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Abstract. SOSEMANUK is a software-oriented stream cipher proposed
by C. Berbain et al for the eSTREAM project and has been selected into
the final portfolio. It is noticed that most components of SOSEMANUK
can be calculated byte-oriented. Hence an attacker can observe SOSE-
MANUK from the view of byte units instead of the original 32-bit word
units. Based on the above idea, in this work we present a new byte-based
guess and determine attack on SOSEMANUK, where we view a byte as
a basic data unit and guess some certain bytes of the internal states
instead of the whole 32-bit words during the execution of the attack.
Surprisingly, our attack only needs a few words of known key stream to
recover all the internal states of SOSEMANUK, and the time complexity
can be dramatically reduced to O(2176). Since SOSEMANUK has a key
with the length varying from 128 to 256 bits, our results show that when
the length of an encryption key is larger than 176 bits, our guess and
determine attack is more efficient than an exhaustive key search.
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1 Introduction

The European eSTREAM project [1] was launched in 2004 to call for stream
ciphers and was ended in 2008. At first about 34 stream cipher candidates were
submitted to the eSTREAM project, and after the challenge of three rounds,
7 of them were selected into the final portfolio. SOSEMANUK proposed by
C. Berbain et al [2] is one of the above seven algorithms. SOSEMANUK is a
software-oriented stream cipher and has a key with the length varying from 128
to 256 bits. The design of SOSEMANUK adopted the ideas of both the stream
cipher SNOW 2.0 [3] and the block cipher SERPENT [4], and aimed at improving
SNOW 2.0 both from the security and from the efficiency points of view.

The guess and determine attack is a common attack on stream ciphers [5–8].
Its main idea is that: an attacker first guesses the values of a portion of the
internal states of the target algorithm, then it takes a little cost to deduce the
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values of all the rest of the internal states of the algorithm by making use of
the values of the guessed portion of internal states and a few known key stream.
When the values of all the internal states of the algorithm are recovered, the at-
tacker tests the correctness of these values by producing a key stream using the
above recovered values and comparing it with the known key stream. If the key
streams agree, it shows that the recovered states are correct. If the key streams
don’t agree, then the attacker repeats the above process until the correct internal
states are found. As for SOSEMANUK, the designers of SOSEMANUK [2] pre-
sented a guess and determine attack method, whose time complexity is O(2256).
In 2006 H. Ahmadi et al [9] revised the attack and reduced the time complex-
ity to O(2226), and this result was further reduced to O(2224) by Y. Tsunoo et
al [10]. Recently Lin and Jie [11] gave a new result that they could recover all
internal states of SOSEMANUK with time complexity O(2192). Unfortunately,
a mistake was made in their work. In step 1 of their attack, ft−2, ft−1, ft, ft+1

and st−2, st−1, st, st+1 were used to output key words zt−2, zt−1, zt, zt+1, and in
step 14, ft, ft+1, ft+1, ft+2 and st, st+1, st+1, st+2 were used to output key words
zt, zt+1, zt+1, zt+2. However, according to the description of SOSEMANUK, the
output key words in the next pad should be zt+2, zt+3, zt+4, zt+5, which should be
produced by ft+2, ft+3, ft+4, ft+5 and st+2, st+3, st+4, st+5. Therefore the time
complexity they gave is incorrect.

It is known that most word-oriented stream ciphers make a trade-off between
security and efficiency. From the view of a designer, for pursuit of more efficient
software implementation of the algorithm, some certain operators, for example,
the exclusive OR, S-boxes, the modulo 2n addition, the multiplication or the
division by a primitive element in the finite field F2n , where n may be equal to
8, 16 or 32, are often used. We notice that most of these operations can be done
based on the smaller units, for example, 16-bit words or bytes. Therefore from the
view of an attacker, he can observe the algorithm from the viewpoints of smaller
units instead of the original word units. Based on the above idea, in this work
we present a byte-based guess and determine attack on SOSEMANUK, where
we view a byte as a basic data unit and guess some certain bytes of the internal
states instead of the whole 32-bit words during the execution of the attack.
Surprisingly, our attack only needs a few known key stream to recover all the
internal states of SOSEMANUK, and the time complexity can be dramatically
reduced to O(2176). It shows that when the length of an encryption key is larger
than 176 bits, the guess and determine attack is more efficient than an exhaustive
key search. What’s more, our results also show that during the design of stream
cipher algorithms, it is necessary to break the bound between different operands.

The rest of this paper is organized as follows: in section 2 we recall the
SOSEMANUK algorithm briefly, and in section 3 we give some basic properties
of SOSEMANUK. In section 4 we describe all the detail of our attack on SOSE-
MANUK. In section 5 we give a estimate on the time and data complexity of our
attack. Section 6 gives a further discussion, and Section 7 concludes the paper.



2 Description of SOMEMANUK

In this section we recall the SOSEMANUK algorithm briefly and all the details
can be found in [2].

SOSEMANUK is a 32-bit word-oriented stream cipher, and logically com-
posed of three parts: a linear feedback shift register (LFSR), a finite state ma-
chine (FSM) and a round function Serpent1, see Figure 1.

Fig. 1. The structure of SOSEMANUK

2.1 The LFSR

The LFSR of SOSEMANUK is defined over the finite field F232 , and contains
10 of 32-bit registers si, 1 ≤ i ≤ 10. The feedback polynomial π(x) of LFSR is
defined as follows:

π(x) = αx10 + α−1x7 + x+ 1, (1)

where α is a root of the polynomial

P (x) = x4 + β23x3 + β245x2 + β48x+ β239

over the finite field F28 , and β is a root of the binary polynomial

Q(x) = x8 + x7 + x5 + x3 + 1.

Let { st }t≥1 be a sequence generated by the LFSR. Then it satisfies

st+10 = st+9 ⊕ α−1st+3 ⊕ αst,∀ t ≥ 1. (2)



2.2 The FSM

The nonlinear filtering part of SOSEMANUK is a finite state machine (FSM),
which contains two 32-bit memory units R1 and R2. At time t, the FSM takes
the values st+1, st+8 and st+9 of registers s1, s8 and s9 of the LFSR as inputs,
and outputs a 32-bit word ft. The execution of the FSM is as follows:

R1t = R2t−1 �mux(lsb(R1t−1), st+1, st+1 ⊕ st+8), (3)

R2t = Trans(R1t−1), (4)

ft = (st+9 �R1t)⊕R2t, (5)

where � is the modulo 232 addition; lsb(x) is the least significant bit of x;
mux(c, x, y) is equal to x if c = 0, or equal to y if c = 1; and the internal
transition function Trans on 32-bit integers is defined by

Trans(z) = (0x54655307 · z mod 232) ≪ 7,

where ≪ is the left cyclic shift operator on 32-bit strings.

2.3 The round function Serpent1

In the block cipher SERPENT a raw SERPENT round consists of, in that order:

– a subkey addition;

– S-boxes transformations;

– a linear transformation.

Here the function Serpent1 is one round of SERPENT without the subkey
addition and the linear transformation. The S-box used in Serpent1 is the S-box
S2 of SERPENT and runs in the bit-slice mode. Serpent1 takes outputs ft+i of
the FSM at four successive times as inputs and outputs four 32-bit words yt+i,
where i = 0, 1, 2, 3, see Figure 2.

2.4 Generation of key stream

Let st, st+1, st+2, st+3 and ft, ft+1, ft+2, ft+3 be the outputs of the LFSR and
that of the FSM respectively at the successive times starting from time t, and
zt, zt+1, zt+2, zt+3 be the key words generated by SOSEMANUK at those four
successive times. Then we have

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st). (6)



Fig. 2. The round function Serpent1 in the bit-slice mode

3 Some properties of SOSEMANUK

In this section we view a byte as a basic data unit and give some basic properties
of SOSEMANUK from the view of byte units. First we introduce some notations.

Let x be a 32-bit word. We denote by x(i) the i-th byte component of x,
0 ≤ i ≤ 3, that is,

x = x(3) ∥ x(2) ∥ x(1) ∥ x(0),

where each x(i) is a byte, and ∥ is the concatenation of two bit strings. For
simplicity we write x(1) ∥ x(0) as x(0,1) and x(2) ∥ x(1) ∥ x(0) as x(0,1,2).

For any given 32-bit word x, the word x may have the different meanings in
different contexts as follows:

1. As an operand of the operator ⊕. Here x is a 32-bit string, and ⊕ is the
bitwise exclusive OR.

2. As an operand of the integer addition + or the modulo 232 addition �. Here
x denotes the integer

∑3
i=0 x

(i)(28)i.

3. As an element of the finite field F232 . Here x denotes the element x(3)α3 +
x(2)α2 + x(1)α+ x(0) in F232 , where α is defined as in equation (1).

Now we consider the SOSEMANUK algorithm from the view of byte units.
First we notice that the feedback calculation of the LFSR (see equation (2)) can
be represented in the byte form.



Lemma 1. Equation (2) can be written in the byte form as follows:

s
(0)
t+10 = s

(0)
t+9 ⊕ s

(1)
t+3 ⊕ β64s

(0)
t+3 ⊕ β239s

(3)
t , (2a)

s
(1)
t+10 = s

(1)
t+9 ⊕ s

(2)
t+3 ⊕ β6s

(0)
t+3 ⊕ β48s

(3)
t ⊕ s

(0)
t , (2b)

s
(2)
t+10 = s

(2)
t+9 ⊕ s

(3)
t+3 ⊕ β39s

(0)
t+3 ⊕ β245s

(3)
t ⊕ s

(1)
t , (2c)

s
(3)
t+10 = s

(3)
t+9 ⊕ β16s

(0)
t+3 ⊕ β23s

(3)
t ⊕ s

(2)
t . (2d)

Proof. By the definition of α, we have,

α4 + β23α3 + β245α2 + β48α+ β239 = 0.

It follows that
α−1 = β16α3 + β39α2 + β6α+ β64.

Let st =
∑3

i=0 s
(i)
t αi and st+3 =

∑3
i=0 s

(i)
t+3α

i. Then we have

αst = s
(3)
t α4 + s

(2)
t α3 + s

(1)
t α2 + s

(0)
t α

= s
(3)
t (β23α3 + β245α2 + β48α+ β239) + s

(2)
t α3 + s

(1)
t α2 + s

(0)
t α

= (β23s
(3)
t + s

(2)
t )α3 + (β245s

(3)
t + s

(1)
t )α2 + (β48x(3) + s

(0)
t )α+ β239s

(3)
t

and

α−1st+3 = s
(3)
t+3α

2 + s
(2)
t+3α

1 + s
(1)
t+3 + s

(0)
t+3α

−1

= s
(3)
t+3α

2 + s
(2)
t+3α

1 + s
(1)
t+3 + x(0)(β16α3 + β39α2 + β6α+ β64)

= β16s
(0)
t+3α

3 + (s
(3)
t+3 + β39s

(0)
t+3)α

2 + (s
(2)
t+3 + β6x(0))α+ (s

(1)
t+3 + β64s

(0)
t+3).

Combine the above equations and equation (2), and we immediately get the
desired conclusion. �

Second we observe the update of R1 and the output of the FSM and have
the following conclusions:

Lemma 2. Equations (3) and (5) also hold in the sense of modulo 2k for all
1 ≤ k < 32, that is,

R1
[k]
t = R2

[k]
t−1 �mux(lsb(R1t−1), s

[k]
t+1, s

[k]
t+1 ⊕ s

[k]
t+8), (3′)

f
[k]
t = (s

[k]
t+9 �R1

[k]
t )⊕R2

[k]
t , (5′)

where x[k] denotes the lowest k bits of x, and the operator � still denotes the
modulo 2k addition without confusion. In particular, the cases k = 8, 16 and 24
are considered in this paper.

Finally we observe the round function Serpent1 and have the following con-
clusion:



Lemma 3. For any 1 ≤ k ≤ 32, if the values of the k-th bit of each st+i

(i = 0, 1, 2, 3) are known, then the values of the k-th bit of each ft+i can be
calculated by the definition of Serpent1 given some known key stream, that is,

f ′
k = S−1

2 (z′k ⊕ s′k), (7)

where

f ′
k = ft+3,k ∥ ft+2,k ∥ ft+1,k ∥ ft,k,

s′k = st+3,k ∥ st+2,k ∥ st+1,k ∥ st,k,

z′k = zt+3,k ∥ zt+2,k ∥ zt+1,k ∥ zt,k,

and ft+i,k, st+i,k and zt+i,k are the k-th bits of ft+i, st+i and zt+i respectively,
i = 0, 1, 2, 3. Similarly, if the i-th bytes of each st+i are known, then we can
calculate the i-th bytes of each ft+i, i = 0, 1, 2, 3.

4 Execution of the attack

In this section we always assume that a portion of key stream words { zt } have
been observed, where t = 1, 2, · · · , N , and N is large enough for the attack to
work. For convenience, we denote by

A (*)
=⇒ B

the deduction of B from A by equation (*).
Before the description of the attack, we make the following assumption:

Assumption 1. The least significant bit of R11 is one, that is, lsb(R11) = 1.

The whole description of the attack on SOSEMANUK can be divided into
five phases as follows.

Phase 1. We first guess the total 159-bit values of s1, s2, s3, s
(0)
4 , R2

(0,1,2)
1

and the rest 31-bit values of R11.

Step 1.1 We first deduce s
(0)
10 , R1

(0)
2 , R22, s

(0)
11 and s

(1)
4 as follows:

{ s(0)1 , s
(0)
2 , s

(0)
3 , s

(0)
4 } (7)

=⇒ { f (0)
1 , f

(0)
2 , f

(0)
3 , f

(0)
4 } ,

{ f (0)
1 , R1

(0)
1 , R2

(0)
1 } (5′)

=⇒ s
(0)
10 ,

{R1
(0)
1 , R2

(0)
1 , s

(0)
3 , s

(0)
10 } (3′)

=⇒ R1
(0)
2 ,

R11
(4)
=⇒ R22,

{ f (0)
2 , R1

(0)
2 , R2

(0)
2 } (5′)

=⇒ s
(0)
11 ,

{ s(3)1 , s
(0)
4 , s

(0)
10 , s

(0)
11 } (2a)

=⇒ s
(1)
4 .



Step 1.2 Similar to Step 1.1, we further deduce s
(1)
10 , R1

(1)
2 , s

(1)
11 and s

(2)
4

as follows:

{ s(1)1 , s
(1)
2 , s

(1)
3 , s

(1)
4 } (7)

=⇒ { f (1)
1 , f

(1)
2 , f

(1)
3 , f

(1)
4 } ,

{ f (0,1)
1 , R1

(0,1)
1 , R2

(0,1)
1 } (5′)

=⇒ s
(0,1)
10 ,

{R1
(0,1)
1 , R2

(0,1)
1 , s

(0,1)
3 , s

(0,1)
10 } (3′)

=⇒ R1
(0,1)
2 ,

{ f (0,1)
2 , R1

(0,1)
2 , R2

(0,1)
2 } (5′)

=⇒ s
(0,1)
11 ,

{ s(0)1 , s
(3)
1 , s

(0)
4 , s

(1)
10 , s

(1)
11 } (2b)

=⇒ s
(2)
4 .

Step 1.3 Similar to Step 1.2, we further deduce s
(2)
10 , R1

(2)
2 , s

(2)
11 and s

(3)
4

as follows:

{ s(2)1 , s
(2)
2 , s

(2)
3 , s

(2)
4 } (7)

=⇒ { f (2)
1 , f

(2)
2 , f

(2)
3 , f

(2)
4 } ,

{ f (0,1,2)
1 , R1

(0,1,2)
1 , R2

(0,1,2)
1 } (5′)

=⇒ s
(0,1,2)
10 ,

{R1
(0,1,2)
1 , R2

(0,1,2)
1 , s

(0,1,2)
3 , s

(0,1,2)
10 } (3′)

=⇒ R1
(0,1,2)
2 ,

{ f (0,1,2)
2 , R1

(0,1,2)
2 , R2

(0,1,2)
2 } (5′)

=⇒ s
(0,1,2)
11 ,

{ s(1)1 , s
(3)
1 , s

(0)
4 , s

(2)
10 , s

(2)
11 } (2c)

=⇒ s
(3)
4 .

In this phase we have obtained s1, s2, s3, s4, s
(0,1,2)
10 , s

(0,1,2)
11 , R11, R1

(0,1,2)
2 ,

R2
(0,1,2)
1 and R22.

Phase 2. Since we have obtained s
(3)
1 , s

(3)
2 , s

(3)
3 and s

(3)
4 in phase 1, thus by

equation (7), we can calculate f
(3)
1 , f

(3)
2 , f

(3)
3 and f

(3)
4 , that is,

{ s(3)1 , s
(3)
2 , s

(3)
3 , s

(3)
4 } (7)

=⇒ { f (3)
1 , f

(3)
2 , f

(3)
3 , f

(3)
4 } .

Furthermore, by equations (5′) and (2d), we have

f
(3)
1 = (s

(3)
10 +R1

(3)
1 + c1 mod 28)⊕R2

(3)
1 , (8)

f
(3)
2 = (s

(3)
11 +R1

(3)
2 + c2 mod 28)⊕R2

(3)
2 , (9)

s
(3)
11 = s

(3)
10 ⊕ β16s

(0)
4 ⊕ β23s

(3)
1 ⊕ s

(2)
1 . (10)

where c1 = 1 if s
(0,1,2)
10 + R1

(0,1,2)
1 ≥ 224, or c1 = 0, otherwise; and c2 = 1 if

s
(0,1,2)
11 +R1

(0,1,2)
2 ≥ 224, or c2 = 0, otherwise.

By the assumption lsb(R11) = 1, we have R12 = R21� (S3⊕S10). It follows
that

R1
(3)
2 = R2

(3)
1 + (s

(3)
3 ⊕ s

(3)
10 ) + c3 mod 28, (11)

where c3 = 1 if R2
(0,1,2)
1 + (s

(0,1,2)
3 ⊕ s

(0,1,2)
10 ) ≥ 224, or c3 = 0, otherwise.

Combine equations (8), (9), (10) and (11), and then we have the equation

on the variable s
(3)
10 :

d = (s
(3)
10 ⊕ a) + (s

(3)
10 ⊕ s

(3)
3 ) + (f

(3)
1 ⊕ (s

(3)
10 + b mod 28)) + c mod 28, (12)



where a = β16s
(0)
4 ⊕ β23s

(3)
1 ⊕ s

(2)
1 , b = R1

(3)
1 + c1 mod 28, c = c2 + c3 and

d = f
(3)
2 ⊕R2

(3)
2 .

In equation (12), all variables except s
(3)
10 are known, since s

(3)
10 occurs three

times in the above equation, it is easy to verify that equation (12) has exactly

one solution. Denote its solution by s
(3)
10 . When s

(3)
10 has been obtained, we

deduce R2
(3)
1 , s

(3)
11 and R1

(3)
2 by equations (8), (10) and (9) respectively.

Up to now we have obtained s1, s2, s3, s4, s10, s11, R11, R21, R12 and R22.
Phase 3. In this phase we further deduce R13, R23, R14, R24, R15, R25,
R26, s5, s6, s12 and s13 as follows:

{R12, R22, s4, s11 }
(3)
=⇒ R13,

R12
(4)
=⇒ R23,

{ f3, R13, R23 }
(5)
=⇒ s12,

{ s2, s11, s12 }
(2)
=⇒ s5,

{R13, R23, s5, s12 }
(3)
=⇒ R14,

R13
(4)
=⇒ R24,

{ f4, R14, R24 }
(5)
=⇒ s13,

{ s3, s12, s13 }
(2)
=⇒ s6,

{R14, R24, s6, s13 }
(3)
=⇒ R15,

R14
(4)
=⇒ R25,

R15
(4)
=⇒ R26.

Phase 4. We guess both s
(0)
7 and s

(0)
8 . The following deductions are entirely

similar to phase 1, and we can recover both s
(1,2,3)
7 and s

(1,2,3)
8 .

{ s(0)5 , s
(0)
6 , s

(0)
7 , s

(0)
8 } (7)

=⇒ { f (0)
5 , f

(0)
6 , f

(0)
7 , f

(0)
8 } ,

{ f (0)
5 , R1

(0)
5 , R2

(0)
5 } (5′)

=⇒ s
(0)
14 ,

{ s(3)4 , s
(0)
7 , s

(0)
13 , s

(0)
14 } (2a)

=⇒ s
(1)
7 ,

{R1
(0)
5 , R2

(0)
5 , s

(0)
7 , s

(0)
14 } (3′)

=⇒ R1
(0)
6 ,

{ f (0)
6 , R1

(0)
6 , R2

(0)
6 } (5′)

=⇒ s
(0)
15 ,

{ s(3)5 , s
(0)
8 , s

(0)
14 , s

(0)
15 } (2a)

=⇒ s
(1)
8 ,

{ s(1)5 , s
(1)
6 , s

(1)
7 , s

(1)
8 } (7)

=⇒ { f (1)
5 , f

(1)
6 , f

(1)
7 , f

(1)
8 } ,

{ f (0,1)
5 , R1

(0,1)
5 , R2

(0,1)
5 } (5′)

=⇒ s
(0,1)
14 ,

{ s(0)4 , s
(3)
4 , s

(0)
7 , s

(1)
13 , s

(1)
14 } (2b)

=⇒ s
(2)
7 ,



{R1
(0,1)
5 , R2

(0,1)
5 , s

(0,1)
7 , s

(0,1)
14 } (3′)

=⇒ R1
(0,1)
6 ,

{ f (0,1)
6 , R1

(0,1)
6 , R2

(0,1)
6 } (5′)

=⇒ s
(0,1)
15 ,

{ s(0)5 , s
(3)
5 , s

(0)
8 , s

(1)
14 , s

(1)
15 } (2b)

=⇒ s
(2)
8 ,

{ s(2)5 , s
(2)
6 , s

(2)
7 , s

(2)
8 } (7)

=⇒ { f (2)
5 , f

(2)
6 , f

(2)
7 , f

(2)
8 } ,

{ f (0,1,2)
5 , R1

(0,1,2)
5 , R2

(0,1,2)
5 } (5′)

=⇒ s
(0,1,2)
14 ,

{ s(1)4 , s
(3)
4 , s

(0)
7 , s

(2)
13 , s

(2)
14 } (2c)

=⇒ s
(3)
7 ,

{R1
(0,1,2)
5 , R2

(0,1,2)
5 , s

(0,1,2)
7 , s

(0,1,2)
14 } (3′)

=⇒ R1
(0,1,2)
6 ,

{ f (0,1,2)
6 , R1

(0,1,2)
6 , R2

(0,1,2)
6 } (5′)

=⇒ s
(0,1,2)
15 ,

{ s(1)5 , s
(3)
5 , s

(0)
8 , s

(2)
14 , s

(2)
15 } (2c)

=⇒ s
(3)
8 .

Phase 5. Finally we deduce s9 as follows:

{ s5, s6, s7, s8 }
(7)
=⇒ { f5, f6, f7, f8 } ,

{ f5, R15, R25 }
(5)
=⇒ s

(3)
14 ,

{R15, R25, s7, s14 }
(3)
=⇒ R1

(3)
6 ,

{ f6, R16, R26 }
(5)
=⇒ s

(3)
15 ,

{R16, R26, s8, s15 }
(3)
=⇒ R17,

R16
(4)
=⇒ R27,

{ f7, R17, R27 }
(5)
=⇒ s16,

{ s6, s15, s16 }
(2)
=⇒ s9.

Up to now we have recovered all internal states s1, s2, · · · , s10, R11 and R21
of the SOSEMANUK algorithm. And then we test the correctness of those values
by producing a key stream using the above recovered values and comparing it
with the known key stream. If the key streams agree, it shows that the recovered
states are correct. If the key streams don’t agree, then we will repeat the above
process until the correct internal states are found.

The process of the above attack is demonstrated in Table 1.

5 On time and data complexities of our attack

The execution of the above attack needs to guess a total of 175 bits of the internal
states, including 159 bits of the internal states at phase 1 and 16 bits at phase 4,
and then all the rest of the internal states can be deduced under the assumption
lsb(R11) = 1. Since the probability for lsb(R11) = 1 to hold is 1

2 , thus the time
complexity of the above attack on SOSEMANUK is O(2176). In the attack we



Table 1. The process of our attack

Assume that lsb(R11) = 1

Steps Guessed internal states Determined internal states Num. of States

Phase 1

s1, s2, s3, s
(1)
4 , R1∗1 , R2

(0,1,2)
1 2159

Step 1.1 s
(0)
10 , R1

(0)
2 , R22, s

(0)
11 , s

(1)
4 2159

Step 1.2 s
(1)
10 , R1

(1)
2 , s

(1)
11 , s

(2)
4 2159

Step 1.3 s
(2)
10 , R1

(2)
2 , s

(2)
11 , s

(3)
4 2159

Phase 2 s
(3)
10 , R2

(3)
1 , R1

(3)
2 , s

(3)
11 2159

Phase 3
R13, R23, s12, s5, R14, R24

s13, s6, R15, R25, R26

2159

Phase 4 s
(0)
7 , s

(0)
8 R1

(0,1,2)
6 , s

(0,1,2)
14 ,s

(0,1,2)
15 ,s7, s8 2175

Phase 5 R1
(3)
6 , s

(3)
14 , s

(3)
15 , R17, R27, s16, s9 2175

Note: R1∗1 denotes the 31 bits of R11 from the second significant bit to the most significant bit.

only make use of 8 words of the known key stream, and during the verification
we need about another 8 words of the known key stream to verify whether the
guessed internal states are correct or not. Since by shifting the keystream by 4
words we can test two cases, thus the total data complexity is about 20 words
of the known key stream.

6 Further discussion on the assumption lsb(R11) = 1

In the above attack, we make the assumption lsb(R11) = 1, which will guarantee
that equation (12) in phase 2 has exactly one solution. However it should be
pointed out that this assumption is not necessary for our attack to work. In fact,

we directly guess the 160-bit values of s1, s2, s3, s
(0)
4 , R11 and R2

(0,1,2)
1 in phase

1. When lsb(R11) = 0, we have R12 = R21 � s3 in phase 2. It follows that

R1
(3)
2 = R2

(3)
1 + s

(3)
3 + c4 mod 28, (11′)

where c4 = 1 if R2
(0,1,2)
1 + s

(0,1,2)
3 ≥ 224, or c4 = 0, otherwise.

Similar to equation (12), combine equations (8), (9), (10) and (11′), and then

we have the equation on the variable s
(3)
10 :

d′ = (s
(3)
10 ⊕ a′) + (f

(3)
1 ⊕ (s

(3)
10 + b′ mod 28)) + c′ mod 28, (12′)

where a′ = β16s
(0)
4 ⊕ β23s

(3)
1 ⊕ s

(2)
1 , b′ = R1

(3)
1 + c1 mod 28, c′ = s

(3)
3 + c2 +

c4 mod 28 and d′ = f
(3)
2 ⊕ R2

(3)
2 . Since s

(3)
10 occurs two times in equation (12′),

it is easy to verify that equation (12′) has either no solution, or 2k solutions for
some non-negative integer k. When equation (12′) has no solution, we will come



back to phase 1 and repeat guessing new values of those internal states. When
equation (12′) has 2k solutions for some integer k, we write down all solutions,
and then for each solution we go on the deductions according to phases 3, 4 and
5. Finally we obtain 2k different values of the internal states of SOSEMANUK
and verify their correctness respectively.

Now we estimate the time and data complexity of the above method. In
phase 1 we guess total 160-bit values of the internal states instead of 159-bit
values. 2159 of those values satisfy lsb(R11) = 1 and another 2159 values satisfy
lsb(R11) = 0. As for 2159 values satisfying lsb(R11) = 1, we have 2159 possible
values of s1, s2, s3, s4, s10, s11, R11, R21, R12 and R22 after phase 2. As for
2159 values satisfying lsb(R11) = 0, since equation (12′) has the same number
of solutions as that of the possible values of the variables when all the variables

except s
(3)
10 go through all possible values, thus we have also 2159 possible values

of s1, s2, s3, s4, s10, s11, R11, R21, R12 and R22 after phase 2. Therefore we
have total 2160 possible values. For each possible values, we go on deducing
according to phases 3, 4 and 5, hence the total time complexity is still O(2176).
But without the assumption, the data complexity reduces to 16 words of the
known key stream.

7 Conclusion

In this paper, we presented a byte-based guess and determine attack on SOSE-
MANUK, which only needs a few words of key stream to recover all internal
states of SOSEMANUK with time complexity O(2176). The results show that
when the length of an encryption key is larger than 176 bits, the guess and
determine attack is more efficient than an exhaustive key search.
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