Improved Generic Attacks on Unbalanced Feistel
Schemes with Expanding Functions

Emmanuel Volte!, Valérie Nachef!, and Jacques Patarin?

! Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France
2 PRISM, University of Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France
emmanuel.volte@u-cergy.fr, valerie.nachef@u-cergy.fr
jacques.patarin@prism.uvsq.fr

Abstract. “Generic” Unbalanced Feistel Schemes with Expanding Func-
tions are Unbalanced Feistel Schemes with truly random internal round
functions from n bits to (k—1)n bits with k£ > 3. From a practical point of
view, an interesting property of these schemes is that since n < (k—1)n
and n can be small (8 bits for example), it is often possible to store these
truly random functions in order to design efficient schemes (example:
CRUNCH cf [?]). Attacks on these generic schemes were studied in [?]
and [?]. As pointed in [?] and [?], there are surprisingly much more pos-
sibilities for these attacks than for generic balanced Feistel schemes or
generic unbalanced Feistel schemes with contracting functions. In fact,
this large number of attack possibilities makes the analysis difficult. In
this paper, we shall methodically analyze again these attacks. We have
created a computer program that systematically analyze all the possible
attacks and detect the most efficient ones. We have detected a condi-
tion on the internal variables that was not clearly analyzed in [?], and
we have found many new improved attacks by a systematic study of all
the “rectangle attacks” when k& < 7, and then we have generalized these
improved attacks for all k. Many simulations on our improved attacks
have also been done and they confirm our theoretical analysis.

Key words: Unbalanced Feistel permutations, pseudo-random permutations,
generic attacks on encryption schemes, Block ciphers.

1 Introduction

A classical way to construct permutation {0,1}" to {0,1}" is to use Feistel
schemes with d rounds built with round functions fi,..., f4. In order to get
“Random Feistel Scheme”, these round functions need to be randomly chosen.
“Generic attacks” on these schemes are attacks that are valid for most of the
round functions.

The most usual Feistel schemes are when N = 2n and the functions f; are
from {0,1}" to {0,1}". Such schemes are called “balanced Feistel Schemes” and

they have been studied a lot since the famous paper by M.Luby and C.Rackoff
[?]. Many results have been obtained on the security of such classical Feistel
schemes (see [?] for an overview of these results). When the number of rounds is
lower than 5, we know attacks with less than 2V (= 22") operations: for 5 rounds,
an attack in O(2") operations is given in [?] and for 3 or 4 rounds an attack in
V2™ is given in [?],[?]. When the functions are permutations, similar attacks for
5 rounds are given in [?] and [?]. Therefore, for security, at least 6 rounds are
recommended, i.e. each bit will be changed at least 3 times.

When N = kn and when the round functions are from (k — 1)n bits to n
bits, we obtain what is called an “Unbalanced Feistel Scheme with contracting
functions”. In [?], M.Naor and O.Reingold give security when for the first and
the last rounds pairwise independent functions are used instead of random con-
tracting functions. In [?] security proofs for these schemes are also proved. At
Asiacrypt 2006 ([?]) generic attacks on such schemes have been studied.

When N = kn and when the round functions are from n bits to (kK — 1)n
bits, we obtain what is called an “Unbalanced Feistel Scheme with expanding
functions”, also called “complete target heavy unbalanced Feistel networks” (see
[?]). Generic attacks on Unbalanced Feistel Schemes with expanding functions
is the theme of this paper. One advantage of these schemes is that it requires
much less memory to store a random function of n bits to (k — 1)n bits than
a random function of (k — 1)n bits to n bits. Unbalanced Feistel Schemes with
expanding functions together with the Xor of random permutations have been
used in the construction of the hash function CRUNCH for the cryptographic
hash algorithm competition organized by NIST in 2008 (cf [?]). Our results give
a lower bound for the number of rounds used to construct this hash function.

Other kinds of Feistel Schemes are used for well known block ciphers. For
example, BEAR and LION [?] are two block ciphers which employ both expand-
ing and contracting unbalanced Feistel networks. The AES-candidate MARS is
also using a similar structure.

Attacks on Unbalanced Feistel Schemes with expanding functions have been
previously studied by C.S. Jutla ([?]) and improved attacks were given in [?].
However some of the attacks presented in [?] need too many conditions on the
internal variables. These attacks work, but with weak keys. In this paper, we
make a systematic study of the equations between the internal variables to avoid
unlikely collisions on the round functions. Thus we get additional conditions.
Nevertheless, with more conditions, we show that it is still possible to attack the
same number of rounds as in [?]. In Known Plaintext Attacks (KPA), we obtain
the same complexity except for d = 3k—1 where our complexity is slightly greater
than in [?] but we do not have too many conditions on the internal variables. For
Non-Adaptive Chosen Plaintext Attacks (CPA-1), we give a general method to
obtain CPA-1 from KPA. Then we get complexities that are, most of the time,
better than the ones in [?]. We also show that the best CPA-1 are not derived
from the best KPA. For k < 7, we have generated all the possible attacks, thus
the attacks presented here are the best possible attacks. We believe that the

generalization of these attacks for any k still gives the best possible attacks. We
also provide simulation results for k£ = 3.

The paper is organized as follows. First we introduce some notation and
definitions. Then we give an overview of the attacks. In Section 4, we show how
we have generated all the possible attacks for k£ < 7. In Section 5, we introduce
the different kinds of attacks we will used. These attacks named TWO, R1, R2,
R3 and R4 generalize the attacks of [?]. Then in Section 6, we present R1, R2
KPA attacks. In Section 7, we show how to get CPA-1 from KPA. In Section 8,
we study R1 and R2 CPA-1 and we give the results of our simulations. Finally,
all the results are summarized in Section 9.

2 Notation

2.1 Unbalanced Feistel Schemes Notation

We first describe Unbalanced Feistel Scheme with Expanding Functions F,g
and introduce some useful notations. Fg is a Feistel scheme of d rounds that
produces a permutation from kn bits to kn bits. At each round j, we de-
note by f; the round function from n bits to (k — 1)n bits. f; is defined as
i = (f;l),ff),...,f;k_l)), where each function f]@ is defined from {0,1}"
to {0,1}". On some input [I1, I, ..., I}], F produces an output denoted by
[S1,S2,...,Sk] by going through d rounds. At round j, the first n bits of the
round entry are called X7~1. We can notice that I; = X°. We compute f;(X7~1)
and obtain (k — 1)n bits. Those bits are xored to the (k — 1)n last bits of the
round entry and the result is rotated by n bits.

The first round is represented on Figure 1 below:

Fig. 1. First Round
n bits (k — 1)n bits
— <

Vv

k—1)n bi
- ()n bits)(

>

‘We have

xX0=1

X'=Lef(0n)

X =Le fi7(L)e ;Y (x)

X =no P e 27X e f£7(x?)

More generally, we can express the X7 recursively:
¢ —1 i—
vg < k7 XE — I£+1 @ fz(€ +1)(X 1)
V€ Z 0’ Xk:-‘r{ Xf EB fgk i+1) (X§+z 1)

After d rounds (d > k + 1), the output [S1,Ss,...,Sk] can be expressed by
using the introduced values X7:

Sk _ del
— k— —
S :Xd 2 f(1)(d 1)
Si_ — xd-3 @f(k 1)(2) ® flgk—Q)(del)
d—1
Sg = Xd_l_k""f . Ja) f‘(g‘i‘d i— 1)(X1)
i=d—k+E&
d—1 .)
S :dek ‘(d*l) Xt
' a1 S (XD

We don’t need another notation, but for a better understanding we introduce
anotation for the intermediate values. After round p, we obtain [M}, MY, ..., M}].
So we have MY = XP, and for all i € {1,2,...,k} M? = I, and M@ = S,.

2.2 Differential Attack Notation

Our attacks use sets of points. A point is a plaintext/ciphertext pair. The total
number of points gives us the complexity of the attack. From the set of points
we extract all the o-tuple of distinct points P(1), P(2) ... P(y), and we count
how many @-tuple verify some equalities (see Figure 2 for an example).

Now, we can describe an attack with a differential path. With the path we can
explain why the number of p-tuples that match the conditions is more important
for a F; ,f scheme than for a random permutation. We introduce more definition.
After p rounds, we define “horizontal equalities” on part M; of the output M
as MP(1) = MF(3) = ... = MP(p—1) and MF(2) = MF(4) = ... = MF(p).
Let £ = % — 1. “Vertical equalities” on part M; are given by Vj, 0 < j <
0, MP(2j +1) = MP (25 + 2). We also define “differential equalities” on part M;

Fig. 2. Example of equalities for ¢ = 6
Horizontal conditions

L(1) = I (3) 1(3) = I(5)
I(1) [S(1) 1(3) [S(3) 1(5) [S(5)
Vertical | s;(1)=55(2) S3(3)=53(4) S3(5)=53(6)
conditions| 2(1)=12(2) I2(3)=I2(4) I2(5)=I2(6)
1(2) [S(2) }— —————————— I(4) [S(A4)fF---------- 1(6) [S(6)
(=% -1=2

by Vj, 0<j < €—1, MP(2j + 1) ® MP(2) +2) = MP(2j +3) & MP(2j +4).
Notice that when we have the differential equalities, in order to get the horizontal
equalities, it is enough to have the first sequence of equalities, and for the vertical
equalities, it is enough to get only the first one. When we impose some equalities,
we call them conditions (they are satisfied with probability 2%) This may imply
that other equalities will be satisfied with probability 1. On the input and output
variables we will always have ¢ differential conditions and either horizontal or
vertical conditions. On the internal variables, we will get horizontal or vertical
equalities and moreover we will impose more vertical or horizontal conditions.
We need to always have differential equalities. When we impose new conditions
on the internal variables, we must check that we do not add too many of them.
We now give an example with an attack over the F¥ scheme. See Table 1.

Table 1. FY attack

i (round)|Mj (2j+1)®M;(2j+2) Ms(2j+1)®M;5(25+2) M5(2j+1)SM5(2j+2)
0 0 0 Ay
1 0 Aq 0
2 OAl o(0
3 Ag As Ay
4 0 .0 Ao
5 0 As 0
6 As 0 0
The “.” in this table means that there are horizontal equalities or conditions.

The “0” in the table means that there are vertical equalities or conditions. This
notation will be used for any attack. We can count the total number of conditions
for the different part: n; = 3¢ + 2 (number of input conditions), nx = 2¢ + 2
(number of internal conditions), ng = 3¢ + 2 (number of output conditions).
If a ¢-tuple follow the path, i.e. if it satisfies both the input and the internal
conditions, then it will verify the output conditions. But there exist other ways

to verify both these output conditions and the input conditions. So, we can prove
that the number of ¢-tuple will be greater for a F permutation.

3 Example: CPA-1 attack on Fy

We present here a first example where we have obtained a new and better attack
than previously known for F¥. In the next sections a complete analysis will be
given for more general parameters. This attack is the one described in Table 1
with ¢ = 4 and so £ = 1. Figure 3 illustrates this attack. It explains the terms
of horizontal and vertical equalities. Moreover, conditions are represented by a
solid edge and equalities that are automatically satisfied by a dotted edge.

We will generate all the possible messages [I1, I2, I3] such that I; = 0 and the
first n/2 bits of I are 0. So, we will generate exactly m = 23"/2 messages. How
many 4-tuple of points will verify the input conditions ? For the first message
we have m possibilities. For the second we have only 2" possibilities because I
and I are imposed by the first message. For the third point we have again m
possibilities, and then we have no choice for the last point. Therefore there are
m? x 2" = 24" 4-tuple of points that satisfy all the input conditions. For a F¥
scheme, each of these tuple will satisfy at random the 4 internal conditions with
a probability equal to 1/2%". So, the expected number of 4-tuples that satisfy
also the output conditions will be approximatively 1. Since there are 5 output
conditions, the expected number of 4-tuple that satisfy the input conditions and
the output conditions will be much lower for a random permutation. So, this
CPA-1 attack will succeed with a high probability. We have found here a CPA-1
attack with O(23"/2) complexity and O(2%"/?) messages. This is better than the
O(2°/3) found in [?]. To find this complexity we can also use Table 3 with r = 2,
ny =4,{=1and k = 3.

Moreover we have checked that all the other path conditions are verified (see
Section 4) and this attack has been simulated by computer. For example, with
n = 10 and 1000 attacks, we were able to distinguish 575 F¢ schemes from a
random permutation, so the percentage of success is about 57.5%.

Fig. 3. The F? attack

Iy, I>
(Therefore X*)

4 Generation of all possible attacks for £ < 7

In this section we describe the way we generate all the possible attacks for £ < 7.
First we choose a value for k, then we increase the value of d, beginning with
d = 1, until we find no possible attacks. All the attacks (or sometimes only the
best attacks when the number is too much important) are put in a specific file
corresponding to the values of k and d.

To find an attack, we need to construct all the differential paths. There are two
constraints for this construction:

— In the same round, it’s not possible to have k vertical conditions, because it
leads to a collision between the points, i.e. P(1) = P(3) = --- = P(p — 1)
and P(2) = P(4) =--- = P(p).

— In the same round, it’s not possible to have k horizontal conditions, because it
also lead to a collision between the points, i.e. P(1) = P(2) and P(3) = P(4)
and ... P(¢ —1) = P(yp).

When the path is constructed, we look if the attack is valid. To be valid, an
attack must overcome five constraints.

1. The complexity of the attack must be smaller than the total number of
nr+nx k

possible messages:

N

There must be less internal conditions than output conditions: nx < ng

3. If nx = ng then ng must be different from the number of final consecutive
vertical conditions in the output conditions. If not, it is easy to prove that
the output conditions are completely equivalent to the internal conditions.
So, the output conditions will not happen more often than for a random
permutation.

4. The number of equalities inside the path must be smaller than the number
of variables included in them. Moreover we do not consider equalities when
a variable occurs only once for all the equalities.
Let us take an example. The F¥ attack given in section 2.2. The equations
are: f3 (Xo040)8 f;7(X) = Ao, £7 (@ Ane 7 (X0) = A5,/ (X
Ag) B fil)(Xg) = As, ff)(Xg @ A2) @ fiz) (X3) = Ay. We have 4 equations
and 5 variables Xo, Ay, As, A3, X3. All the variables are used at least in 2
equalities, so we cannot simplify.

5. There is no bottleneck in the equalities, i.e. any subset of equalities must

have a greater number of variables. If it is not the case, the attack will

only work with very particular functions (weak keys). This last point is very

difficult to carry out without the help of a computer.

Finally, all the possible attacks are sorted in function of their complexity (KPA
or CPA-1). For example there is 71 different attacks on the F¥ scheme, and 20
attacks with a CPA-1 complexity equal to 23/2.

All possible attacks are given in an extended version of this paper. In the next
sections, we generalize for any k the best attacks (KPA and CPA-1) obtained
for kK < 7.

5 Different kinds of attacks: TWO, R;, Ry, R3 and R4

5.1 TWO Attacks

The TWO attack consists in using m plaintext/ciphertexts pairs and in counting
the number N/ Fé of couples of these pairs that satisfy the relations between the
input and output variables. We then compare N, Fd with Nperm where Nperm

is the number of couples of pairs for a random permutation instead of F,f. The
attack is successful, i.e. we are able to distinguish F,f from a random permutation
if the difference |E (N, pa)—E (Nperm)| is much larger than the standard deviation
Operm and than the standard deviation Opd, where E denotes the expectancy
function.

These attacks give the best attacks from 1 round to k + 2 rounds. They are
studied in [?]. Their complexity is summarized in Section 9.

5.2 R1 Attacks

Here we have vertical conditions on the input and output variables. These attacks
are more general than the attacks named R1 in [?] since we allow more vertical
conditions on the input and output variables. These attacks were first described
by Jutla ([?]). With our differential notation, we have:

LI L[L[Tk Sil. . [Sk—v[Sk—vt1]. .- Sk
Round 0[0]...[0]AY%, ,[...[AY[Round d[A{[...[A_T 0 [...][0

Thus, ny = kl+r ,nx =tl+w ,ng = kf+v. Here n; denotes the conditions on
the input variables. £ = § — 1. The number of vertical conditions on the input
variables is r. ny denotes the number of conditions on the internal variables.
We use t for horizontal conditions and w for vertical conditions. Similarly, ng
and v denote respectively the number of conditions and the number of vertical
conditions on the output variables. Then the number of rounds is given by r +
t + w. When ny < ng, we can easily obtain a sufficient condition of success
(without computing the standard deviation), since in that case we will have for
most permutation about 2 times more solutions with F,gl than with a random
permutation. Here this gives the condition: (k — ¢)¢ > w — v. In order to avoid
weak keys, the number of equations with the internal variables must be smaller
than or equal to the number of internal variables. This condition was not always
satisfied in [?]. For R1 attacks, it is easy to check that the number of equations
is given by t(k — 1) and the number of variables is k(¢ + 1) — r — w. Thus we get

ny+nx

the condition: 7 4+ w < ¢ + k. The complexity of such an attack is 2 " This

. . nr+nx : (k+t)l+r+w
implies ST <kioie 55— <k

5.3 R2 Attacks

Here we have horizontal conditions on the input variables and vertical conditions
on the output variables. Again these attacks are more general than the attacks
named R2 in [?] since we allow more horizontal conditions on the input variables
and more vertical conditions on the output variables. We have:

L L Ly |- I Sil. [Sk—v[Sk—vi1]. - - |Sk
Round 0].A9[... [LA%]A ,[...[AY[Round d[A][...[AT_ T 0 [...[0

u

Thus, ny = (k+ u)l, nx = t{ + w, ng = kf + v. The number of horizontal
conditions on the input variables is denoted by w. The number of rounds is
given by u + t + w. The condition ny < ng is equivalent to (k —)¢ > w — v.
For R2 attacks, it is easy to check that the number of equations is given by
(t +1)(k — 1) and the number of variables is k(t + 2) — w. Thus we get the

nrt
7]

condition: w < t + k + 1. The complexity of such an attack is 2 " This

(k+t+u)l4+w S k.

: : nrt+nx ;
implies i <k, ie. T

5.4 R3 and R4 Attacks

We describe briefly, R3 and R4 attacks. It is easy to get the number of rounds
and the conditions on the number of equations and variables.

For R3 attacks, we have vertical conditions on the input variables and horizontal
conditions on the output variables. This gives:

Il...Ir Ir+1... Ik Sl...Sk,S Sk75+1... Sk
Round 0[0 ... [0[A",[.-.[AY[Round d[A][. .. [AF__[AT_ [[A?

and ny =kl +r, nxy =t +w, ng = (k+ s)L.
For R4 attacks, we have horizontal conditions on the input and output variables.
This gives:

Iy || Ly [Ly |- | Ik S| |Sk—s| Sk—st1 |---| Sk
Round 0[.A9[...[.A]|AY_ ... [AY[[Round d|A][...[A?__ .Ag_s_H AL

u

and ny = (k +u)l, nx =tl +w, ng = (k+ s)L.

6 Best KPA attacks: R;, R>

In this section we describe the best attacks we have found. As mentioned before,
we know that for £ < 7, they are the best possible attacks. We will mostly
describe one example of R2 attacks since for any round there are many possible
R2 attacks that give the best complexity. It can be noticed that in KPA, there
is a symmetry between R2 and R3 attacks. Thus there always exist R2 and
R3 attacks with the same complexity. Sometimes, it is also possible to have R1
attacks. Most of the time, R4 attacks are worse. We give attacks from k + 3
rounds to 3k — 1 rounds since from 1 to k& + 2 rounds, TWO attacks are most
of the time better and they are described in [?]. In all our attacks, it is easily
checked that the conditions given in the previous section are satisfied. Moreover,
we always look for attacks where the number of points is minimum. Our best
R2 KPA attacks are summarized in Table 2:
Remarks:

1. We have the following R1 attacks:

Table 2. Best known KPA on F{, for any k > 3

d values ny nx ns £|Complexity
k+2q € [k+3,2k—2] |(2k—1)¢ @+q+1 kl+qr1|1] 257
k+2q+1 € [k+3,2k—2] |(2k—1)¢ g+ q+2 ki+gt2(1| o5tn
k+2q € [2k—1,3k—2] |(2k—1)¢|(g — |55)0+ q + [EEL | ke+k—1]1] 2°5"
k+2q+1 € [2k—1,3k—2]|(2k—1)e|(qg — [E53])0 + q + [B2 | [ke+k—1[1] 25"
3k — 1 kt+0 ke + 2k — 1 kb+k—1|k| 2~ zer2)m

(a) When k+3 <d <2k —2and d=k+ 2q, we set

ny=kl+k—1,

ng=kl+q+1

It is possible to choose ¢ = 1 and the complexity is also Pl
(b) When 2k —1 <d <3k —2 and d = k + 2¢, we set

ny =kl + 2,

nx =gl +k+q—2,

ng=k+k—-1

The complexity is still 2¥", but ¢ is greater than 1.

2. In [?], Jutla gave a R1 attack on 3k — 3 rounds but the complexity that we
obtain with a R2 attack here is better. It is possible to perform a R1 attack
on 3k — 2 rounds just by adding a vertical condition on the input variables
to the attack on 3k — 3 rounds and the we obtain the same complexity as
the one we get with a R2 attack. Due to the conditions between the number
of equations and internal variables, it is not possible to use the same idea
for 3k — 1 rounds. In this last case, we have R2 (and of course R3) attacks.

7 Way to transform KPA Attacks into CPA-1 Attacks

We have analyzed all the possible situations and we are now able to present
formulas that give us directly the CPA complexity depending on the initial
conditions. We call u the number of horizontal conditions, r the number of
vertical condition and § = |u — r|. So we can distinguish four cases:

Caselu=0: 00..0 A .. A,
——
T’“O”
'Z,L“.”
Case2r=0: .A; .A,

(1))

u .

Case 3 u <r:
T“O”

w9
u .

Case 4 u >r:

Ay Auire Ay

d=r—u

—N—
0.0..00..0 A4, ... A,
—_—

0.0...0 .41 ... Ay Asire. Ay

r LLO” 5:1&—7"

Table 3. KPA to CPA

Conditions log,. (CPA)
nx nx
= X k- L
v=0 (r2 =" (12

r vertical conditions X >k—r i e
€42 t+1
nx nx
- L S —
r=90 EThR (+2

u horizontal conditions N w

£+2 2

(C+2)(k—7) > X
T nx Z—|—2

L+2)(E—r)+(+1)0 >nx nx —k+r
r#0andu#0 |u<r| and ({+2)(k—r)<nx t+1

(+2)(k—r)+(l+1)0 <nx|nx —k+7—L(k—u)

u horizontal conditions (L+2)(k—u) >nx %

and (L+2)(k—u)+20 >nx nx — Uk —u)

r vertical conditions |u > 71| and ({4 2)(k —u) <nx 2
(l+2)(k—u)+20<nx [nx—k+r—~LKk—u)

We can notice that the best CPA-1 attacks do not always come from the
best KPA attacks. Nevertheless, if we want to express the CPA complexity
with the KPA complexity, we can use the following formula: log,. (KPA) =
r+ (u+k)l+nx

2042 '
For all the CPA-1 Attacks we found, we prove that the best choice is to keep the
first bits constant and generate all the possible messages with the same first bits.

Let’s show how we prove it for Case 1. The best way to choose messages is
to keep some of the bits constant (for example equal to zero) and consider all
the possible combination for the other bits. We call b the number of varying bits
among the first rn bits, and we call 8 the number of varying bits among the last
(k — r)n bits. So we have 0 < b < rn and 0 < 8 < (k — r)n, and this allow us
to generate 2°77 points (plaintext/cyphertext pair). Now we count how many
p-tuples M°(1), ..., M°(¢p) of points will verify the input conditions. For M°(1)
we have 2017 possibilities, for M?(2) only 27 — 1 ~ 2 possibilities, because the
first 7n bits are imposed by M°(1). For M°(3) we have again 208 — 2 ~ 2048
possibilities. For M(4) only one possibility : M°(4) = M°(3)&(M°(1)®M°(2)).
We continue like this until we reach the last two points. For M°(p — 1) we have
again almost 2°+7 possibilities, and for M° () only one possibility. So, the total

number of @-tuples is (2b+5)¢/2 x 28 = 200+B)(E+1)+8 The complexity of the
CPA-1 is equal to 2°t#. We want this number to be as small as possible, and

at the same time we want to generate a maximum of p-tuples that satisfy the
input conditions. So, we want to have 3 as large as possible. Each ¢-tuple has a
probability equal to 1/2"X™ to satisfy the internal conditions. In order to have a
reasonable chance to realize these conditions, we must have (b+ 8)({+1)+ 8 =
nx -n. If b =0 we get 8 = 7%n. But this is possible only if 8 < (k —7)n,
ie. if ZTX2 < k — r. If we have ZTXQ > k — r then we must take the maximum
possible value for 8: 8 = (k — r)n and that gives us a CPA-1 complexity equal
nx —k+

to 208 = 9T,
All the cases are summarized in Table 3.

8 Best CPA-1 Attacks: R;, R,. Simulation.

8.1 CPA-1 attacks

In this section, we describe the best CPA-1 that we have obtained. Again for
k <7 we know that we have the best possible attacks. Except for 3k — 1 rounds,
we obtain a better complexity than in [?]. The best CPA-1 are generally R2
attacks. Sometimes R1 attacks exist with the same complexity. It is interesting
to note that the best CPA-1 do not come from the best KPA. We will use the
study of CPA-1 made in Section 7. We will describe CPA-1 for k+3 < d < 3k—1
since for d < k + 2, the best attacks are the TWO attacks given in [?]. Again
we will give an example of such an attack for each round. We notice that for the
same conditions on the input and output variables, we can find several attacks:
the horizontal and vertical conditions on the internal variables can be displayed
differently inside the attack, but we must respect the conditions between the
number of equations and variables at each step of the attack. An example is
given at the end of this section. Our best R2 CPA-1 attacks are summarized in
the following table:

Table 4. Best known CPA-1 on F, for any k > 3

d values nr nx ns ¢ |Complexity
3n
k+3 kC+ (k—1)¢ (+3 K411 22
k+4 ké+ (k—2)¢ 20+ 4 ke+2| 1 22n
k+5 ke + (k—2)¢ 2045 ke+2| 1 25m/2
2
k+2q € [k+6,3k—4] |ke+(k—q)| (q—1)e+2q+1 | kt+1 |g—1| 27"
2
k+2q+1 € [k+7,3k—5]k0 + (k — q)f| (q—1)+29+2 |ke+1 |g—1| 2%
(k—=1)k
3k —3 kl+¢ (k—2)(+2k—2 | k41 |k—1| 2 =1 "
3k — 2 ke + (k — 1)0|(k— |2) e+2k— 551 |ke+k—1| 1 | 20=bn
3k—1 Kt + ¢ (k—1)0+2k—1 |kl+k—1| k | 20:-2)"

Remark. For d =k + 3,k + 4,k + 5 and 3k — 2, there exist R1 attacks with
the same complexity and the same number of points.

8.2 Overview of the R2 CPA-1 Attack on F,f’k_l

We did a simulation of our best CPA-1 Attack. The input and output conditions
were the following:

I | |...| I S11|S2]. .. |Sk
Round 0[.A?A3]. .. [A%Round d|A{[[0]...] 0

Several different differential paths match with these input and output conditions.
For example let’s see all the R2 path for the F§ and F}'permutations. See Table 5
and Table 9 in Appendix A.

Table 5. All the paths for the R2 attack against F5, ¢ = 8

0[.A1 As Az 0].A1 Ay As
110 0 .44 11 0 As .Aq
210 A1 O 21.A4 A1 O
3[.A1 0 O 3] 0 0 .Ay
Path 1: 4| 0 Ay .A, Path 2: 4] 0 Ay O
5.A4 A1 0 5.4A4 0 O
6/ 0 0 .Ay 6/ 0 0 .Ay
710 Ay O 710 Ay O
8As 0 O 8A4 0 O

k |3]4]5]6] 7
pathH2‘8‘27‘89‘296
see that, the greater k is, the better the attacks work.

We counted the number of paths for k£ < 7: We will

8.3 Experimental results

We did simulations of these CPA-1 attacks. For each simulation, we generate a
random Feistel scheme with 20 rounds, and a F’ ,‘: k=1 gcheme. For both schemes,
we compute 2(F=1/2" ciphertext /plaintext pairs, by varying only the last (k —
1/2)n bits. After this, we extract all the couples of points that satisfy both input
and output conditions. We sort these couples of points in order to count how
many ¢-tuples of points match the input and output condition. If we found ¢
couples of points that satisfy all these conditions with ¢ > ¢/2, we count as if we
have found #;/2)1 p-tuples, because this is the number of p-tuples we can take
out these points, by changing the position of the couple of points. Once this is
finished, we compare the number found for each permutation. Most of the time,
that enables us to distinguish between them. See Table 6.

9 Summary of the attacks

In Tables 7 and 8, we give the complexity of the attacks we have found. For
k < 7, since we have generated all the attacks, these are the best possible attacks.

Table 6. Experimental results for F’ sk -t

n| k |kn|% of success|% of false alarm|# iteration
21316 29,09% 0,35% 100000
2148 61,6% 0,06% 10000
2|5 (10| 98,37% 0% 10000
216112 99,99% 0% 10000

2| 7|14 100% 0% 10000

2| 8|16 100% 0% 1000
219118 100% 0% 500
2|10|20 100% 0% 100
4|3 112| 21,15% 1,12% 10000
4|4 116| 42,5% 0% 1000

4| 5120 93% 0% 100
416 24 100% 0% 100
6]3[18] 8%] 1,2% | 500 |
8[3[24] 2%] 0% | 100 |

Then we have generalized the results for k > 7 and we believe that the attacks
presented here are also the best possible attacks. For d < k + 2, we have TWO
attacks. For d > k4 3, we have rectangle attacks. As mentioned before, in KPA,
there are always R2 and R3 attacks that give the best complexity sometimes
there is also a R1 attacks (for 3k — 2 rounds for example). In CPA-1, the best
complexity is given by R2 attacks, and sometimes R1 attacks.

Table 7. Best known TWO and Rectangle attacks on F¥. Details about the parameters
in this table: (new) means that we have found a better attack than previously known.

KPA CPA-1
Fi 1 1
F}| 2%, TWO 2
F3| 2" TWO 2
Fi 23" TWO 25, TWO
F3| 22" TWO 2", TWO
F§| 23" R2,R3 [22", R2 (new)
F7|25" R1, R2, R3] 22", R2
F8| 2% R2, R3 25" R2

Table 8. Best known TWO and Rectangle attacks on Fy, for any k > 3. Details about
the parameters in this table: (new) means that we have found a better attack than
previously know.

KPA CPA-1
1
F, 1 1
F 22 TWO 2
F} 2", TWO 2
d—1
Fo<d<k 272 " TWO 2
En n
e 22", TWO 22, TWO
k+1
Fit? 272" TWO 2", TWO
2k+3
Ef*3 277 " R2,R3 237/2 R2 (new)
FEt 2"5°" R1,R2,R3 | 22", R2 (new)
2k+5
Efts 277 " R2, R3 2°"/2 R2 (new)
: :] :
Fl d=k+2¢,3<q<k—2 | 2" RI1,R2,R3 |2%1 " R2 (new)
d+k a®+3
Fd d=k+2¢+1,3<q<k-3 274 " R2, R3 27571 " R2 (new)
: _3 ’ (k—1)k '
Fk3 2® D" Ra R3 |2 R ™, R2 (new)
1
Fk—2 272" R1,R2, R3 | 2"V R2 (new)
1
FRe1 9" #F)" Ro R3, (¥)| 20—n Ro

In these tables,“new” means that the complexity that we obtain is better
than the complexity given in [?]. (%) means that for 3k — 1 rounds our complexity
is worse than the complexity in [?]. This comes from the fact, as we mentioned
earlier, that the conditions between the equations and the internal variables were
not all considered in [?].

10 Conclusion

In this paper we make a systematic study of rectangle generic attacks on un-
balanced Feistel schemes with expanding functions. Although these attacks were

already analyzed in [?] and [?], this paper brings many improvements. Gen-
eration of all possible rectangle attacks for £k < 7 was performed thanks to a
computer program and the most efficient ones were selected. Then the general-
ization for any k was possible. This gives attacks for which conditions between
equations and internal variables are satisfied. This was not detected in [?]. We
also provide a complete description of the way to obtain CPA-1 from KPA. This
shows how to get the best CPA-1 and we improved the CPA-1 complexity of [?].
Also many simulations confirm our theoretical results.

There are still some open problems. It would be interesting to complete the
program in order to generate all the attacks for any k. This seems to be a memory
space problem. Also, in this paper, we did not study attacks with complexity
greater than kn. In that case, we need to attack permutations generators and
not only one single permutation. In [?], attacks called “multi-rectangle attacks”
were introduced, but so far no significant results have been obtained on these
attacks. It might give a new way to study generic attacks on unbalanced Feistel
schemes with expanding functions. As we mentioned in Section 3, when we have
exactly the same condition on the input and output variables, there are many
possible CPA-1 attacks (for k = 7, there exist 286 attacks on F2°, with the
same conditions on the input and output variables). An estimation for any k
will strengthen the attack.

References

1. W. Aiello and R. Venkatesan. Foiling Birthday Attacks in Length-Doubling Trans-
formations - Benes: A Non-Reversible Alternative to Feistel. In Ueli M. Maurer,
editor, Advances in Cryptology — EUROCRYPT ’96, volume 1070 of Lecture Notes
in Computer Science, pages 307—320. Springer-Verlag, 1996.

2. R. J. Anderson and E. Biham. Two Practical and Provably Secure Block Ciphers:
BEARS and LION. In Dieter Gollman, editor, Fast Software Encryption, volume
1039 of Lecture Notes in Computer Science, pages 113—120. Springer-Verlag, 1996.

3. D. Coppersmith. Another Birthday Attack. In Hugh C. Williams, editor, Advances
in Cryptology — CRYPTO ’85, volume 218 of Lecture Notes in Computer Science,
pages 14-17. Springer-Verlag, 1985.

4. D. Coppersmith. Luby-Rackoff: Four rounds is not enough. Technical Report
RC20674, IBM Research Report, December 1996.

5. M. Girault, R. Cohen, and M. Campana. A Generalized Birthday Attack. In
C. G. Guenther, editor, Advances in Cryptology — EUROCRYPT ’88, volume 330
of Lecture Notes in Computer Science, pages 129-156. Springer-Verlag, 1988.

6. L. Goubin, M. Ivasco, W. Jalby, O. Ly, V. Nachef, J. Patarin, J. Treger, and
E. Volte. CRUNCH. Technical report, Submission to NIST, October 2008.

7. C. S. Jutla. Generalized Birthday Attacks on Unbalanced Feistel Networks. In
Hugo Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 186—-199. Springer-Verlag, 1998.

8. L. R. Knudsen. DEAL - A 128-bit Block Cipher. Technical Report 151, University
of Bergen, Department of Informatics, Norway, february 1998.

9. L. R. Knudsen, X. Lai, and B. Preneel. Attacks on Fast Double Block Length Hash
Functions. J. Cryptology, 11(1):59-72, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. R. Knudsen and V. Rijmen. On the Decorrelated Fast Cipher (DFC) and Its
Theory. In Lars R. Knudsen, editor, Fast Software Encrytion — FSE 99, volume
1636 of Lecture Notes in Computer Science, pages 81-94. Springer-Verlag, 1999.
M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM J. Comput., 17(2):373-386, 1988.

M. Naor and O. Reingold. On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. J. Cryptology, 12(1):29-66, 1999.

J. Patarin. New Results on Pseudorandom Permutation Generators Based on the
DES Scheme. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 301-312. Springer-Verlag,
1991.

J. Patarin. Generic Attacks on Feistel Schemes. In Colin Boyd, editor, Advances
in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 222—-238. Springer-Verlag, 2001.

J. Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In
Matthew K. Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 106—122. Springer-Verlag, 2004.
J. Patarin, V. Nachef, and C. Berbain. Generic Attacks on Unbalanced Feis-
tel Schemes with Contracting Functions. In Xuejia Lai and Kefei Chen, editors,
Advances in Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in
Computer Science, pages 396—411. Springer-Verlag, 2006.

J. Patarin, V. Nachef, and C. Berbain. Generic Attacks on Unbalanced Feistel
Schemes with Expanding Functions. In Kaoru Kurosawa, editor, Advances in Cryp-
tology — ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science,
pages 325-341. Springer-Verlag, 2007.

B. Schneier and J. Kelsey. Unbalanced Feistel Networks and Block Cipher Design.
In Dieter Gollmann, editor, Fast Software Encrytion — FSE 96, volume 1039 of
Lecture Notes in Computer Science, pages 121-144. Springer-Verlag, 1996.

A. Yun, J. H. Park, and J. Lee. Lai-Massey Scheme and Quasi-Feistel Networks.
Cryptology ePrint archive: 2007/347: Listing for 2007.

A All the paths for the R2 attack against F}*', ¢

—
= O

© 00 3O Ui WwWwN O

Table 9. All the paths for the R2 attack against Fi', ¢ = 10

A Ay Az
0 As Asg
As Ag Ay
0 0 A
0 A7 As
A7 As 0
0 Ag Ag.
Ag Ag Ay
0 0 0.
0 0 Asg
0 As O
Ags 0 0
AL Ay Az Ay
0 0 0 .4
0 0 Ay O
0 A, 0 O
A1 .0 0 0
As Ag A7 Ay
0 Ag.Ag .As
Ag Ag As 0
0 0 0 .Ag
0 0 As O
0 As 0 O
Ag 0 0 O

0

0
0

© 0O T W~ O

— =
= o

Ay
Ay

As

Ay Ay Ag
0 As Ag
As Ag Ay
0 Az Ag
A7 Ag As
0 0 Ay
0 Ag Aq
Ag A7 0
0 0 O
0 0 Ao
0 Ay O
Ag 0 0
A Ay As
0 0 0.
0 0 A
0 A1 0
A 00
0 As Asg
As A Ay
A7 Ag Ag As
0 0 .0.47
0 0 A7 O
0 A7 0 O
A7 0 0 O

Ay
A
0
As
0
Ar
0
0
Ay
0
0
0

Ay
0

AL Ay As
0 As As
As Ag Ay

0 0 As
0 As 0
As .0 0

0 0 Ar
0 A7 0

Ay Ag

A7 0 0
A Ay As
0 0
0 As
As Ay
Ag Az
0 0
0 Ao

Ay
0

Ag
0
0

Ay

0 0
0 0
0 Ay
Ag 0

0 0 0.

A7 Ag Ag .

0 0 .0.

As .

Ag .
Ag .

Ay
Ay

Ag Ag Ag

AL Ay Ag
0 0 As
0 As Ay

As A 0
0 As A7

Ag A7 As
0 As Ag

Ay
Ay
0
0
As
0
AT
0
Asg
0

0 0 O
0 0 As
0 As 0 O
Ag 0 0 O
Ay Ay Az Ay
0 0 As.A;
0 As Ay
As A 0
0 0 As.
0 A As
A .As 0
A7 Ag Ag .
0 0 .0.
0 0 Ar
0 A7 0 O

A7 0 0 O

10

