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Abstract. In this work, we take a closer look at anonymity and robust-
ness in encryption schemes. Roughly speaking, an anonymous encryption
scheme hides the identity of the secret-key holder, while a robust encryp-
tion scheme guarantees that every ciphertext can only be decrypted to
a valid plaintext under the intended recipient’s secret key.
In case of anonymous encryption, we show that if an anonymous PKE
or IBE scheme (in presence of CCA attacks) is used in a hybrid encryp-
tion, all bets regarding the anonymity of the resulting encryption are
off. We show that this is the case even if the symmetric-key component
is anonymous. On the positive side, however, we prove that if the key-
encapsulation method is, additionally weakly robust the resulting hybrid
encryption remains anonymous. Some of the existing anonymous encryp-
tion schemes are known to be weakly robust which makes them more
desirable in practice.
In case of robust encryption, we design several efficient constructions
for transforming any PKE/IBE scheme into weakly and strongly robust
ones. Our constructions only add a minor computational overhead to the
original schemes, while achieving better ciphertext sizes compared to the
previous constructions. An important property of our transformations is
that they are non-keyed and do not require any modifications to the
public parameters of the original schemes.
We also introduce a relaxation of the notion of robustness we call collision-
freeness. We primarily use collision-freeness as an intermediate notion by
showing a more efficient construction for transforming any collision-free
encryption scheme into a strongly robust one. We believe that this simple
notion can be a plausible replacement for robustness in some scenarios
in practice. The advantage is that most existing schemes seem to satisfy
collision-freeness without any modifications.

1 Introduction

The classical definitions of security for encryption schemes are mainly concerned
with the secrecy of encrypted data. Particularly, the widely accepted notions of
indistinguishability and non-malleability under chosen plaintext and ciphertext
attacks [15,19,12], are all directed at capturing various aspects of data-secrecy in
encryption schemes. However, since encryption schemes are employed in a wide
range of applications, one often requires them to satisfy additional properties.



Two such properties, which have been the subject of formal studies in the
cryptographic literature, are anonymity [5,2] and robustness [3]. Anonymity
helps keep the identity of the key-holders in an encryption scheme private, while
robustness provides a layer of protection against misuse or error by ensuring
that a single ciphertext can only be decrypted by the intended user. In this
paper we study several aspects of anonymity and robustness in public-key and
identity-based encryption schemes.

1.1 Anonymity of Hybrid Encryption Schemes

The concept of anonymity for encryption schemes has been around for sometime
but was first formalized in the context of symmetric-key encryption [1,11,14] and
was later extended to the case of public-key encryption (PKE) and identity-based
encryption (IBE) [5,2]. Several PKE and IBE schemes in the literature such as
the Cramer-Shoup [10], and the Boyen-Waters [9] in the standard model, and
DHIES [4] and Boneh-Franklin [8] in the random oracle model are shown to be
anonymous.

However, in most cases, PKE and IBE schemes are used as key encapsulation
methods (KEM) to encrypt a random key which is then used by a symmetric-key
data encapsulation method (DEM) to encrypt the message itself. It is well known
that if the KEM component is IND-CCA secure and the DEM component is (one-
time) IND-CCA, the resulting hybrid encryption is also IND-CCA secure (e.g.
see [10]).1 From a practical point of view, it is important to determine whether
similar statements can be made when considering anonymity.

A negative result. At first glance, it seems that the symmetric-key com-
ponent is harmless as far as anonymity is concerned since it only encrypts a
message using a random secret key, which is unlikely to reveal additional infor-
mation about the public key or the identity (this is in fact the case for CPA
attacks). However, somewhat surprisingly, we show that this intuition is wrong
in presence of chosen ciphertext attacks. Particularly, we show a counterexample
by building an anonymous-CCA (ANON-CCA) secure PKE/IBE scheme and a
symmetric-key IND-CCA encryption, where it is easy to break the anonymity of
the resulting hybrid construction. The negative result extends to the case when
the symmetric-key component is also anonymous. An important implication is
that:

Designing ANON-CCA PKE or IBE schemes is not sufficient for providing
anonymity in practice where, more often than not, encryption schemes are used
in hybrid constructions.

A positive result. On the positive side, we show that if one further assumes
that the KEM component is weakly-robust (see Section 2 for the definition), the
resulting hybrid encryption is in fact ANON-CCA. This implies that despite our

1 Note that the KEM/DEM framework is more general than hybrid encryption but
here we are focus on the KEM/DEM framework in the context of hybrid encryption
schemes.



negative result, for most ANON-CCA schemes we know of such as the Boneh-
Franklin IBE, the Cramer-Shoup PKE, and the DHIES PKE all of which are
known to be weakly-robust [3] (in the appropriate model), using them as part of
a hybrid construction preserves their anonymity. The same is however not true
for the Boyen-Waters anonymous IBE scheme which is shown not to be weakly
robust.

This result reemphasizes the close connection between anonymity and ro-
bustness and provides additional motivation to study the robustness property
when designing anonymous encryption schemes.

1.2 Robustness

Informally speaking, weak robustness requires that a ciphertext does not decrypt
to a valid plaintext under distinct secret keys for two different identities. A
stronger version of robustness requires this to be the case even for adversarially
chosen ciphertexts. The concept of robustness was studied in one way or another
in [18] and [17], but was only recently formalized by Abdalla et al. [3].

It is not hard to see that robustness can be trivially achieved by appending
the encryption key to the ciphertext and checking for it upon decryption. The
main drawback is that the resulting scheme is no longer anonymous. In fact, as
discussed in [3] and further motivated by our results on anonymity of hybrid
encryptions, it is exactly for anonymous schemes that robustness is important.
In [3], the authors study the robustness properties for several existing anony-
mous encryption schemes, and design general constructions for transforming any
IBE/PKE scheme into robust ones.

A transformation is keyed if an additional string needs to be added to the set
of public parameters for the original scheme, and is called non-keyed, otherwise.
An important advantage of non-keyed constructions over keyed ones is that the
robustness property can be added to the encryption scheme without having to
notify a third party such as a PKI in advance. Consequently, users of a system
can add robustness to the scheme after it is deployed.

Non-keyed transformations for robustness. In the standard model, we
design a non-keyed construction for transforming any anonymous IBE/PKE
scheme into a weakly robust one in presence of CPA attacks. In the random
oracle model, we design a non-keyed transformation that provides strong ro-
bustness in presence of CCA attacks. In both cases, the computational overhead
is very small (it involves one to three invocations of a hash function), and de-
spite being non-keyed the ciphertext sizes we achieve are better than those of
the previous work. A curious open question is whether we can achieve the latter
transformation in the standard model.

Collision-freeness. We also study the notion of collision-freeness, a natural
relaxation of robustness. Roughly speaking, an encryption scheme is collision-
free if a ciphertext does not decrypt to the same message under two different
decryption keys. Collision-freeness can be a sufficient property in some scenar-
ios in practice. For example, if the receiver expects to see a specific message as



part of the protocol but after decrypting using his secret key recovers a different
one, he can detect an error and stop the communication. Interestingly, we show
that schemes such as the El Gamal PKE scheme [13] and the Boyen-Waters
IBE scheme [9] are strongly collision-free even though they are known not to be
weakly robust. Hence, collision-freeness seems to be a less restrictive assump-
tion on an encryption scheme and one that most encryption schemes seem to
satisfy without any modifications. More importantly, we design a more efficient
construction for transforming any collision-free encryption scheme to a strongly
robust one.

2 Preliminaries

One-way functions. Roughly speaking, a function is one-way if it is hard to
invert on a random input. More formally, we say that a function f over {0, 1}k
is one-way if

Advowf
f,A (k) = Pr

[
x

$←{0, 1}k ; y ← f(x) ; x′ $← A(f, y) : x = x′
]

is negligible for every PPT inverter A.

general encryption schemes. Abdalla et al. [3] introduced and used the no-
tion of general encryption schemes which encompass both PKE and IBE schemes.
Similar to their work we will use this notion, since all our transformations are
applicable to both PKE and IBE schemes.

A general encryption (GE) scheme consists of a tupleGE = (Pg,Kg,Enc,Dec)
of algorithms. The parameters generation algorithm Pg takes no input and re-
turns common parameters pars and a master secret keymsk. On input pars,msk, id,
the key generation algorithm Kg produces an encryption key ek and the decryp-
tion key dk. On inputs pars, ek,M the encryption algorithm Enc produces a
ciphertext C encrypting plaintext M . On input pars, ek, dk, C, the determinis-
tic decryption algorithm Dec returns either a plaintext M or ⊥ to indicate that
it rejects. GE is a PKE scheme if msk = ϵ and Kg ignores its id input. GE
is an IBE scheme if ek = id, meaning the encryption key generated by Kg on
inputs pars,msk, id is always id. Finally, we point out that the notion of general
encryption contains PKE schemes, IBE schemes and more. In other words, there
are general encryption schemes that are neither PKE nor IBE schemes.

AI-{CPA,CCA} security. Traditionally, the definitions of privacy [15,19,12]
and anonymity [5,2] for encryption schemes are introduced separately. However,
when considering robustness, it makes sense to consider both notions simulta-
neously. Hence we follow the definition of [3] who combine the two into a single
game. We define the AI-{CPA,CCA} security (AI = ANON + IND) of a general
encryption scheme GE = (Pg,Kg,Enc,Dec) via a security game between the
adversary and the challenger.

– Setup: Challenger runs (pars,msk)← Pg(1k); b
$←{0, 1}; S, T, U, V ← ∅.

– Queries:



• Public key query id. Challenger lets U ← U∪{id}; (Ek[id], Dk[id])
$← Kg(pars,msk, id)

and returns Ek[id].
• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}

and return Dk[id].
• Decryption query (C, id). If id /∈ U or (id, C) ∈ T return ⊥. Else let

M ← Dec(pars,Ek[id], Dk[id], C), and return M .
• Challenge query (id∗0, id

∗
1,M

∗
0 ,M

∗
1 ). If id

∗
0 /∈ U or id∗1 /∈ U or id∗0 ∈ V ,

or id∗1 ∈ V return ⊥. Else let C∗ $← Enc(pars,Ek[idb],M
∗
b ); S ← S ∪

{id∗0, id∗1};T ← T ∪ {(id∗0, C∗), (id∗1, C
∗)} and return C∗.

– Adversary’s guess. Adversary returns a bit b′.

Note that there is only one challenge query. In case of CPA attacks, no decryption
queries are allowed. Adversary A’s advantage in the AI-{CPA,CCA} game is:

Adv
ai-{cpa,cca}
GE (A) = Pr[b′ = b]− 1/2

In some cases however, we consider the security notions for anonymity (ANON-
{CPA,CCA}) and indistinguishability (IND-{CPA,CCA}), individually. The chal-
lenge query in the above security game can be modified in the obvious way to
capture each of these definitions separately. We point out that similar definitions
can also be adapted for the case of symmetric-key encryption.

Robustness. Following [3], we consider two definitions of robustness for a gen-
eral encryption scheme, namely weak robustness (WROB) and strong robustness
(SROB). The following game defines both notions. As noted below the only dif-
ference is in the final message sent by the adversary to the challenger:

– Setup: Challenger runs (pars,msk)← Pg(1k); b
$←{0, 1}; U, V ← ∅.

– Queries:
• Public key query id. Challenger lets U ← U∪{id}; (Ek[id], Dk[id])

$← Kg(pars,msk, id)
and returns Ek[id].

• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}
and return Dk[id].

• Decryption query (C, id). If id /∈ U return⊥. Else letM ← Dec(pars,Ek[id], Dk[id], C),
and return M .

• Final message (id∗0, id
∗
1,M) (for WROB). If id0 = id1 or id∗0 /∈ U or id∗1 /∈

U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let C∗ $← Enc(pars,Ek[id0],M);
M ′ ← Dec(pars,Ek[id1], Dk[id1], C

∗); if M ′ ̸= ⊥ return 1, else return 0.
• Final message (id∗0, id

∗
1, C) (for SROB). If id0 = id1 or id

∗
0 /∈ U or id∗1 /∈ U

or id∗0 ∈ V , or id∗1 ∈ V return 0. Else letM0 ← Dec(pars,Ek[id0], Dk[id0], C);
M1 ← Dec(pars,Ek[id1], Dk[id1], C); if M0 ̸= ⊥ and M1 ̸= ⊥ return 1,
else return 0.

Similar to above, in case of CPA attacks, no decryption queries are allowed.
Adversary A’s advantage in the {WROB,SROB}-{CPA,CCA} game is:

Adv
{wrob,srob}-{cpa,cca}
GE (A) = Pr[GA → 1]



In the WROB game the adversary produces a message M , and C is its
encryption under the encryption key of one of the given identities, while in the
SROB game adversary produces C directly, and may not obtain it as an honest
encryption. Note that in case of PKE schemes, the adversary does not get to
choose the encryption keys of the identities it is targeting. Those are honestly
and independently chosen by the identities themselves in real life and and by
the games in the above formalizations.

3 Anonymous-CCA Hybrid Encryption

In this section we take a closer look at anonymous encryption schemes in presence
of chosen ciphertext attacks (ANON-CCA) as defined in Section 2. Previous
works on anonymous public-key and identity-based encryption [5,2] have studied
this security notion and provided constructions satisfying it.

However, in most scenarios in practice, PKE and IBE schemes are used in
the KEM/DEM paradigm. It is known that if the KEM component is IND-CCA
secure and the DEM component is (one-time) IND-CCA, the resulting hybrid en-
cryption is also IND-CCA secure. For practical reasons, it is crucial to determine
whether we can make similar statements when considering the anonymity of the
resulting hybrid construction. More specifically, we try to answer the following
question:

Given an ANON-CCA PKE or IBE scheme and an (ANON-CCA + IND-
CCA) symmetric-key encryption scheme, is the resulting hybrid encryption scheme
ANON-CCA?

3.1 A Negative Result

Somewhat surprisingly, we answer the above question in the negative. First we
show a counterexample by building an ANON-CCA secure PKE/IBE scheme and
a symmetric-key IND-CCA encryption, where it is easy to break the anonymity
of the resulting hybrid construction. The negative result easily extends to the
case when the symmetric-key component is also ANON-CCA. An important im-
plication is that designing ANON-CCA PKE or IBE schemes is not sufficient for
providing anonymity in practice where, more often than not, encryption schemes
are used in hybrid constructions.

Claim 31 There exist an ANON-CCA PKE/IBE scheme and a symmetric-key
authenticated encryption scheme (assuming there are secure schemes at all) such
that the resulting hybrid encryption is not ANON-CCA.

The intuition behind the counterexample is that since the adversary has
access to a decryption oracle, he can take advantage of the fact that decrypting
one ciphertext under two different secret keys can result in different answers.
Particularly, these different answers can be used by the adversary to compromise
the anonymity of the scheme.



Proof. We describe the proof for the case of a PKE scheme, but an identical proof
works for IBE schemes as well. Let PKE1 = (Kg1,Enc1,Dec1) be an (ANON-
CCA + WROB-CCA) PKE encryption scheme. The Cramer-Shoup encryption
scheme or any of the constructions in this paper will do. We build the encryption
scheme PKE2 = (Kg2,Enc2,Dec2) by letting the key-generation and encryption
algorithms be identical to those of PKE1, and modifying the decryption algorithm
such that whenever the Dec1 algorithm returns the symbol ⊥, the decryption
algorithm Dec2 returns 0n instead, and otherwise works similar to Dec1. It is
easy to verify that after this simple modification, PKE2 remains ANON-CCA.
PKE2 will be the key encapsulation method in our counterexample.

For the DEM component we use an IND-CCA encryption scheme that is also
key-binding, a notion introduced in [14].

Definition 1. A symmetric-key encryption scheme E = (SK,SE ,SD) is called
key-binding if for any key k generated by SK, any message m, and randomness
r, there does not exist a key k′ such that k′ ̸= k and SDk′(SEk(m, r)) ̸= ⊥.

The key-binding property guarantees that a ciphertext created using one
secret key, does not decrypt correctly under any other secret key. Fischlin [14]
showed simple constructions of such encryption schemes from any PRF. For the
purpose of our counterexample it suffices to know that an IND-CCA encryption
scheme E with such a property exists.

Now, we show that combining PKE2 and E into a hybrid encryption is not
ANON-CCA. Particularly, an attacker with the following simple strategy can
break the anonymity of the scheme.

Recall the ANON-CCA security game. Attacker A initially sends a message
m as his challenge in the ANON-CCA game and receives the ciphertext C =
(c1, c2) = (Enc(pkidb

, k),SEk(m)) for a random bit b ∈ {0, 1} and a random key
k ∈ {0, 1}n. Then, A makes a decryption query for the ciphertext (c1,SE0n(m′))
under public key pkid0

, for an arbitrary messagem′. If the answer is ⊥, A outputs
0 and else outputs 1.

To see why A breaks the ANON-CCA security of the encryption scheme
note that if b = 1 then k′ = Dec2(skid1 ,Enc2(pkid0 , k)) = 0n given the way
we have defined PKE2. Hence, we have that SD0n(SE0n(m′)) = m′ ̸= ⊥. On
the other hand if b = 0 then k′ = Dec2(skid0 ,Enc2(pkid0 , k)) = k. Hence we
have SDk(SE0n(m′)) = ⊥ due to the key-binding property of E and the fact
that k ̸= 0n with all but negligible probability. Therefore, A guesses the bit b
correctly with high probability.

A closer look at the above attack strategy reveals that a much weaker prop-
erty than that of definition 1 for the symmetric-key scheme suffices for our ar-
gument to go through. In particular, we only need the key binding property to
hold for a fixed message and a fixed secret key (m′ and 0n, respectively).

Strengthening the DEM component? One potential solution is to use
a symmetric-key encryption scheme that possesses some additional properties.



Particularly, one natural question is whether using an anonymous-CCA symmetric-
key encryption as the DEM component would yield an anonymous hybrid con-
struction. Unfortunately, the answer to this question is also negative. It is easy
to verify that the above negative result extends to work for any security notion
considered for symmetric-key encryption, as long as that security notion can
be achieved in conjunction with the key-binding property. In all such cases, the
proof given above works without any significant changes.

Anonymity of symmetric-key encryption schemes has been studied under
the name key-hiding in [14] where the authors also design IND-CCA secure
symmetric-key encryption schemes that are simultaneously key-hiding and key-
binding. This leads to the following claim:

Claim 32 There exist an ANON-CCA PKE/IBE scheme and an (ANON-CCA
+ IND-CCA) symmetric-key encryption scheme such that the resulting hybrid
encryption is not ANON-CCA.

3.2 A Positive Result

In light of the above negative results, it is natural to ask what additional property
the KEM component should have in order to preserve its ANON-CCA security
in a hybrid construction. We show that if one further assumes that the KEM
component is weakly-robust, the resulting hybrid encryption is in fact ANON-
CCA. This implies that despite the negative results we gave above, for most
ANON-CCA schemes we know such as the Boneh-Franklin IBE, the Cramer-
Shoup PKE, and the DHIES PKE all of which are known to be weakly-robust [3],
using them as part of a hybrid construction is safe. The intuition behind the
proof is that weak robustness ensures that the decryption algorithm behaves in
a predictable way, when decrypting a ciphertext under two different secret keys,
and this predictable behavior combines quite nicely with the security properties
of an authenticated symmetric encryption scheme, namely, IND-CCA security
and the ciphertext integrity (CTXT-INT).

In the following claim we prove a stronger result than what we need here by
considering the notion of AI-CCA security which combines ANON-CCA security
and IND-CCA security into one definition. The main reason is that we need this
stronger claim in a following section. The proof for the case when one is only
interested in ANON-CCA secure hybrid schemes is identical.

Claim 33 If the KEM component PKE of a hybrid construction is an (AI-CCA
+ WROB-CCA) general encryption, and E is a one-time authenticated symmet-
ric encryption, then the resulting hybrid encryption PKE′ is also an AI-CCA
general encryption scheme.

Proof. We prove the above claim via a sequence of games.
Game 0. Game 0 is simply the AI-CCA game. Denote by b the random bit

generated by the challenger, by C∗ the challenge ciphertext C∗ = (c∗1, c
∗
2) where

c∗1 is the KEM component and c∗2 is the DEM component, and by k∗ the secret
key used for the DEM component.



Game 1. Game 1 is similar to game 0, except that for any decryption queries
of the form (c1, c2) for pkidb

where c1 = c∗1 and c2 ̸= c∗2, challenger uses k∗ to
decrypt c2 and recover the message ( as opposed to decrypting c1).

It is easy to see that the difference between the advantage of any adversary
in these two games is bounded by the decryption error. For simplicity we assume
that there is no decryption error and therefore

AdvG0(A) = AdvG1(A)

Game 2. Similar to game 1 except that for any decryption queries of the
form (c1, c2) for pkid1−b

where c1 = c∗1 and c2 ̸= c∗2), challenger returns ⊥.
Note that games 1 and 2 are different only when c∗1 which is the encryption of

messagemb under pkidb
, also decrypts correctly under the pkid1−b

. This probabil-
ity is bounded by the advantage of an adversary B in winning the WROB-CCA
game and hence:

AdvG2(A)−AdvG1(A) ≤ Advwrob−cca
PKE (B)

Game 3. Similar to game 2 except that the challenger generates and uses
a random key k′ (instead of k∗) when encrypting the private-key component of
the ciphertext for the challenge query.

The difference between the advantages of an adversary in games 2 and 3 is
bounded by the AI-CCA security of the PKE scheme:

AdvG3
(A)−AdvG2

(A) ≤ Advai−cca
PKE (B′)

Game 4. We modify game 3 in two ways. First, for the challenge query,
instead of encrypting the message mb, the challenger encrypts the constant mes-
sage 0k. Second, for decryption queries (c1, c2) under pkidb

where c1 = c1∗ the
challenger returns ⊥.

The probability of distinguishing the first change is bounded by the IND-CCA
advantage of an adversary against the E scheme, while for second change, the
probability is bounded by the advantage of an adversary playing the ciphertext
integrity (CTXT-INT) game with E . Both the IND-CCA security and the CTXT-
INT security are properties that are possessed by any authenticated encryption
scheme.

AdvG4(A)−AdvG3(A) ≤ Advind−cca
E (B′′) +Advctxt−int

E (B′′′)

Finally, it is easy to see that the adversary’s view in game 4 is independent of
the bit b and hence adversary’s advantage in guessing b is exactly 1/2. Putting
things together we have:

Advai−cca
PKE′ (A) ≤ Advwrob−cca

PKE (B)+Advai−cca
PKE (B′)+Advind−cca

E (B′′)+Advctxt−int
E (B′′′)



4 Non-keyed Transformations for Robustness

Having further motivated the study of robust encryption schemes, we next focus
on efficient ways of transforming general encryption schemes into robust ones.
As mentioned earlier, such a transformation is called a keyed transformation if
an additional string is added to the original set of public parameters, and is
called non-keyed otherwise.

In Section 4.1, we design an efficient and non-keyed transformation for weak-
robustness, in presence of CPA attacks (in the standard model). In Section 4.2,
we design a non-keyed transformation for strong-robustness in presence of CCA
attacks (in the random oracle model). Despite being non-keyed, our transforma-
tions have better ciphertext sizes compared to previous work. In other words,
not adding an extra string to the public parameters does translate to larger
ciphertexts (see the efficiency comparison sections).

4.1 A Transformation for AI-CPA Schemes

The following non-keyed construction takes any AI-CPA encryption scheme, and
transforms it to a (AI-CPA + WROB-CPA) scheme.

Construction 41 Let PKE = (Pg,Kg,Enc,Dec) be a AI-CPA general encryp-
tion scheme, and let f be a one-way function over {0, 1}k. We construct the
general encryption scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):

• Parameter Generation(Pg′): On input 1k return (pars,msk)
$← Pg(1k).

• Key Generation(Kg′): On input pars,msk, id, return (pkid, skid)
$← Kg(pars,msk, id).

• Encryption(Enc′): On input pars, pkid,m, generate a random r ∈ {0, 1}k
and return (Enc(pars, pkid,m||r), f(r)).

• Decryption(Dec′): On inputs pars, pkid, skid, (c1, c2), computem′||r′ $← Dec(pars, pkid, skid, c1).
If r′ ̸= ⊥ and f(r′) = c2 return m′; else return ⊥.

Note that in construction 41, instead of a one-way function, we can also use
a target collision-resistant (TCR) hash function (a universal one-way hash func-
tion). Particularly, it is easy to show that any TCR function that is sufficiently
compressing is a good one-way function.

We will shortly prove the security of the above scheme, but first lets briefly
study its efficiency. Efficiency comparison. To implement our scheme one

can use a fixed-length cryptographic hash function h with output length of 128
bits (e.g. constructed by suitably modifying the output length of a hash function
from the SHA family). The reason that we only need 128 bits of output is that
we only require the hash function to be one-way as opposed to collision-resistant.
Furthermore, it is sufficient for us to let k = 256 where r is chosen from {0, 1}k.2
This means that the PKE scheme has to encrypt a message that is only 256 bits

2 When computing hash of r, we can pad r with enough 0’s in order to match the
input block-size requirement for the hash function. Note that this does not effect the
efficiency of the encryption or the size of ciphertext in any way.



longer than the original message and the ciphertext is at most expanded by an
additive factor of 384 bits as opposed to 768 bits in construction of Abdalla et
al. [3].

Theorem 1. Let PKE be a AI-CPA secure general encryption scheme and f be
a one-way function. Then, the PKE′ scheme of construction 41 is both AI-CPA
secure and WROB-CPA secure.

Proof. We prove the theorem in two separate claims. Claim 42 ensures that
the above transformation preserves the AI-CPA security of the original scheme.
Claim 43 states that the resulting scheme PKE′ is also weakly robust.

Claim 42 For any PPT adversary A against PKE′, there exist a PPT adversary
B against PKE such that:

Advai-cpa
PKE′ (A) = Advai-cpa

PKE (B)

Proof. B runs A. When A sends its challenge request (id0, id1,M0,M1), B gener-
ates a random value r ∈ {0, 1}k and sends (id0, id1,M0||r,M1||r) to its own chal-
lenger in the AI-CPA game for PKE. B receives back c∗ = Enc(pars, idb, pkidb

,Mb||r)
and sends (c∗, f(r)) to A. The decryption-key queries made by A are forwarded
to the corresponding oracle in B’s game. Since we only consider CPA attacks,
no decryption queries on id0 or id1 are allowed. Eventually, A outputs a bit b′.
B also outputs b′ and halts. It is straightforward to see that the advantage of B
against the PKE is the same as A’s advantage against the PKE′ scheme.

Claim 43 For any PPT adversary A against the PKE′ in the WROB-CPA
game, there exist PPT adversaries B1 against the PKE in the AI-CPA game
and B2 against f in the one-wayness game such that:

Advwrob-cpa
PKE′ (A) = 2Advind-cpa

PKE (B1) +Advowf
f (B2)

Proof. We prove this claim in a sequence of two games.
Game 0. Game 0 is the WROB-CPA game against the PKE′ scheme as de-

fined earlier. More specifically, adversary sends the tuple (id0, id1,M) to the chal-
lenger. Challenger computes C0 = Enc′(pars, id0, pkid0 ,M) = (Enc(pars, pkid0 ,M ||r), f(r))
for random r ∈ {0, 1}k. He then computes M1 = Dec′(pars, pkid1 , skid1 , C0). If
M1 ̸= ⊥, the challenger outputs 1. Else it outputs 0.

Game 1. Game 1 is similar to game 0, except that C0 is computed in the
following way:

C0 = (Enc(pars, pkid0 ,M ||0k), f(r))

The rest of the game stays the same.
First we show that there exist an adversary B1 such that Advind-cpa

PKE (B1) =
1/2(Pr[GA

1 → 1] − Pr[GA
0 → 1]). B1 runs A and receives the tuple (id0, id1,M)

from her. B1 queries the key oracle for (pkid1 , skid1). He then generates a random



r ∈ {0, 1}k and sends (id0,m
′
0 = M ||r,m′

1 = M ||0k) to the challenger in the IND-
CPA game against PKE and receives C0 = Enc(pars, id0, pkid0 ,m

′
b) for a random

bit b. B1 then decrypts (C0, f(r)) using the Dec′ algorithm and the secret key
skid1 . If the result of decryption is not ⊥, B1 lets b′ = 1 and else b′ = 0. Then
we have

Advind-cpa
PKE (B1) = Pr[b′ = b]− 1/2 =

Pr[b = 1] · Pr[Bind-cpa
1 → 1|b = 1] + Pr[b = 0] · Pr[Bind-cpa

1 → 0|b = 0] =

1/2Pr[Bind-cpa
1 → 1|b = 1] + 1/2Pr[Bind-cpa

1 → 0|b = 0]− 1/2 =

1/2Pr[GA
1 → 1] + 1/2(1− Pr[GA

0 → 1])− 1/2 =

1/2(Pr[GA
1 → 1]− Pr[GA

0 → 1])

(1)

We now show that there exist an adversary B2 such that Pr[GA
1 → 1] =

Advowf
f (B2). B2 generates the (pars,msk) for the general encryption, and runs

A. When B2 receives the tuple (id0, id1,M) he computes (pkid0 , skid0), (pkid1 , skid1)
and C0 = Enc(pars, pkid0 ,M0||0k). He then requests his challenge for the one-
wayness game and receives f(r) for a random r. B2 then decrypts using (C0, f(r))
using the Dec′ algorithm and the secret key skid1 . If the result is ⊥ it outputs
fail and halts. Else, it parses the decrypted plaintext into M ′||r′ and returns r′

to his own challenger.
B2 wins the one-wayness game if f(r′) = f(r). Note that according to the

definition of Dec′, whenever the decryption algorithm does not output ⊥ we have
f(r′) = f(r). Hence

Advowf
f (B2) = 1− Pr[Bowf

2f → fail] = 1− Pr[G1
A → 0] = Pr[G1

A → 1]

Putting things together we have:

Advwrob-cpa
PKE′ (A) = Pr[GA

0 → 1] =

Pr[GA
0 → 1]− Pr[GA

1 → 1] + Pr[GA
1 → 1] =

2Advind-cpa
PKE (B1) +Advowf

f (B2)

4.2 A Transformation for AI-CCA Schemes

Unfortunately, the transformation we gave above does not work in case of AI-
CCA encryption schemes. Nevertheless, we are able to design an efficient and
non-keyed transformation for any AI-CCA encryption scheme, in the random
oracle model. The construction follows:

Construction 44 Let PKE = (Pg,Kg,Enc,Dec) be an AI-CCA general encryp-
tion scheme, and let G,H,H ′ : {0, 1}∗ → {0, 1}k be three hash functions. We
construct the general encryption scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):



• Parameter Generation(Pg′): On input 1k return (pars,msk)
$← Pg(1k).

• Key Generation(Kg′): On input pars,msk, id, return (pkid, skid)
$← Kg(pars,msk, id).

• Encryption(Enc′):
On input pars, pkid,m, generate a random r ∈ {0, 1}k and return (Enc(pars, pkid, r;H(r)), G(r)⊕
m,H ′(pk, r,m)).

• Decryption(Dec′): On inputs pars, pkid, skid, (c1, c2, c3), compute r′
$← Dec(pars, pkid, skid, c1).

If r′ = ⊥ or Enc(pars, pkid, r
′;H(r′)) ̸= c1, return ⊥, else compute m ←

c2 ⊕G(r); if H ′(pk, r,m) = c3 return m, else return ⊥.

The above construction is an adaptation of an earlier version of the OAEP
scheme (see [6]) based on any one-way trapdoor function (TDF). The two main
differences are that (i) we are transforming a randomized encryption scheme
instead of a one-way TDF which is why we use H(r) to generate the randomness
for the encryption algorithm, and (ii) since our goal is to also achieve robustness,
the third component of the ciphertext hashes the public key along with the
message and randomness.

It is also interesting to note that unlike the optimized OAEP scheme [7] which
encrypts c2||c3 as part of the message (in order to obtain shorter ciphertexts),
due to the impossibility result of [3] who rule out non-keyed redundancy codes,
there is no hope of doing the same in our case.

efficiency comparison. The overhead for the ciphertext size is two hash val-
ues each of which leads to 512 bits of overhead. The alternative existing solution
would be to combine a weakly robust encryption scheme with the weak-to-strong
transformation of [3]. This leads to 768 + x bits where the x is the ciphertext
overhead of the weak-to-strong transformation which can be quite large itself
(depending on the commitment scheme used).

Theorem 2. Let PKE be an AI-CCA secure general encryption scheme and
H,G, and H ′ be random oracles. Then, the PKE′ scheme of construction 44 is
both AI-CCA secure and SROB-CCA secure.

We prove the above theorem via two separate claims. Claim 45 ensures that
the above transformation preserves the AI-CCA security of the original scheme.
Claim 46 states that the resulting scheme PKE′ is also weakly robust.

Claim 45 For any PPT adversary A against PKE′, there exist a PPT adversary
B against PKE such that:

Advai-cca
PKE′ (A) < qD/2k + qHAdvai-cca

PKE (B)

Proof. We prove this claim in a sequence of games.
Game 0. In this game the adversary plays the AI-CCA game with the chal-

lenger using the construction above. The challenger initializes three empty lists
Hlist, Glist, and H ′

list. For any oracle query q made to H (G, or H ′), if a tu-
ple of the form (q, a) for any a is present in Hlist (Glist or H ′

list) returns a
as the answer. Else, challenger generates a random a ∈ {0, 1}k, adds (q, a)



to the Hlist (Glist or H ′
list) and returns a to the adversary. Denote the ad-

versary’s challenge query by (m0,m1, id0, id1), and the response ciphertext by
c∗ = (c∗1, c

∗
2, c

∗
3) = (Enc(pars, pkidb

, r;H(r)), G(r) ⊕ mb, H
′(pkidb

, r,mb)) for a
random bit b ∈ {0, 1} and r ∈ {0, 1}k. Decryption queries are answered by the
challenger using the decryption algorithm described above. Adversary eventually
outputs the bit b′ and wins if b′ = b. For any PPT adversary A we have

Advai-cca
PKE′ (A) = AdvG0(A)− 1/2

Game 1. Similar to game 0, except that on decryption queries of the form
c = (c1, c2, c3) where c1 = c∗1, if there exist a tuple of the form (q, c3) ∈ H ′

list,
challenger parses (pk, r,m)← q, and recomputes the first two components of the
ciphertext using these values. If they match c1 and c2 sent by the adversary, it
returns m. If the values do not match or the tuple of the form (q, c3) does not
exist, challenger returns ⊥.

A’s view in the two games is different only in the case that he has not queried
q to the list but is able to guess c3 = H ′(q). This only happens with probability
1/2k for every decryption query. Hence

AdvG0(A)−AdvG1(A) ≤ qD/2k

Game 2. This game is identical to game 1 except that if A makes an oracle
query for H or G on input r where r is the random message encrypted in the
challenge ciphertext, the challenger outputs fail and ends the game.

Based on the fundamental lemma game playing we have

AdvG1(A)−AdvG2(A) ≤ Pr[GA
1 → fail]

Next we will bound the probability of outputting fail, by the advantage of
an adversary B who the one-way-CCA game against the PKE scheme. We show
that for any adversary A winning the game G2, there exist a PPT adversary B
winning the one-way-CCA game against the original scheme PKE.

B generates a random index i ∈ [1..qH ]. B then runs A. When A makes his
challenge query (m0,m1, id0, id1), B generates a random bit b, and asks for his
challenge ciphertext under idb to receive c∗1 = Enc(pkidb

, r) for a random message
r. B computes c∗2 and c∗3 on his own and replies to A with (c∗1, c

∗
2, c

∗
3).

On an oracle query a (for any of the three oracles), if this is the ith oracle
query, B outputs a to his own challenger and halts. Else, if a was queried before,
he returns the same answer, and if not, he generates a random answer and adds
the tuple to the corresponding list.

On a decryption query (c1, c2, c3) where c1 ̸= c∗1, B uses his own decryption
oracle for Dec and performs the Dec′ decryption algorithm. Here, it is critical
for the randomness used in the encryption algorithm to be derivable from the
decrypted message, and this is why H(·) is used as the randomness (or else B
would not be able to perform the verification component of Dec′). For any de-
cryption query (c1, c2, c3) where c1 = c∗1, B performs exactly what the challenger
in game 1 does. It is easy to see that



Pr[GA
2 → fail] ≤ qHAdvow−cca

PKE (B) ≤ qHAdvai-cca
PKE (B)

.
For any adversary A who makes an oracle query for the challenge random

message, there is an adversary B′ who does not make such a query and has a
better advantage (since such a query does not help the adversary win)

AdvG2(A) ≤ AdvG2(B
′)

Finally, given that B′ does not query r to the oracle, the challenge ciphertext
is completely independent of the challenge bit b and hence

AdvG2(B
′) = 1/2

Putting everything together we have:

Advai-cca
PKE′ (A) < qD/2k + qHAdvai-cca

PKE (B)

Claim 46 For any adversary A against PKE′ we have Advsrob-cca
PKE′ (A) ≤ 1/2k.

Proof. The proof of the above claim is simple. The main observation is that a
ciphertext c1, c2, c3 is valid under two different public keys only if H ′(pk, ·, ·) =
H ′(pk′, ·, ·) where pk ̸= pk′. But this only happens with probability 1/2k due to
the fact that H ′ is a random oracle.

5 Collision-free Encryption and Robustness

In this section we introduce the notion of collision-freeness, a natural relaxation
of the notion of robustness for general encryption schemes. Intuitively, collision-
freeness requires that a ciphertext decrypts to two different plaintexts when
decrypted using distinct secret keys. Our main motivation is to use collision-
freeness as a stepping stone for designing robust encryption schemes. Particu-
larly, we design a more efficient construction for transforming collision-free en-
cryption schemes to strongly robust ones. However, we also believe that collision-
freeness is a sufficient property in some scenarios in practice.

Similar to the notion of robustness, we consider weak and strong collision-
freeness (WCFR and SCFR). Interestingly, we show that schemes such as the
El Gamal PKE scheme [13] and the Boyen-Waters IBE scheme [9] are strongly
collision-free even though they are known not to be even weakly robust. Hence,
collision-freeness seems to be a less restrictive assumption on an encryption
scheme and one that most encryption schemes seem to satisfy without any mod-
ifications. The following security game defines the two variants:

– Setup: Challenger runs (pars,msk)← Pg(1k); b
$←{0, 1}; U, V ← ∅.

– Queries:
• Public key query id. Challenger lets U ← U∪{id}; (Ek[id], Dk[id])

$← Kg(pars,msk, id)
and returns Ek[id].



• Decryption-key query id. If id /∈ U or id ∈ S return ⊥. Else V ← V ∪{id}
and return Dk[id].

• Decryption query (C, id). If id /∈ U return⊥. Else letM ← Dec(pars,Ek[id], Dk[id], C),
and return M .

• Final message (id∗0, id
∗
1,M) (for WCFR). If id0 = id1 or id∗0 /∈ U or id∗1 /∈

U or id∗0 ∈ V , or id∗1 ∈ V return 0. Else let C∗ $← Enc(pars,Ek[id0],M);
M ′ ← Dec(pars,Ek[id1], Dk[id1], C

∗); if M ′ = M return 1, else return
0.

• Final message (id∗0, id
∗
1, C) (for SCFR). If id0 = id1 or id

∗
0 /∈ U or id∗1 /∈ U

or id∗0 ∈ V , or id∗1 ∈ V return 0. Else letM0 ← Dec(pars,Ek[id0], Dk[id0], C);
M1 ← Dec(pars,Ek[id1], Dk[id1], C); if M0 = M1 return 1, else return
0.

In case of CPA attacks, no decryption queries are allowed. Adversary A’s advan-
tage in the {WCFR,SCFR}-{CPA,CCA} game is:

Adv
{wcfr,scfr}−{cpa,cca}
GE (A) = Pr[GA → 1]

Collision-freeness of an encryption scheme can be a sufficient requirement
in some scenarios in practice. For example, if the receiver expects to see a spe-
cific message as part of the protocol but after decrypting using his secret key
recovers a different one, he can detect an error and stop the communication.
This makes collision-freeness a particularly attractive definition, since most of
the existing anonymous encryption schemes, already satisfy this property with-
out any additional modifications. The following claim mentions two well-known
encryption schemes both of which are known not to be weakly-robust but which
are collision-free.

Claim 51 The El Gamal PKE scheme and the Boyen-Waters anonymous IBE
scheme are SCFR-CPA scheme.

The proof of the above claim quite simple but is omitted due to lack of space.
Next we give a construction for transforming any strongly collision-free AI-CPA
scheme into a strongly robust one. First we use the collision-free encryption
scheme PKE to encrypt a random message r. Then, we hash the random message
using a compressing collision resistant hash function h. We then use a strong
extractor (e.g. a universal hash function) to extract the remaining randomness
in r and use it as the key to a one-time symmetric-key encryption scheme.

The intuition is that (1) the collision-freeness of the PKE and the collision-
resistance of the hash function h combined imply the strong robustness of the
resulting scheme. More specifically, it is not hard to show that given any adver-
sary that breaks the strong robustness of PKE′, there exist an adversary that
finds a collision for h: The collision-finding adversary decrypts the same cipher-
text using the secret keys for two different public keys (identities) and outputs
the two plaintexts as his collision for the hash function. The collision-freeness
of the PKE ensures that the two plaintexts are different with high probability.
(2) Given that r is chosen uniformly at random, PKE is IND-CPA secure, and



h(r) only leaks a fraction of bits of r, we can use the leftover hash lemma [16]
to extract most of the remaining randomness and use it as the secret key to the
symmetric-key encryption scheme.

Construction 52 Let PKE = (Pg,Kg,Enc,Dec) be a (SCFR-CPA + AI-CPA)
general encryption scheme; h : {0, 1}ℓ1 → {0, 1}ℓ2 be a collision-resistant hash
function; Ext : {0, 1}k × {0, 1}ℓ1 → {0, 1}ℓ3 be a family of pairwise independent
hash functions, where ℓ3 ≈ ℓ1 − ℓ2; and E = (SK,SE ,SD) be a one-time IND-
CPA symmetric-key encryption scheme. We construct the general encryption
scheme PKE′ = (Pg′,Kg′,Enc′,Dec′):

• Parameter Generation: On input 1k return (pars,msk)
$← Pg(1k).

• Key Generation: On input pars,msk, id, return (pkid, skid)
$← Kg(pars,msk, id).

• Encryption: On input pars, pkid,m, generate a random r ∈ {0, 1}ℓ1 and
K ∈ {0, 1}k and return (Enc(pars, pkid, r), h(r), K,SE(Ext(K, r),m)).

• Decryption: On inputs pars, pkid, skid, (c1, c2, c3), compute r′
$← Dec(pars, pkid, skid, c1).

If h(r′) = c2 return m′ ← SD(Ext(K, r′), c3), else return ⊥.

The following theorem summarizes the result. Due to lack of space, we defer
the proof to the full version of the paper.

Theorem 3. Let PKE be a (AI-CPA + SCFR-CPA) secure general encryption
scheme, h be a CRHF, Ext be a pairwise independent hash function and E be a
one-time IND-CPA symmetric-key encryption scheme. Then, the PKE′ scheme
of construction 52 is both AI-CPA secure and SROB-CPA secure.

Efficiency and Comparison. The computational overhead for the transfor-
mation is negligible as it includes one invocation of a collision-resistant hash
function and a pairwise-independent hash function. As an alternative to the
above construction, one could also combine the construction 41, which leads
to a weakly robust encryption, with the weak-to-strong-robustness transforma-
tions of [3] to achieve the same goal. However, the resulting transformations are
less efficient than the above transformation since we also took advantage of the
collision-freeness of the encryption scheme. Furthermore, since all the encryption
schemes we know of seem to possess the collision-freeness property, the improved
efficiency comes for “free”.
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