for semi-
generic algorithms.

Proof (Theorem 2). In the following we show that a for a semi-generic algorithm a
“real” BDDH tuple (g1, gx1

1 , gx2
1 , gx3

1 , gr13 = gx1x2x3
3 ) is computationally indistinguish-

able from a “random” tuple (g1, g
x1
1 , gx2

1 , gx3
1 , gr03 ), unless SqDDH or DDH are easy

over G3. We do this by considering a series of games played between a semi-generic
algorithmA and an oracleO. We start withA given oracle access to a real BDDH tuple.
We then gradually transform this tuple as well as the output of the oracle until we end
up with a random tuple. One can show that if A can distinguish two consecutive games
Gi−1 and Gi then it can be used to build an algorithm solving SqDDH or DDH.

The games are described by Table 3.2. Each of the columns labeled withGi specifies
the (direct) input over G3 (see Row 1) or the output of BilinearMap in game Gi for
all possible inputs over G1. Bold-printed parts of a value highlight the actual changes
in comparison to the previous game. The entry in the last row of a column Gi indicates
which assumption (SqDDH or DDH) justifies the indistinguishability of the Games
Gi−1 and Gi. If a new xj (j > 3) appears in a column, this means that this value has
been added to the corresponding game and the oracle chooses xj uniformly from Zp.

As one can see from the table, by means of the Games G2 to G4 we remove all
squares x2i (1 ≤ i ≤ 3) from the output of the pairing oracle. We do this simply
by replacing each square with a new value xj (4 ≤ j ≤ 6). These transformations
are called (bilinear) SqDDH steps and are prerequisites for the subsequent DDH steps
performed in Games G5 to G6. During these DDH steps we selectively remove all



products xixj that involve variables being part of the challenge. Again, this is done by
replacing the products by fresh uniformly chosen values xj (j ∈ {7, 8}). In Game G6

the challenge grb3 = gx8
3 is finally independent of the input since x8 does not appear

anywhere else. After that, in Games G7 to G10 we reverse the changes we did to the
input and BilinearMap during G2 to G6 in reverse order. More, precisely in G6+j we
reverse the changes we did in G6−j for 1 ≤ j ≤ 4. Finally, in G10 we have reversed
all changes (except for the one in G6). This last game corresponds to the situation
whereA is given oracle access to a random BDDH tuple. If all intermediate games have
been computationally indistinguishable (under the SqDDH and DDH assumption) then
certainly also a real BDDH tuple is computationally indistinguishable from a random
tuple, with respect to semi-generic algorithms.

For the sake of clarity, let us consider the transition from G1 to G2 (SqDDH Step)
and G4 to G5 (DDH Step) in some more detail and quantify the involved reductions.
The oracleOG1

in GameG1 corresponds to the original semi-generic oracle for BDDH
providing access to a real BDDH tuple. The oracle inOG2

inG2 is equal toOG1
except

for the following changes: OG2
additionally chooses x4

$← Zp and uses a slightly
modified table for computing pairing outputs as specified in Table 3.2. Let us assume
A distinguishes the two games in time t with advantage

ε1 = AdvG1,G2

A =
∣∣Pr[1← AOG1 ]− Pr[1← AOG2 ]

∣∣ .
Then from A we can build an algorithm B for SqDDH. Again, we make use of the
observation that semi-generic algorithms are blind with respect to G1 and e and set
G1 := G3 and e : G3 ×G3 → G3. Now let an instance

g3, g
x1
3 , g

r′
b′

3 =

{
g
x2
1

3 , b′ = 1

gx4
3 , b′ = 0

of the SqDDH problem over G3 be given. B chooses x2, x3
$← Zp. Then it simulates

OG1
and OG2

as follows (we indicate below how group elements are computed though
x1, x

2
1, x4, and b′ are unknown to B):

– The list E1 is initialized with g3, gx1
3 , gx2

3 , gx3
3 . Over G3 A is given g3, (gx1

3 )x2x3 .
– For simulating BilinearMap, we use the fact that we only need to know the pairing

output for all possible initial inputs. These elements can be computed as described
by the following table:

a g3 g3 g3 g3 gx1
3 gx2

3 gx3
3 gx1

3 gx1
3 gx2

3

b g3 g
x1
3 gx2

3 gx3
3 gx1

3 gx2
3 gx3

3 gx2
3 gx3

3 gx3
3

e(a, b) g3 g
x1
3 gx2

3 gx3
3 g

r′
b′

3 g
x2
2

3 g
x2
3

3 (gx1
3 )x2 (gx1

3 )x3 gx2x3
3

It is easy to see that if b′ = 1, algorithm B exactly simulates OG1
and OG2

otherwise.
Thus, by simply forwarding the output of A, B solves the SqDDH problem instance
with the same advantage ε1.

Let us now consider the transition from G4 to G5. The oracle OG5 in G5 coincides
with OG4

except for the following changes: OG5
additionally chooses x7

$← Zp and



uses a modified table for computing pairing outputs as specified in Table 3.2. Assume
A distinguishes the two games in time t with advantage ε4 = AdvG4,G5

A . Then we can
use A to build an algorithm B for DDH. Given an instance

g3, g
x1
3 , gx2

3 , g
r′
b′

3 =

{
gx1x2
3 , b′ = 1

gx7
3 , b′ = 0

of DDH over G3, B chooses x3, x4, x5, x6
$← Zp and simulates OG5 and OG6 :

– The list E1 is initialized with g3, gx1
3 , gx2

3 , gx3
3 . Over G3 A is given g3, (g

r′
b′

3 )x3 .
– For simulating BilinearMap we use the following table of pairing outputs:

a g3 g3 g3 g3 gx1
3 gx2

3 gx3
3 gx1

3 gx1
3 gx2

3

b g3 g
x1
3 gx2

3 gx3
3 gx1

3 gx2
3 gx3

3 gx2
3 gx3

3 gx3
3

e(a, b) g3 g
x1
3 gx2

3 gx3
3 gx4

3 gx5
3 gx6

3 g
r′
b′

3 (gx1
3 )x3 (gx2

3 )x3

If b′ = 1, B behaves like OG4
whereas it behaves like OG5

if b′ = 0. By simply
forwarding the output of A, B solves the DDH problem instance with advantage ε4.

The bound on ε follows now from ε ≤
∑9
i=1 εi, where εi = Adv

Gi,Gi+1

A , and setting
εSqDDH = maxi∈{1,2,3,7,8,9}(εi), εDDH = maxi∈{4,5,6}(εi). ut

4 Analysis of General Problem Classes

Analyzing general problem classes instead of individual problems is important for at
least two reasons: First, it improves our understanding of the properties that need to be
satisfied by a problem to be intractable with respect to semi-generic algorithms. Second,
master theorems for these classes alleviate the burden of analyzing future problems.

Generalized Pairing-Based Problems. Let a Type 1, 2, or 3 setting according to
Definition 1 be given. Furthermore, let ` ∈ N, d ∈ {1, 2, 3} be positive integers,
I1, I2, I3 ⊂ Zp[X1, . . . , X`] be finite sets of (publicly known) polynomials (called
input polynomials) and Q ∈ Zp[X1, . . . , X`] be a single (publicly known) polynomial
(called challenge polynomial). Then we define a (I1, I2, I3, Q)-BDHGd

problem as:
Given

((g
R(x)
1 )R∈I1 , (g

R(x)
2 )R∈I2 , (g

R(x)
3 )R∈I3),

where x
$← Z`p are secret random values, output gQ(x)

d . A decisional variant of such
problems can be defined analogously. In the following we always assume that the poly-
nomial 1 is contained in each Ii which corresponds to the natural assumption that for
each group a generator is given.

Informally speaking, a (I1, I2, I3, Q)-BDHGd
problem is non-trivial if there is no

way to compute Q using only the input polynomials and the operations on them which
are implicitly given by the underlying bilinear setting. Let us restrict here to consider
the case d ∈ {1, 2}. Let I1 = {R1, . . . , Rt} and I2 = {S1, . . . , St′}. Then using



Observation 2 (Section 2.1), one can see that the output [c]d of a semi-generic algorithm
for the considered problem can be written as gP (x)

d for some P of the form

P =


∑t
j=1 zjRj , d = 1∑t′

j=1 z
′
jSj , d = 2 and Type 3 setting∑t

j=1 zjRj +
∑t′

j=1 z
′
jSj , d = 2 and Type 2 setting

(1)

We call a (I1, I2, I3, Q)-BDHGd
non-trivial if there is no P of the above form such that

g
P (x)
d = g

Q(x)
d for all x ∈ Z`p, i.e., if P 6= Q ∈ Zp[X1, . . . , X`]. More formal and

general definitions can be found in the full version of this paper [20].

Reductions for Generalized Problems. Theorem 3 extends the reduction we have
seen for Co-DH in Section 3.1 to the more general class of (I1, I2, I3, Q)-BDHGd

prob-
lems. The crucial difference and novelty lies in the technique for extracting the wanted
discrete logarithm given the output of the semi-generic algorithm.

Theorem 3. Let d ∈ {1, 2} and (I1, I2, I3, Q)-BDHGd
be a non-trivial problem with

challenge and input polynomials in Zp[X1, . . . , X`]. Let k = maxi(degXi
(I1 ∪ I2 ∪

I3)). Suppose there is a semi-generic algorithm A solving (I1, I2, I3, Q)-BDHGd
in

time t with success probability ε. Then there is an algorithm B solving 2k-DL in G3 in
time t′ ≈ t+ Õ(k′ log p), where k′ = max(k,deg(Q)), with probability ε′ ≥ ε

` .

Proof. Let k1 = 2k. B takes as input a k1-DL challenge a0 = g3, a1 = gx
1

3 , . . . , ak1 =

gx
k1

3 . It then chooses i∗ $← {1, . . . , `} and x1, . . . , xi∗−1, xi∗+1, . . . , x`
$← Zp. The

unknown x is treated as the secret choice xi∗ in the context of a (I1, I2, I3, Q)-BDHGd

instance. We only sketch important points in the simulation of the semi-generic oracle:
Each internal list Ej is initialized with the elements (gP (x)

3 )P∈Ij where for a polynomial
P =

∑
e=(e1,...,e`)∈E beX

e1
1 · · ·X

e`
` , E ⊂ Z`p, the element gP (x)

3 can be computed

as gP (x)
3 =

∏
e a

be
∏

s 6=i∗ x
es
s

ei∗ using the given instance of the k1-DL problem. This is
possible because the degree in Xi∗ of the polynomials in each set Ij is upper bounded
by k1. Similarly, the table for simulating BilinearMap can be created since for each
entry gP (x)

3 in this table, P is again of degree at most k1 in Xi∗ .
Given an (I1, I2, I3, Q)-BDHGd

instance,A eventually outputs an index [c]d. Then
c can be written as gP (x)

3 for some known polynomial P as described in Equation 1.
Thus, A wins if Q(x) ≡ P (x) mod p. Since Z := Q − P is not zero modulo p (the
problem is non-trivial) this success event can be split into disjoint events S1, . . . ,S`,
where Sj is defined as:

Z(X1 = x1, . . . , Xj−1 = xj−1) 6≡ 0 and Z(X1 = x1, . . . , Xj = xj) ≡ 0 (2)

Denoting the probability of event Sj by αj we obtain ε = α1 + · · ·+ α`.
Now assume that event Si∗ occurs, which happens with probability ε/`. Consider

the polynomial Zi∗ = Z(X1 = x1, . . . , Xi∗−1 = xi∗−1) mod p ∈ Zp[Xi∗ , . . . , X`].
This polynomial is of the form Zi∗ =

∑
e=(ei∗ ,...,e`)∈E beX

ei∗
i∗ · · ·X

e`
` , for some E ⊂



Z`−i∗+1
p , where in at least one monomial the variable Xi∗ appears with a non-zero

exponent ei∗ . Let M = b′eX
e′i∗
i∗ · · ·X

e′`
` be one of these monomials. Then consider

the polynomial Z ′i∗ we obtain by summing up all monomials of Zi∗ containing the

submonomial X
e′i∗+1

i∗+1 · · ·X
e′`
` :

Z ′i∗ =
∑

e=(ei∗ ,...,e`)∈E
ei∗+1=e

′
i∗+1,...,e`=e

′
`

beX
ei∗
i∗ X

e′i∗
i∗ · · ·X

e′`
`

Clearly, we have Z ′i∗ 6≡ 0 mod p and since Zi∗(Xi∗ = xi∗) ≡ 0 mod p it also holds
that Z ′i∗(Xi∗ = xi∗) ≡ 0 mod p. Hence, xi∗ = x is a root of the non-zero uni-variate
polynomial

Z ′′i∗ =
∑

e=(ei∗ ,...,e`)∈E
ei∗+1=e

′
i∗+1,...,e`=e

′
`

beX
ei∗
i∗

Note that Algorithm B can easily construct the polynomial Z ′′i∗ by picking an arbi-
trary monomial from Zi∗ for which Xi∗ appears with non-zero exponent. The co-
efficients be can also be easily computed since the coefficients of Z are known and
x1, . . . , xi∗−1 have been chosen by B. So by applying an efficient standard algorithm
for computing roots of polynomials over Zp, such as [36, Algorithm 14.15], B can find
the wanted DL xi∗ = x by computing all roots of the polynomial Z ′′i∗ . These at most
k′ = max(k, deg(Q)) different roots can be computed in time Õ(k′ log p) [36, Corol-
lary 14.16]. Whether a root x′ equals x can be tested by verifying gx

′ ?
= a1. ut

We have also been able to find a reduction for a general class of decisional problems
which is efficient for virtually all problems of this class considered in practice. Essen-
tially, our reduction from the SqDDH problem over G3 works for all (I1, I2, I3, Q)-
BDDHG3 problems where variables in I1 ∪ I2 and I3 ∪ {Q} appear with at most linear
and quadratic exponents, respectively. Our approach for this general reduction differs
from the one for BDDH we have seen in Section 3.2 in the following way: The BDDH
reduction is direct in the sense that all reduction steps take place directly in the semi-
generic model. As an alternative, one could also first “project” BDDH to the group G3

by finding an “appropriate” problem which reduces in a single step to BDDH (with
respect to semi-generic algorithms) and then apply all DDH and SqDDH reduction
steps to this problem in the standard model. We follow this latter approach in our proof
for general bilinear decisional problems since it has the advantage that we can resort
to Bresson et al.’s results for generalized DDH problems [12] in the standard model.
However, this is not straightforward. Since their results are quite restricted we need
to enhance them to more general problem classes. For more details on our result for
bilinear decisional problems we refer to the full version [20].

5 Analyzing Cryptosystems in the Semi-Generic Model

Besides for studying cryptographic hardness assumptions, it would also be interesting
to use the SGGM as a tool to analyze the security of practical pairing-based cryptosys-
tems. Similar analyzes have been made in the classical GGM [35, 13]. In this section



we consider the Boneh-Lynn-Shacham (BLS) signature scheme [9, 10] in the SGGM.
It turns out that it is possible to prove security of this scheme under the semi-generic
groups heuristic, by requiring concrete (but non-standard) properties of the hash func-
tion.

The BLS signature scheme over a Type 1 bilinear setting is defined as follows. Let
H1 be a hash function H1 : {0, 1}` → G1.

– Gen samples a random generator g of G1, s $← Zp, and sets pk = (g, gs), sk = s.
– Sign(sk,m) computes H1(m) and returns σ = H1(m)s.
– Verify(pk,m, σ) returns 1, if e(H1(m), pk) = e(σ, g), and 0 otherwise.

Let us now describe the EUF-CMA security experiment for the BLS signature
scheme in the SGGM. Here we are facing a technical problem: the BLS scheme uti-
lizes a hash function H1 : {0, 1}` → G1, that is, the output of this map is a group
element in some given representation. However, in the SGGM we want to consider al-
gorithms which are independent of a particular representation of elements of G1. Since
in our model elements of G1 are given as list indices, we have no representation of
group elements that we could use as the range of the hash function.

One possible solution would be to fall back on the formalization of a generic group
by Shoup [34]. In this model, group elements are represented by unique random bit
strings. Thus, we could use a hash function that maps to bit strings of appropriate size.
However, the fact that group elements are encoded as random strings has been subject to
much criticism [16, 26, 15]. For instance, the Shoup model can be misused to implement
a random oracle, which is of no avail since we want to avoid random oracles in our
security proof. Therefore we follow a different approach. We implementH1 as a generic
group hash function.

Definition 2. A group hash function is a pair of algorithms H = (GHGen,GHEval).

– GHGen takes as input a generator g of G1, and returns A = (a1, . . . , aδ) ∈ Gδ1.
Vector A specifies a function H1 : {0, 1}` → G1.

– Algorithm GHEval takes as input a vector A ∈ Gδ1 and a string m ∈ {0, 1}`, and
returns H1(m) ∈ G1.

We say that a group hash function is generic, if GHGen and GHEval perform only group
operations on elements of A.

Examples of generic group hash functions are the hash function used in Water’s IBE
scheme [37] and the programmable hash functions of Hofheinz and Kiltz [18].

Generic group hash functions have the useful property that there exist “trapdoor”
set-up and evaluation algorithms (TrapGen,TrapEval) with the following properties.

– TrapGen takes as input a generator g ∈ G1. It returns a vector A ∈ Gδ1, distributed
identically to the output of GHGen for all g, and some trapdoor information td.

– Algorithm TrapEval takes as input a vector A ∈ Gδ1 and a string m ∈ {0, 1}`, and
returns h such that gh = H1(m).

For the security proof we need to demand a strong form of collision resistance.



Definition 3. A group hash function is (ε, t, q)-algebraic collision resistant, if

Pr

A(A) = (m0, ...,mq, i0, ..., iq) : H1(m0) = gi0
q∏
j=1

(H1(mj))
ij

 ≤ ε
for all algorithms A running in time t.

By employing techniques from [18] it is possible to construct hash functions satis-
fying this property under weak assumptions, like the hardness of computing discrete
logarithms in G1, for any constant q. A major drawback is, however, that for these con-
structions the size δ of vector A grows at least linearly with q. We leave it as an open
problem to study whether there exists a (possibly probabilistic) trapdoor group hash
function such that δ is constant and q = q(κ) is a polynomial.

We formalize the EUF-CMA experiment in the SGGM as follows. At the beginning
of the game, the challenger samples a random generator g and a secret key x. Then it
runs (a1, . . . , aδ)

$← GHGen(g), sets I1 := (g, gx, a1, . . . , aδ), and implements a semi-
generic oracle with input I1 as described in Section 2. This provides the adversary with
the public key, and the ability to perform group operations on elements of G1.

When the adversary queries a signature for some chosen messagemi, the challenger
computes H(mi)

x and appends it to the list E1.
We say that the adversary wins the game, if it outputs a message m and index [s]1

such that s = H(m)x, that is, the adversary has computed a valid signature for m. We
say that a semi-generic adversaryA (ε, t)-breaks the EUF-CMA security of a signature
scheme if A runs in time t and Pr[A wins] ≥ ε.

Theorem 4. Suppose there exists an adversary A (ε, t)-breaking the EUF-CMA se-
curity of the BLS signature scheme in the semi-generic model by making q chosen-
message signature queries. Then there exists an algorithm Bcoll (εdl, tdl, q)-breaking the
algebraic collision resistance of H1 and an algorithm Bdl (εdl, tdl)-solving the discrete
logarithm problem in G1, such that t ≈ tcoll ≈ tdl and ε ≤ εcoll + εdl.

Proof. Suppose there exists an adversaryA that outputs a message m and an index [s]1
such that s = H(m)x. In the SGGM, an adversary has to compute a group element of
G1 by applying a sequence of group operations to the initial values (g, gx, a1, . . . , aδ)
stored in E1 and to group elements added to the list by the challenger oracle in response
to chosen-message signature queries. Thus, when A outputs (m, [s]1) such that s =
H(m)x, then the oracle obtains an equation

H(m)x = gα1 · (gx)α2 ·
δ∏
i=1

aβi

i ·
q∏
i=1

(H(mi)
x)
γi , (3)

or equivalently x ·
(
loggH(m)−

∑q
i=1 γi loggH(mi)− α2

)
= α1+

∑δ
i=1 βi logg ai,

for integers αi, βi, γi known to the oracle. We consider two types of forgers:

1. A Type-A forger performs a sequence of operations such that

loggH(m)−
q∑
i=1

γi loggH(mi)− α2 ≡ 0 mod p. (4)



2. A Type-B forger performs a sequence of operations such that

loggH(m)−
q∑
i=1

γi loggH(mi)− α2 6≡ 0 mod p. (5)

Lemma 1. Suppose there exists a Type-A forger A (ε, t)-breaking the EUF-CMA se-
curity of the BLS signature scheme by making at most q chosen-message queries. Then
there exists an algorithm Bcoll (εdl, tdl, q)-breaking the algebraic collision resistance of
(GHGen,GHEval) in time t′ ≈ t with success probability εcoll ≥ ε.

PROOF. Algorithm Bcoll receives as input a vector A′ = (g′, a′1, . . . , a
′
δ). It proceeds

exactly like the semi-generic EUF-CMA challenger, except that it sets g := g′ and
ai := a′i instead of sampling g at random and generating A by running GHGen(g).
Thus, in particular Bcoll chooses the secret key x $← Zp and thus is able to simulate the
original challenger perfectly.

When A outputs (m, [s]1) such that s = H(m)x, then Bcoll computes and returns
integers (α2, γ1, . . . , γq) as in Equation 4. Observe that if Equation 4 is satisfied, then
we have H(m) = gα2 ·

∏q
i=1H(mi)

γi . N

Lemma 2. Suppose there exists a Type-B forgerA (ε, t)-breaking the EUF-CMA secu-
rity of the BLS signature scheme. Then there exists an algorithm Bdl solving the discrete
logarithm problem in G1 in time tdl ≈ t with success probability εdl ≥ ε.

PROOF. Algorithm Bdl receives as input a tuple (g′, y). It sets g := g′, gx := y, and
runs (A, td)

$← TrapGen(g) to generate the public parameters of the hash function.
Recall that A is distributed identically to some A′ generated by GHGen. It sets I1 :=
(g, gx, a1, . . . , aδ), and implements a semi-generic oracle with initial list state I1.

Since Bdl does not know the secret-key exponent x, it answers chosen-message
signature queries of A differently. Bdl makes use of the trapdoor information td gen-
erated along with A. Whenever A submits a chosen-message mi, Bdl computes hi =
TrapEval(mi) and appends yhi to E1. Note that yhi = gx logg H(mi) = H(mi)

x, thus
this is a valid signature.

When A outputs (m, [s]1) such that s = H(m)x, then Bdl computes integers
(αi, βi, γi) as in Equation 3, and returns

x = logg′ y =
α1 +

∑δ
i=1 βi logg ai

loggH(m)−
∑q
i=1 γi loggH(mi)− α2

mod p,

which is possible since loggH(m)−
∑q
i=1 γi loggH(mi)− α2 6= 0 mod p. N

ut

Acknowledgements. We would like to thank Dennis Hofheinz, Jesper Buus Nielsen,
and Dominique Unruh for valuable discussions and the anonymous reviewers of Asi-
acrypt 2010 for their detailed and helpful comments.



References

1. D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In Antoine
Joux, editor, Advances in Cryptology — EUROCRYPT 2009, volume 5479 of LNCS, pages
36–53. Springer, 2009.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73,
1993.

3. D. Boneh. Number-theoretic assumptions. Invited Talk at TCC’s Special Session on As-
sumptions for Cryptography, 2007.

4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT, volume 3027 of
LNCS, pages 223–238. Springer, 2004.

5. D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant
size ciphertext (full paper). Cryptology ePrint Archive, Report 2005/015, 2005. http:
//eprint.iacr.org/.

6. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Matthew K. Franklin,
editor, CRYPTO, volume 3152 of LNCS, pages 41–55. Springer, 2004.

7. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO, volume 2139 of LNCS, pages 213–229. Springer, 2001.

8. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of LNCS, pages
416–432. Springer, 2003.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, ASIACRYPT, volume 2248 of LNCS, pages 514–532. Springer, 2001.

10. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297–319, 2004.

11. X. Boyen. The Uber-Assumption family. In Steven D. Galbraith and Kenneth G. Paterson,
editors, Pairing, volume 5209 of LNCS, pages 39–56. Springer, 2008.

12. E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi. A generalization of DDH with
applications to protocol analysis and computational soundness. In Alfred Menezes, editor,
CRYPTO, volume 4622 of LNCS, pages 482–499. Springer, 2007.

13. D. R. L. Brown. Generic groups, collision resistance, and ECDSA. Des. Codes Cryptogra-
phy, 35(1):119–152, 2005.

14. J. Cheon. Security analysis of the Strong Diffie-Hellman problem. In Serge Vaudenay, editor,
EUROCRYPT, volume 4004 of LNCS, pages 1–11. Springer, 2006.

15. A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of LNCS, pages 100–109.
Springer, 2002.

16. M. Fischlin. A note on security proofs in the generic model. In Tatsuaki Okamoto, editor,
ASIACRYPT, volume 1976 of LNCS, pages 458–469. Springer, 2000.

17. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

18. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In David
Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 21–38. Springer, 2008.

19. S. Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s
thesis, Massachusetts Institute of Technology, 2003.

20. T. Jager and A. Rupp. The semi-generic group model and applications to pairing-based cryp-
tography (full paper), 2010. http://www.nds.rub.de/chair/publications/.



21. T. Jager and J. Schwenk. On the analysis of cryptographic assumptions in the generic ring
model. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 399–416.
Springer, 2009.

22. D. Jao and K. Yoshida. Boneh-Boyen signatures and the Strong Diffie-Hellman problem.
Cryptology ePrint Archive, Report 2009/221, 2009. http://eprint.iacr.org/.

23. A. Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma, editor, ANTS,
volume 1838 of LNCS, pages 385–394. Springer, 2000.

24. A. Joux. A one round protocol for tripartite Diffie-Hellman. J. Cryptology, 17(4):263–276,
2004.

25. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of
LNCS, pages 146–162. Springer, 2008.

26. N. Koblitz and A. Menezes. Another look at generic groups. Advances in Mathematics of
Communications, 1:13–28, 2007.

27. G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding generic ring
algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of LNCS,
pages 241–251. Springer, 2006.

28. U. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor, IMA
Int. Conf., volume 3796 of LNCS, pages 1–12. Springer, 2005.

29. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

30. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Transactions on Information Theory,
24:106–110, 1978.

31. J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Compu-
tation, 32:918–924, 1978.

32. R. L. Rivest. On the notion of pseudo-free groups. In Moni Naor, editor, TCC, volume 2951
of LNCS, pages 505–521. Springer, 2004.

33. A. Rupp, G. Leander, E. Bangerter, A. W. Dent, and A. Sadeghi. Sufficient conditions
for intractability over black-box groups: Generic lower bounds for generalized DL and DH
problems. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of LNCS, pages 489–505.
Springer, 2008.

34. V. Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT, volume 1233 of LNCS, pages 256–266. Springer, 1997.

35. N. P. Smart. The exact security of ECIES in the generic group model. In B. Honary, editor,
IMA Int. Conf., volume 2260 of LNCS, pages 73–84. Springer, 2001.

36. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
second edition, 2003.

37. B. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, EUROCRYPT, volume 3494 of LNCS, pages 114–127. Springer, 2005.

38. S. Wolf. Information-theoretically and computationally secure key agreement in cryptogra-
phy. PhD thesis, ETH Zurich, 1999. ETH dissertation No. 13138.


