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Abstract. Knudsen and Preneel (Asiacrypt’96 and Crypto’97) intro-
duced a hash function design in which a linear error-correcting code is
used to build a wide-pipe compression function from underlying block-
ciphers operating in Davies-Meyer mode. Their main design goal was to
deliver compression functions with collision resistance up to, and even
beyond, the block size of the underlying blockciphers. In this paper, we
present new collision-finding attacks against these compression functions
using the ideas of an unpublished work of Watanabe and the preimage
attack of Özen, Shrimpton, and Stam (FSE’10). In brief, our best attack
has a time complexity strictly smaller than the block-size for all but two
of the parameter sets. Consequently, the time complexity lower bound
proven by Knudsen and Preneel is incorrect and the compression func-
tions do not achieve the security level they were designed for.
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1 Introduction

Hash functions are currently at the centre of the cryptographic community’s
attention. While most of this attention is geared directly towards the SHA-
3 competition (by analysing its remaining candidates), other, arguably more
fundamental questions regarding hash function design should not be forgotten.
After all, the study of the underlying principles of hash function design are
potentially beneficial for the SHA-3 decision process.

The two most revered principles in hash function design are (i) the Merkle-
Damg̊ard iterative construction, or more generally the principle of designing
a secure compression function and (ii) the Davies-Meyer construction, or more
generally the principle of using a blockcipher as underlying primitive. Indeed, the
currently standardized hash functions from the SHA family follow this approach
(as did their predecessor MD5) as well as several of the SHA-3 candidates.
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ICT programme under contract ICT-2007-216676 ECRYPT II.
† Supported by a grant of the Swiss National Science Foundation, 200021-122162.



It was already recognized early on that the output sizes of traditional block-
ciphers are insufficient to yield a secure compression function [16]. This still
holds true today: for all the (optimally secure) PGV blockcipher-based compres-
sion functions [10,1,12] based on an n-bit blockcipher, the (time) complexity of
collision- and preimage-finding attacks is at most 2n/2, resp. 2n; when n = 128
(e.g. AES) the resulting bounds are mostly unacceptable for current practice (in
particular for collision resistance).

To achieve acceptable security (based on small block sizes) it is necessary
to output a multiple of the block-length. In the 1990s many constructions were
proposed for this goal, mostly outputting 2n bits with the explicit collision re-
sistance target of 2n (see [3,9] for an overview). The standard goal for these
constructions has been optimal collision-resistance: a target output size is fixed
and the compression function should be collision resistant up to the birthday
bound for that digest size. In three papers [4,5,6], Knudsen and Preneel adopted
a different approach, namely to fix a particular security target and let the output
size (and relatedly the number of blockcipher calls) vary as needed in order to
guarantee a particular security target without imposing optimal security.

Specifically, given r independent ideal compression functions f1, . . . , fr, each
mapping cn bits to n bits, they create a new ‘bigger’ compression function out-
putting rn bits. Following principles (i) and (ii) already mentioned, they then
propose to instantiate the underlying ideal compression functions with a blockci-
pher run in Davies-Meyer mode and to iterate the compression function to obtain
a full blockcipher-based hash function. However, they derive their security from
the compression function, so that is where we will focus our attention.

The f1, . . . , fr are run in parallel where each of their inputs is some lin-
ear combination of the blocks of message and chaining variable that are to be
processed; the rn-bit output of their construction is the concatenation of the out-
puts of these parallel calls. The elegance of the KP construction is in how the
inputs to f1, . . . , fr are computed. They use the generator matrix of an [r, k, d]
error-correcting code over F2c to determine how the ck input blocks of the ‘big’
compression function are xor’ed together to form the inputs to the underlying r
functions. (In a generalization they consider the fi as mapping from bcn′ to bn′

bits instead and use a code over F2bc .)

The (deliberate) effect of this design is that when two inputs to the ‘big’
compression function differ, the corresponding inputs for the underlying func-
tions will differ for at least d functions. In particular, when using a systematic
generator, a change in the systematic part of the input results in at least d− 1
so-called active functions in the non-systematic part. Intuitively this means that
one has to find a preimage, resp. a collision for the d − 1 active functions in
parallel. Based on this observation, Knudsen and Preneel claim that (under an
assumption) any collision attack needs time at least 2(d−1)n/2 (and as many fi
evaluations) and they conjecture that a preimage attack will require time at
least 2(d−1)n. Additionally, they give preimage and collision attacks (sometimes
matching their lower bounds).
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Table 1. A summary of collision attacks on the Knudsen-Preneel compression
functions, with constant and polynomial factors (in n) ignored. Non-MDS pa-
rameters are in italic, for e ∈ {2, 4} the underlying primitive is fi : {0, 1}2n →
{0, 1}n, and for e = 3 it is fi : {0, 1}3n → {0, 1}n.

Algorithm 4, [8] Algorithm 2 ÖSS Knudsen-Preneel
Code Complexity Complexity Complexity Lower Attack

Query Time Time/Query Query Time Bound Time

[r, k, d]2e 2kn/(3k−r) Thm. 4, [8] 2dn/(d+1) 2rn/(2k) [8] 2(d−1)n/2 [6]

[5, 3, 3]4 23n/4 23n/4 23n/4 25n/6 24n/3 2n 24n/3

[8 , 5 , 3 ]4 25n/7 25n/7 23n/4 24n/5 27n/5 2n 23n/2

[12 , 9 , 3 ]4 23n/5 23n/5 23n/4 22n/3 24n/3 2n 23n/2

[9 , 5 , 4 ]4 25n/6 25n/6 24n/5 29n/10 211n/5 23n/2 22n

[16 , 12 , 4 ]4 23n/5 24n/5 24n/5 22n/3 27n/3 23n/2 22n

[6, 4, 3]16 22n/3 22n/3 23n/4 23n/4 23n/2 2n 25n/4

[8, 6, 3]16 23n/5 23n/5 23n/4 22n/3 24n/3 2n 27n/6

[12, 10, 3]16 25n/9 25n/9 23n/4 23n/5 26n/5 2n 211n/10

[9, 6, 4]16 22n/3 22n/3 24n/5 23n/4 22n 23n/2 23n/2

[16, 13, 4]16 213n/23 220n/23 24n/5 28n/13 22n 23n/2 23n/2

[4, 2, 3]8 2n 2n × 2n 22n 2n 23n/2

[6, 4, 3]8 22n/3 22n/3 23n/4 23n/4 23n/2 2n 25n/4

[9, 7, 3]8 27n/12 27n/12 23n/4 29n/14 28n/7 2n 28n/7

[5, 2, 4]8 × × × 25n/4 23n 23n/2 27n/4

[7, 4, 4]8 24n/5 24n/5 24n/5 27n/8 29n/4 23n/2 23n/2

[10, 7, 4]8 27n/11 29n/11 24n/5 25n/7 22n 23n/2 23n/2

Watanabe [14] already pointed out a collision attack beating the one given
by Knudsen and Preneel for many of the parameter sets. In particular, his dif-
ferential attack works whenever r < 2k and has a query and time complexity of
essentially k2n. Thus he demonstrated that the proven collision resistance lower
bound given by Knudsen and Preneel is incorrect whenever r < 2k and d > 3.
For a code with minimum distance d = 3 he matches the Knudsen-Preneel 2n

collision-resistance lower bound, but does not violate it; the two codes proposed
by Knudsen and Preneel with r ≥ 2k (namely [4, 2, 3]8 and [5, 2, 4]8) seem beyond
reproach. Yet this was the first indication that something is amiss with the claim
by Knudsen and Preneel. A second indication arrived at FSE’10, when Özen,
Shrimpton, and Stam [7] demonstrated a remarkably efficient preimage attack
that, for 9 out of 16 cases, runs in time 2rn/k which was shown optimal. More-
over, using a yield-based argument, they showed that an information-theoretic
adversary in principle should be able to find collisions after only 2rn/(2k) queries.

Our contribution. In this paper we deal what we believe will be the final blow
against the Knudsen-Preneel compression functions. Our contribution is four-
fold, with a summary provided in Table 1. For completeness, we have also inves-
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tigated the time complexity that one would obtain by straightforward adaptation
of the ideas and query complexities of ÖSS; we refer to the full version of this
paper [8] for the details.

The mise en place in Section 4 provides a detailed mathematical character-
ization of the Knudsen-Preneel compression function’s preprocessing. As a first
simple result, this allows us in Section 5.1 to revise the attack of Watanabe in a
way that slightly reduces the time requirements, yet significantly increases the
number of collisions it can produce. More precisely, after an initial effort of d2n,
we can generate (up to) 2(k−d)n collisions in constant time (for k > d).

In our revised version of Watanabe’s attack, we fix a pure tensor to create
a differential. By adaptively looking for an arbitrary tensor and using the same
type of queries as Özen, Shrimpton, and Stam we arrive in Section 5.2 at a new,
symbiotic collision-finding attack with time complexity d2dn/(d+1). The attack
works whenever d ≤ k (as in Watanabe’s case). Even more amazing is that if the
inequality is strict, that is if d < k, the adversary can create further collisions
(like our revised attack) in constant time (up to 2(k−d)n collisions).

Thirdly, in Section 6.1 we introduce a parametrized information-theoretic
collision attack. It turns out that the new symbiotic attack and the old ÖSS
information-theoretic collision attack are both on opposite ends of the spectrum
of this parametrized attack, yet optimality is typically achieved somewhere in
the middle—with KP([4, 2, 3]8) and KP([5, 2, 4]8) again as exceptions—yielding
query complexity 2kn/(3k−r).

Our final contribution is a reduced-time variant of our optimized attack
above. For this we use the same ideas as ÖSS, but with a crucial twist: where
they used the dual code to look for preimages efficiently, we will use the dual
shortened code to search for collisions efficiently. As a result, for 12 out of 16
suggested parameters we can mount a collision attack whose time complexity
matches its query complexity (ignoring constants and logarithmic factors). Even
better, only for KP([5, 2, 4]8) we are unable to beat the time-complexity of any
prior attack we are aware of, for the rest we set new records.

2 Preliminaries

With some minor modifications, we will adhere to the notation also used by
Özen, Shrimpton, and Stam.

Linear error correcting codes. An [r, k, d]2e linear error correcting code C is
the set of elements (codewords) in a k-dimensional subspace of Fr2e (for r ≥ k),
where the minimum distance d is defined as the minimum Hamming weight
(taken over all nonzero codewords in C). The dual code [r, r− k, d⊥]2e is the set
of all elements in the r−k-dimensional subspace orthogonal to C (with respect to
the usual inner product), and its minimum distance is denoted d⊥. The Singleton
bound puts a limit on the minimum distance: d ≤ r−k+ 1. Codes matching the
Singleton bound are called maximum distance separable (MDS). An important
property of an MDS code is that its duals is MDS as well, so d⊥ = k + 1.
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An [r, k, d]2e code C can be generated by a matrix G ∈ Fk×r2e , meaning that
C = {x ⋅ G∣x ∈ Fk2e} (using row vectors throughout). A generator matrix G is

called systematic iff it has the form G = [Ik∣P ] for P ∈ Fk×(r−k)
2e and Ik the

identity matrix in Fk×k2e . Furthermore, G is the generator matrix of an MDS
code iff any k columns are linearly independent. For an index set ℐ ⊆ {1, . . . , r}
we define Gℐ ∈ Fk×∣ℐ∣2e as the restriction of G to those columns indexed by ℐ.
For a code and any index set ℐ ⊆ {1, . . . , r}, we want to define ℐ̃ ⊂ {1, . . . , r}
such that Gℐ̃ is invertible (thus in particular ∣ℐ̃∣ = k) and ℐ̃ ⊆ ℐ or ℐ ⊆ ℐ̃. For

MDS codes, the existence of such an ℐ̃ can be shown easily (and we can impose
uniqueness e.g. by virtue of an ordering). For non-MDS codes there exist some
ℐ for which such an ℐ̃ does not exist (for example the ℐ ⊂ {1, . . . , r} for which
∣ℐ∣ = k but Gℐ is not invertible), however for any target cardinality it is possible
to find an ℐ (of that cardinality) that does have an ℐ̃ (e.g. by first going through
the systematic columns); we call such an ℐ admissible.

A given [r, k, d]2e code C can be shortened to obtain a new, derived code
C′. Let i ∈ {1, . . . , r}, then consider the set of all codewords in C that are
0 on position i. The new code C′ consists of these codewords with position i
dropped, however we sometimes ‘quasi-shorten’ and keep the superfluous zeroes
present (we always keep the original indexing). It is easy to see that C′ is an
[r − 1, k − 1, d]2e code unless all codewords in C had a 0 on position i or k = 1
(in the latter case the shortening might result in the trivial one-codeword code
{0r−1}). The shortening of an MDS code is an MDS code itself. By repeated
application one can shorten by any index set ℐ0 ⊂ {1, . . . , r} for which � =
∣ℐ0∣ < k to obtain a derived [r− �, k− �, d] MDS code C′. If G is systematic and
ℐ0 = {1, . . . , �} we can generate the shortened code by dropping the first � rows
of Gℐ , where ℐ = {1, . . . , r}∖ℐ0 = {� + 1, . . . , r}. (For the four non-MDS codes
used by Knudsen and Preneel we will perform a separate analysis on repeated
shortening.)

Blockwise-linear compression functions. A compression function is a map-
ping H : {0, 1}tn → {0, 1}sn for some blocksize n > 0 and integer parame-
ters t > s > 0. For positive integers c and n, we let Func(cn, n) denote the
set of all functions mapping {0, 1}cn into {0, 1}n. A compression function is
Public Random Function (PuRF)-based if its mapping is computed by a pro-
gram with oracle access to a finite number of specified oracles f1, . . . , fr, where

f1, . . . , fr
$← Func(cn, n). When a PuRF-based compression function operates on

input W , we write Hf1,...,fr (W ) for the resulting value. Of primary interest for
us will be single-layer PuRF-based compression functions without feedforward.
These call all oracles in parallel and compute the output based only on the results
of these calls; in particular, input to the compression function is not considered.

Most PuRF-based (and blockcipher-based) compression functions are of a
special type. Instead of arbitrary pre- and postprocessing, one finds only func-
tions that are blockwise linear. The Knudsen-Preneel construction is also block-
wise linear, so let us recall from [7] what is a blockwise-linear scheme.
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Definition 1 (Blockwise-linear scheme). Let r, c, b, t, s be positive integers
and let matrices Cpre ∈ F

rcb×tb
2 , Cpost ∈ F

sb×rb
2 be given. We define H =

BLb(Cpre,Cpost) to be a family of single-layer PuRF-based compression func-
tions Hn : {0, 1}tn → {0, 1}sn, for all positive integers n with b∣n. Specifically,
let n′b = n, and f1, . . . , fr ∈ Func(cn, n). Then on input W ∈ {0, 1}tn (in-
terpreted as column vector), Hn

f1...fr (W ) computes the digest Z ∈ {0, 1}sn as
follows:

1. Compute X ← (Cpre ⊗ In′) ⋅W ;
2. Parse X = (xi)i=1...r and for i = 1...r compute yi = fi(xi);
3. Parse (yi)i=1...r = Y and output Z = (Cpost ⊗ In′) ⋅ Y .

where ⊗ denotes the Kronecker product and In′ the identity matrix in Fn
′×n′

2 .

In the definition above we silently identified {0, 1}n with the vector space Fn2 .
The map corresponding to (Cpre⊗ In′) will occasionally be denoted Cpre and its
image ℑ(Cpre) ⊆ {0, 1}rcn. It will be convenient for us to write the codomain of
Cpre as a direct sum, so we identify {0, 1}rcn with

⊕r
i=1 Vi where Vi = F

cn
2 for

i= 1, . . . , r. If x1 ∈ V1 and x2 ∈ V2, then consequently x1 +x2 will be in V1⊕V2.
(This extends naturally to L1 + L2 when L1 ⊂ V1, L2 ⊂ V2.)

Knudsen-Preneel compression functions. Knudsen and Preneel [4,5] intro-
duced a family of hash functions employing error correcting codes. (We use the
journal version [6] as our frame of reference). Although their work was ostensibly
targeted at blockcipher-based designs, the main technical thread of their work
develops a transform that extends the range of an ‘ideal’ compression function
(blockcipher-based, or not) in a manner that delivers some target level of secu-
rity. As is nowadays typical, we understand an ideal compression function to be
a PuRF. In fact, the KP transform is a special instance of a blockwise-linear
scheme (Definition 1), in which the inputs to the PuRFs are determined by a
linear code over a binary field with extension degree e > 1, i.e. F2e , and with
Cpost being the identity matrix over Frb×rb2 (corresponding to concatenating
the PuRF outputs). The extension field itself is represented as a subring of the
matrix ring (of dimension equalling the extension degree) over the base field.
We formalize this by an injective ring homomorphism ' : F2e → F

e×e
2 and let

'̄ : Fr×k2e → F
re×ke
2 be the component-wise application of ' and subsequent

identification of (Fe×e2 )r×k with Fre×ke2 (we will use '̄ for matrices over F2e of
arbitrary dimensions). For completeness, there is also a group homomorphism
 : F2e → F

e
2 such that for all g, ℎ ∈ F2e it holds that  (gℎ) = '(g) ⋅  (ℎ).

Definition 2 (Knudsen-Preneel transform). Let [r, k, d] be a linear code
over F2e with generator matrix G ∈ Fk×r2e . Let ' : F2e → F

e×e
2 be an injec-

tive ring homomorphism and let b be a positive divisor of e such that ek > rb.
Then the Knudsen-Preneel compression function H = KPb([r, k, d]2e) equals
H = BLb(Cpre,Cpost) with Cpre = '̄(GT ) and Cpost = Irb.

If H = KPb([r, k, d]2e), then Hn : {0, 1}kcn → {0, 1}rn with c = e/b is defined for
all n for which b divides n. Moreover, Hn is based on r PuRFs in Func(cn, n).

6



For use of H in an iterated hash function, note that per invocation (of H) one
can compress (ck − r) message blocks (hence the requirement ek > rb ensures
actually compression is taking place), and the rate of the compression function
is ck/r−1. We will concentrate on the case (b, e) ∈ {(1, 2), (2, 4), (1, 3)} and then
in particular on the 16 parameter sets given by Knudsen and Preneel.1 Since b
is uniquely determined given e (and c), we will often omit it.

Security notions. A collision-finding adversary is an algorithm whose goal is
to find two distinct inputs W,W ′ that hash to the same value, so H(W ) =
H(W ′). We will consider adversaries in two scenarios: the information-theoretic
one and a more realistic concrete setting. For information-theoretic adversaries
the only resource of interest is the number of queries made to their oracles.
Otherwise, these adversaries are considered (computationally) unbounded. In
the concrete setting, on the other hand, we are interested in the actual runtime
of the algorithm and, to a lesser extent, its memory consumption (and code-size).

3 Prior Art on the Knudsen-Preneel Hash Functions

Knudsen and Preneel’s security claims. Knudsen and Preneel concentrate
on the collision resistance of their compression function in the complexity theo-
retic model. Under a fairly generous (but plausible) assumption, they essentially
show that if H = KPb([r, k, d]2e), then finding collisions in Hn takes time at
least 2(d−1)n/2. For preimage resistance Knudsen and Preneel do not give a cor-
responding theorem and assumption, yet they do conjecture it to be essentially
the square of the collision resistance.

Knudsen and Preneel also present two attacks, one for finding preimages [6,
Proposition 3] and one for finding collisions [6, Proposition 4] (see results in
Table 1). Both attacks revolve around finding multi-preimages for the systematic
part of the construction in sufficient numbers to make it likely that completion
to the non-systematic part will yield a full preimage respectively a full collision.

Watanabe’s collision-finding attack. Knudsen and Preneel left a consider-
able gap between the actual complexity of attacks and their lower bounds in the
case of collision resistance. Watanabe [14] has pointed out a collision attack that
runs in time k2n (and as many PuRF evaluations). Thus, for many of the pa-
rameter sets, it beats the one given by Knudsen and Preneel. More interestingly,
his attack serves as proof that the lower bound given by Knudsen and Preneel
is incorrect for a large class of parameters: whenever r < 2k and d > 3, which
involves 6 out of 16 parameter sets. (See also Table 1.)

Assume that the code’s generator matrix is systematic, that is G = (Ik∣P )

with P ∈ Fk×(r−k)
2e . Then the goal is to generate, for each i ∈ {1, . . . , k}, a

colliding pair of inputs xi ∕= x′i (and fi(xi) = fi(x
′
i)) in such a way that their

completion to full ‘codewords’ satisfies xi = x′i for i ∈ {k + 1, . . . , r}. This is

done by ensuring that xi ⊕ x′i = �i where � =
∑k
i=1�i ∈ Fken

′

2 ∖{0} is in the

1 We note that our analysis is also valid for c = 5 (mimicking the MD4/5 situation).
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kernel of '̄(PT )⊗ In′ (since r−k < k the kernel is guaranteed to contain a non-
trivial element). Mutual independence of the inputs to the PuRFs corresponding
to the code’s systematic part allow the initial collision searches to be mounted
independently. Unfortunately, since the collisions need to be rather special (due
to fixed �i’s), the birthday paradox does not apply and a collision search costs
about 2n queries and time (per PuRF). On the plus side, the attack is trivially
memoryless and parallellizable.

Özen-Shrimpton-Stam preimage-finding attack. An extensive security anal-
ysis for the preimage resistance of KP-constructions, falsifying the designers’
conjectured lower bound, has been provided by Özen, Shrimpton, and Stam [7].
Additionally, they also provided a related collision-finding attack with a surpris-
ingly low query complexity: 2rn/(2k) (but no analysis of its time complexity).

At the core of the Özen-Shrimpton-Stam attacks is the simple observation
that (0a ∣∣x1) ⊕ (0a ∣∣x2) yields a string of the form (0a ∣∣X). More generally,
any linear combination of strings with the same pattern of fixed zero bits will
yield a string with the same form. By restricting PuRF queries to strings with
the same (blockwise) pattern one can optimize the yield of these queries (i.e. the
maximum number of KP compression function evaluations an adversary can
compute for a given number of queries). Matching the yield with the size of the
codomain (resp. its square root) gives rise to an information-theoric preimage
(resp. collision) attack.

A second observation is that, in the case of a preimage attack, the dual
code can be used to find the preimage far more efficiently than a naive method.
Direct application of this method however is disappointing (see Table 1). The
resulting time complexities are typically much higher than the corresponding
query complexities and the attack is seldom competitive with that of Knudsen
and Preneel, let alone with that of Watanabe.

4 Decoding the Knudsen-Preneel Preprocessing

An important property that is exploited by both Watanabe and ÖSS is linearity
of Cpre. Indeed, the image ℑ(Cpre) itself can be regarded as an ekn′-dimensional
subspace of Fern

′

2 , or equivalently as an [ern′, ekn′, d′]2 code C⊗ (where the
minimum distance d′ is largely irrelevant; it satisfies d ≤ d′ ≤ de). This has the
consequence that if X = Cpre(W ) and X ′ = Cpre(W ′) collide, it is guaranteed
that � = X⊕X ′ ∈ ℑ(Cpre), i.e. the difference � itself is a (nonzero) codeword in
C⊗. Below we will give a more detailed mathematical characterization of ℑ(Cpre),
with a special eye towards the improved collision-finding algorithms we will give
later on. Most of the results below are mathematically rather straightforward
(and the proofs are left to the full version); the machinery is mainly needed to
ensure that, when using canonical bases for the various vector spaces, everything
lines up correctly and consistently with the actual Knudsen-Preneel compression
function.

Recall that we are given an injective ring homomorphism ' : F2e → F
e×e
2

and a group isomorphism  : F2e → F
e
2 that satisfy '(g) (ℎ) =  (gℎ) for all
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g, ℎ ∈ F2e . Let [r, k, d]2e be a linear code with generator matrix G ∈ Fk×r2e , let b
be a positive divisor of e such that ek > rb and finally let n = bn′ be a multiple
of b. Then the input processing Cpre : {0, 1}ekn′ → {0, 1}ern′

of the Knudsen-
Preneel compression function is defined by Cpre(W ) = ('̄(GT ) ⊗ In′) ⋅W (and
note that ern′ = rcn).

Characterization of ℑ(Cpre) as a sum. We have already written the codomain
of Cpre as a direct sum of PuRF inputs by identifying {0, 1}ren′

with
⊕r

i=1 Vi
where Vi = F

en′

2 for i= 1, . . . , r. Here we will use a second interpretation that

emphasizes the code. We will consider
⊕n′

j=1 Uj where Uj = F
r
2e for j= 1, . . . , n′.

Since Fr2e , and by extension
⊕n′

j=1 Uj , is a vector space over F2e , whereas

{0, 1}ern′
is a stand-in for the vector space Fern

′

2 over F2, we cannot find a
vector space isomorphism (as for the earlier direct sum). Nonetheless we can

find a suitable group isomorphism from
⊕n′

j=1 Uj to {0, 1}ern′
.

To define the group isomorphism we exploit that, luckily, the underlying F2e

arithmetic is essentially preserved by Cpre : {0, 1}ekn′ → {0, 1}ern′
, even though

the ‘⊗In′ ’ in Cpre(W ) = ('̄(GT )⊗ In′) ⋅W garbles things up. To formalize this,
let � : Fn

′

2e → F
en′

2 be the group isomorphism such that �(g�) = ('(g)⊗In′) ⋅�(�)
for all � ∈ Fn′

2e and g ∈ F2e .
As usual, we will extend � to e.g. r-tuples of elements in Fn

′

2e (and hence
to vectors in Fn

′r
2e ) by component-wise application, i.e. �̄ : Fn

′r
2e → F

en′r
2 . This

suffices for a group isomorphism from
⊕n′

j=1 Uj to {0, 1}ern′
as well.

Lemma 1. Let ℐ0 ⊂ {1, . . . , r}, let C′ be the (quasi) shortening of C on ℐ0 and
let C′j = C′ ⊆ Uj for j= 1, . . . , n′. Then X =

∑r
i=1 xi ∈ ℑ(Cpre) with xi = 0 for

all i ∈ ℐ0 iff ∃ ! ∀j=1,...,n′ gj =
∑r
i=1 gji ∈ C′j such that xi = �(

∑n′

j=1 gji).

The following proposition develops the key idea on how to recognize that a given
X ∈ Fern′

2 is an element of ℑ(Cpre). This result is exploited in [7] to efficiently
find preimages for Knudsen-Preneel compression functions.

Proposition 1. Let H = KPb([r, k, d]2e), M ∈ Fe×re/b2 and a nonzero X ∈
F
ern′

2 be given. Suppose that M = '̄(ℎT ) for some ℎ ∈ C⊥, then X ∈ ℑ(Cpre)
iff for all positive integers n′ it holds that (M ⊗ In′) ⋅X = 0.

Since Fn
′r

2e is isomorphic (as vector space over F2e) to the tensor product Fr2e ⊗
F
n′

2e this leads in a natural way to a function from F
r
2e × Fn

′

2e to {0, 1}ren′
by

considering pure tensors g ⊗ � with g ∈ Fr2e and � ∈ Fn′

2e . Note that we do not
discriminate between different representatives, that is for nonzero � ∈ F2e we
have that g ⊗ � = (�g)⊗ (�−1�).

Lemma 2. If g ∈ Fr2e and � ∈ Fn′

2e then �̄(g ⊗ �) ∈ ℑ(Cpre) iff g ∈ C or � = 0.

The following lemma states that invertibility of Gℐ̃ suffices to invert Cpre.
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Algorithm 1 (Revised Watanabe Collision Attack).

Input: H = KPb([r, k, d]2e) satisfying d ≤ k, a nonzero g ∈ C ⊆ F
r
2e with

∣�(g)∣ ≤ k, a block size n = bn′, and an arbitrary nonzero � ∈ Fn′
2e .

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn

′
)2

such that Hn(W ) =

Hn(W ′), W ∕= W ′ and Cpre(W )⊕ Cpre(W ′) = �̄(g ⊗ �).

1. Initialization. Compute � ← �̄(g ⊗ �), set ℐ ← �(g) and determine
ℐ̃ ⊇ ℐ for which Gℐ̃ is invertible.

2. Query Phase. For i ∈ ℐ do

a. Generate a random xi
$← Vi(= F

en′
2 ) and set x′i ← xi ⊕�i;

b. Query yi ← fi(xi) and y′i ← fi(x
′
i);

c. If yi = y′i then keep (xi, x
′
i) and proceed to next i, else return to a.

3. Degrees of Freedom. For i ∈ ℐ̃∖ℐ pick xi
$← Vi and set x′i ← xi.

4. Finalization. Output (W,W ′) where

W ← ('̄(G−T

ℐ̃ )⊗In′)⋅(
∑
i∈ℐ̃

xi) and W ′ ← ('̄(G−T

ℐ̃ )⊗In′)⋅(
∑
i∈ℐ̃

x′i) .

Lemma 3. Let G be a generator matrix for an [r, k, d]2e code. Let ℐ̃ ⊂ {1, . . . , r}
be such that Gℐ̃ is invertible, with transposed inverse G−Tℐ̃ . Let n′ be an integer

and, for i= 1, . . . , r, let Vi = F
en′

2 be a direct-sum-decomposition of Fern
′

2 as
before. If given xi ∈ Vi for i ∈ ℐ̃, or equivalently X̃ =

∑
i∈ℐ̃ xi, then

W = ('̄(G−Tℐ̃ )⊗ In′) ⋅ X̃

is the unique element for which X ′ = Cpre(W ) satisfies x′i = xi for i ∈ ℐ̃.

5 A New Symbiotic Collision-Finding Attack

5.1 Revising Watanabe’s Attack

Watanabe’s attack has complexity k2n, requires k > r − k and essentially finds
a single collision. Below we give a revised and improved version of his algorithm.
It only has complexity d2n, requires k ≥ d and it potentially results in many,
many collisions. More precisely, if k > d then after the initial effort (of d2n) we
can find a new collision in constant time, for up to a whopping 2(k−d)n collisions.

In his note, Watanabe describes his attack as a differential attack. Where
originally � was computed as some non-trivial kernel element, we will compute
it based on a codeword g ∈ C of sufficiently low weight and an arbitrary (nonzero)
‘block multiplier’ �. In particular, we will set � = �̄(g ⊗ �). By using a minimal
weight codeword the attack performs best.

For the revised attack to work, we need one further ingredient. Watanabe
assumes a systematic code and exploits that, when k < r − k, there exists a

10



nonzero codeword g ∈ C for which �(g) ⊆ {1, . . . , k}. This allows easy com-
pletion of a partial collision to a full collision. Our revised version allows an
arbitrary (nonzero) codeword g of weight at most k (existence of which requires
d ≤ k). Thus �(g) might no longer map to the systematic part of the code.
Luckily, Lemma 3 provides completion to a full collision, provided ℐ = �(g) is
admissible. For MDS codes all codewords are admissible; for the four non-MDS
codes proposed by Knudsen and Preneel it can be verified that the minimum
distance codewords are admissible.

Theorem 1 (Revised Watanabe attack). Let H = KPb([r, k, d]2e) be given
with d ≤ k. Consider Hn (with b∣n). Then Algorithm 1 using a minimum-weight
codeword g (and an arbitrary nonzero �) finds collisions for Hn in expected time
d2n (using as many PuRF evaluations).

5.2 A New Symbiotic Attack

Our revised version of Watanabe’s attack clearly shows that an attacker poten-
tially has a lot of freedom. Below we transform some of this freedom into a faster
attack. More to the point, as in the revised Watanabe attack we still look for a
collision with differential � = �̄(g ⊗ �) and fix the codeword g ∈ C, but we do
not fix the multiplier � up front. Instead we determine it based on the outcomes
of the queries we make. To increase our success probability, we restrict to the
same kind of queries as Özen, Shrimpton, and Stam did.

Theorem 2 (Symbiotic attack). Let H = KPb([r, k, d]2e) be given with k ≥ d.
Consider Hn (with b∣n). Then Algorithm 2 finds collisions for Hn in d2dn/(d+1)

time (using as many PuRF evaluations) and memory (expressed in n-bit blocks).

Proof (Sketch). We will leave showing the correctness of Algorithm 2 to the full
version of this paper [8] and only prove here that a collision is expected and that
the query and time complexities are as claimed.

Since ∣X ∣ = 2�n by construction, the attack has the stated query complexity
(per PuRF) for � = d/(d + 1) since all queries are made during the Query
Phase. Using a naive approach, Local Collision Detection step can be
performed in roughly 2dn/(d+1) comparisons resulting in partial collision lists of
expected cardinality ∣Li∣ ≈ 2(2�−1)n for i ∈ ℐ.

For Global Collision Detection, we just enumerate one partial collision
list and check for membership against the others. Assuming constant time mem-
ory access, the time complexity of this step is at most (d− 1) maxi∈ℐ ∣Li∣. Since
� < 1 it follows that 2� − 1 < � making the Query Phase dominant with its
time complexity of 2�n.

Since we have d active PuRFs in total, the probability of finding a common
element among d such lists is then (

∏
i ∣Li∣)/∣X ∣d−1, or 2((2�−1)d−�(d−1))n. To

ensure an expected number of collisions of one, we need the second exponent to
be at least zero, and indeed, solving for zero gives the desired � = d/(d+ 1). ⊓⊔

11



Algorithm 2 (New Symbiotic Collision Attack).

Input: H = KPb([r, k, d]2e) satisfying d ≤ k, a g ∈ C ⊆ Fr
2e with ∣�(g)∣ = d,

and a block size n = bn′.

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn

′
)2

such that Hn(W ) =

Hn(W ′), W ∕= W ′ and Cpre(W )⊕ Cpre(W ′) = �̄(g ⊗ �) for some nonzero

� ∈ Fn′
2e to be determined.

1. Initialization. Set � = d/(d + 1), ℐ = �(g) and determine ℐ̃. Let g =
(g1, . . . , gr) with gi ∈ F2e for i= 1, . . . , r.

2. Query Phase. Define

X = ({0}
n
b
−�n

e × {0, 1}
�n
e )e

and, for i ∈ ℐ let Qi = X ⊂ Vi. Query fi ∀ xi ∈ Qi and store the results.

3. Local Collision Detection. For i ∈ ℐ create a list Li of all tuples
(g−1

i ⋅�
−1(xi⊕x′i), xi, x′i) satisfying xi, x

′
i ∈ Qi, xi ∕= x′i and fi(xi) = fi(x

′
i).

4. Global Collision Detection. Find a set of ∣�(g)∣ tuples in the respec-

tive Li that all share the same first element. That is, for some � ∈ Fn′
2e

and (xi, x
′
i)i∈ℐ it holds for all i ∈ ℐ that (�, xi, x

′
i) ∈ Li.

5. Degrees of Freedom. For i ∈ ℐ̃∖ℐ pick xi
$← Vi and set x′i ← xi.

6. Finalization. Output (W,W ′) where

W ← ('̄(G−T

ℐ̃ )⊗In′)⋅(
∑
i∈ℐ̃

xi) and W ′ ← ('̄(G−T

ℐ̃ )⊗In′)⋅(
∑
i∈ℐ̃

x′i) .

6 A Parametrized Collision-Finding Attack

6.1 Optimizing the Query Complexity

The symbiotic attack and the information-theoretic attack by Özen, Shrimpton,
and Stam have completely different query complexities and which one is the best
seems very parameter dependent. However, it turns out that both attacks are the
extreme cases of a more general parametrized attack, as given by Algorithm 3.

Theorem 3. Let H = KPb([r, k, d]2e) be given. Consider Hn (with b∣n). Then
collisions for Hn can be found with Alg. 3 using 2�n queries (per PuRF) where

� =

{
(r − �)/(2k − �) for 0 ≤ � ≤ min(r − d, r − k) ;

(r − �)/(r + k − 2�) for r − k ≤ � ≤ r − d .

Proof. That the attack has the stated query complexity follows readily from the
usual observation that ∣X ∣ = 2�n combined with the computation of � exactly
matching the theorem statement. What remains to show is that collisions are
indeed output and expected with good probability.

For correctness, let (W,W ′) be output by the algorithm and consider X =
Cpre(W ) and X ′ = Cpre(W ′). First, notice that Lemma 3 implies that projecting
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Algorithm 3 (Parameterized Collision Attack).

Input: H = KPb([r, k, d]2e), an index set ℐ0 ⊂ {1, . . . , r} with � = ∣ℐ0∣ and
0 ≤ � ≤ r − d, and a block size n = bn′.

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn

′
)2

such that Hn(W ) =

Hn(W ′),W ∕= W ′, and if X = Cpre(W ) and X ′ = Cpre(W ′) then for
all i ∈ ℐ0 it holds that xi = x′i.

1. Initialization. Set ℐ ← {1, . . . , r}∖ℐ0, determine ℐ̃, and set

�←

{
(r − �)/(2k − �) for 0 ≤ � ≤ min(r − k, r − d) ;

(r − �)/(r + k − 2�) for r − k ≤ � ≤ r − d .

2. Query Phase. As in Algorithm 2.

3. Local Collision Detection. For i ∈ ℐ create a list Li of all tuples
(xi ⊕ x′i, xi, x′i) satisfying xi, x

′
i ∈ Qi, xi ∕= x′i and fi(xi) = fi(x

′
i).

4. Merge Phase. Create L̃ℐ =
{∑

i∈ℐ (�i, xi, x
′
i) ∣ (�i, xi, x

′
i) ∈ Li

}
.

5. Collision Pruning. Create Lℐ consisting precisely of those elements of
L̃ℐ whose first vector (when mapped to the full space) is in ℑ(Cpre);

Lℐ =
{

(�̃, X̃, X̃ ′)∣(�̃, X̃, X̃ ′) ∈ L̃ℐ ∧ �̃+ 0 ∈ ℑ(Cpre)
}
.

6. Filtering. If ℐ̃ ⊂ ℐ then only select (�̃, X̃, X̃ ′) ∈ Lℐ for which X̃ is
in the projection of ℑ(Cpre) onto

⊕
i∈ℐ Vi. Create Lℐ̃ by projecting the

selected elements in Lℐ to the subspace
⊕

i∈ℐ̃ Vi.

7. Degrees of Freedom. If ℐ ⊂ ℐ̃, then for i ∈ ℐ̃∖ℐ pick xi
$← Vi and set

x′i ← xi. Create Lℐ̃ by adding
∑

i∈ℐ̃∩ℐ0(0, xi, x
′
i) to all elements in Lℐ .

8. Skip. If ℐ̃ = ℐ set Lℐ̃ ← Lℐ .

9. Finalization. For some (�̃, X̃, X̃ ′) ∈ Lℐ̃ output (W,W ′) where

W ← ('̄(G−T

ℐ̃ )⊗ In′) ⋅ X̃ and W ′ ← ('̄(G−T

ℐ̃ )⊗ In′) ⋅ X̃ ′

(X ⊕ X ′, X,X ′) onto
⊕

i∈ℐ̃ Vi is in Lℐ̃ . Now, either of the steps Degrees of

Freedom, Filtering or Skip ensures that (�̃, X̃, X̃ ′) ∈ Lℐ . Finally, since
Lℐ ⊆ L̃ℐ it follows that (xi, x

′
i) ∈ Li for i ∈ ℐ and hence by construction

(Local Collision Detection) we have fi(xi) = fi(x
′
i) for those i.

Moreover Collision Pruning guarantees that �̃ + 0 ∈ ℑ(Cpre) and De-
grees of Freedom ensures that the projections of �̃ + 0 and X ⊕ X ′ onto⊕

i∈ℐ̃ Vi are equal. Hence, xi = x′i for all i ∈ ℐ0.

Let us move on to the number of expected collisions output. Since ∣X ∣ = 2�n,
the expected number of local collisions found per active PuRF for i ∈ ℐ is
∣Li∣ ≈ ∣X ∣2/2n = 2(2�−1)n. Using that ∣ℐ∣ = r− � we arrive at a total number of
potential collisions of ∣L̃ℐ ∣ ≈ 2(2�−1)(r−�)n. For a true collision to occur, we need
to find a tuple (xi, x

′
i)i∈ℐ̃ such that both

∑
i∈ℐ̃ xi and

∑
i∈ℐ̃ x

′
i can be completed

to codewords subject to the constraint that xi = x′i for i ∈ ℐ0.
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If the eventual collision consists of (X,X ′), then � = X ⊕X ′ is a codeword
as well and the above implies that �i = 0 for i ∈ ℐ0. Hence, Lemma 1 applies
and �̃ =

∑
i∈ℐ �i is somehow ‘spanned’ by the shortened code. The restriction

� ≤ r−d ensures nontriviality of the shortened code (shortening any further and
the shortened code would consist of the zero codeword only resulting in W =
W ′, so no collision). In case of MDS codes, the shortened code has parameters
[r − �, k − �, d′]2e , in particular it has dimension k − �. (For non-MDS codes it
is possible that a higher dimension is achieved.)

As a result, a fraction 2(k−r)�n of the differentials will be satisfactory, leading
to an expected number of ∣Lℐ ∣ ≈ 2((2�−1)(r−�)−�(r−k))n. If ℐ ⊆ ℐ̃ or equivalently
r − � ≤ k we are done whenever ∣Lℐ ∣ ≥ 1. Since r − � ≤ k can be rewritten to
� ≥ r − k we are in the second case, with � = (r − �)/(r + k − 2�). Writing
F = (lg ∣Lℐ ∣)/n and substitution lead to F ≈ (2� − 1)(r − �) − �(r − k) =
�(2r − 2� − r + k)− (r − �) = 0 or ∣Lℐ ∣ ≈ 1 as desired.

If on the other hand ℐ̃ ⊂ ℐ, further filtering is needed. In particular, given
a potential ‘half’ of a collision X we need to check if it can correspond to a
codeword. Since ℐ̃ ⊂ ℐ, we can uniquely complete X to a codeword given k
of its elements (all within ℐ). The remaining ∣ℐ∣ − k coordinates need to be
in sync. Per remaining element, this occurs with probability 2−�n, leading to
∣L̃ℐ̃ ∣ ≈ ∣Lℐ ∣ ⋅ 2−�n(r−�−k). Now we are in the first case since 0 ≤ � ≤ r − k.

Writing F = (lg L̃ℐ̃)/n, we obtain F ≈ ((2�−1)(r−�)−�(r−k))−�(r−�−k) =
�(2k− �)− (r− �). Since we aim for F = 0, � = (r− �)/(2k− �) as desired. ⊓⊔

Corollary 1. Assuming d ≤ k, substitution of � = r − k in Theorem 3 gives
� = k/(3k − r). This is optimal (for Algorithm 3) whenever r ≤ 2k.

Proof. That the substition does what it says can be readily verified, so we restrict
ourselves to prove the optimality here. Let f1(�) = (r− �)/(2k− �) and f2(�) =
(r − �)/(r + k − 2�) be two real valued functions defined over closed intervals
0 ≤ � ≤ r − k and r − k ≤ � ≤ r − d respectively. Note that both f1(�) and
f2(�) are continuous in their respective domains (since their respective poles
fall outside the domains). So both f1(�) and f2(�) attain their maximum and
minimum in the closed intervals [0, r − k] and [r − k, r − d] respectively. Since
f ′1(�) = (r−2k)/(2k−�)2 ≤ 0 (for r ≤ 2k) and f ′2(�) = (r−k)/(r+k−2�)2 ≥ 0
we can conclude that f1(�) is decreasing and f2(�) is increasing. Therefore, they
both attain their minimum at their shared boundary � = r − k. ⊓⊔

Remark 1. The only two parameter sets proposed by Knudsen and Preneel not
satisfying the conditions of the corollary above are [4, 2, 3]8 and [5, 2, 4]8. In both
cases d > k and only f1(�) is applicable. For [5, 2, 4]8 one can check that 2k < r
and f ′1(�) ≥ 0. Hence, the minimum � is attained at � = 0. For [4, 2, 3]8 it holds
that 2k = r, so that f1(�) is in fact a constant function and both � = 0 and
� = 1 lead to the same �.

Remark 2. Substitution of � = 0 in Theorem 3 gives � = r/(2k) and the resulting
query complexity coincides with that reported by Özen, Shrimpton, and Stam.
On the other extreme, substitution of � = r − d gives � = d/(2d − r + k)
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(assuming d ≤ k). For MDS codes this simplifies to � = d/(d+1), this time duly
coinciding with our symbiotic attack. For non-MDS codes there seems to be a
slight mismatch. The reason is that if a non-MDS code is maximally shortened
(by � = r− d), the shortened code has dimension 1, whereas in the derivation of
Theorem 3 we pessimistically assumed k − � = 0 (at least for the KP non-MDS
codes that satisfy r − d = k). Correcting for this looseness would result in a
match with the symbiotic attack.

6.2 Generic Collision Attack against MDS Constructions

If we want to run Algorithm 3 (with fixed � = r−k and � = k/(3k−r) as obtained
in Corollary 1) we ideally want a time complexity almost coinciding with the
targeted query complexity. For � = r−k it holds that ℐ = ℐ̃, obviating the need
for the steps Filtering and Degrees of Freedom. We have already seen
that Local Collision Detection costs at most a small logarithmic factor,
which leaves only the Merge Phase and Collision Pruning to worry about.
Together, these two steps are designed to produce Lℐ . A naive approach would
enumerate all elements in the much larger L̃ℐ , which is wasteful. Our task is
therefore, given the lists of partial collisions Li for i ∈ ℐ, to create Lℐ more
efficiently.

In the sequel, we will follow in the footsteps of Özen, Shrimpton, and Stam
who used the dual code in a similar problem related to their preimage-finding
attack. An important innovation for the collision-finding attack stems from the
realization that � can be regarded as belonging to the (quasi) shortened code.
This allows the use of the dual of the shortened code to speed up the search. As
the minimum distance of the dual code is an important parameter in determining
the overall time-complexity and shortening a code reduces the minimum distance
of its dual accordingly, we make a significant efficiency gain this way.

Road map. We present our collision attack against Knudsen-Prennel compression
functions whose Cpre is based on MDS codes in Alg. 4, whereas its analysis is
given in Thm. 4. We leave the generalization of our attack to (KP-suggested)
non-MDS parameters together with the proof of Thm. 4 to the full version of
this work where we also investigate a more space efficient version of Alg. 4.

Reducing the Time Complexity. Since ℐ = ℐ̃ and � = r − k, we know
from Algorithm 3 that it is enough to find a nonzero � ∈ ℑ(Cpre) of the form
� = �′ + 0 for �′ =

∑
i∈ℐ̃ �i to complete the collision. Now notice that �′

is lying in a smaller space ℑ(C ′
pre

) identified by C′ that is the [r − �, k − �, d′]
shortened code obtained from C (by dropping the zeroes of the codewords from
all the positions appearing in ℐ0). This observation allows us to guarantee that
� ∈ ℑ(Cpre) once we determine that a candidate �′ is in ℑ(C ′

pre
). Hence, it is

enough for our purposes to limit ourselves to ℑ(C ′
pre

) rather than looking for
membership in the larger space ℑ(Cpre).

To this end, we first identify an index set ℐℎ′ ⊆ {1, . . . , r} (the role of ℎ′ will
be explained momentarily) defining a subspace

⊕
i∈ℐℎ′

Vi for which ℑ(C ′
pre

)
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Algorithm 4 (Collision Attack against MDS-based schemes).

Input: H = KPb([r, k, d]2e), an index set ℐ0 ⊂ {1, . . . , r} with � = ∣ℐ0∣ = r−k
and a block size n = bn′.

Output: A colliding pair (W,W ′) ∈
(
{0, 1}ekn

′
)2

such that Hn(W ) =

Hn(W ′),W ∕= W ′, and if X = Cpre(W ) and X ′ = Cpre(W ′) then for
all i ∈ ℐ0 it holds that xi = x′i.

1. Initialization. Set ℐ ← {1, . . . , r}∖ℐ0 (with ∣ℐ∣ = k), ℐ = ℐ̃, and set
� ← k/(3k − r). Obtain C′ consisting of codewords g′ ∈ C′ that are
constructed from g ∈ C by dropping zeroes of g from all the positions
appearing in ℐ0.

2. Query Phase. As in Algorithm 3.

3. Local Collision Detection. As in Algorithm 3.

4. Merge Phase. Find a nonzero codeword ℎ′ ∈ C′⊥ of minimum Hamming

weight d′
⊥

= 2k − r + 1. Let ℎ′ = ℎ′0 + ℎ′1 with �(ℎ′0) ∩ �(ℎ′1) = ∅ and of

Hamming weights ⌈d′⊥/2⌉ and ⌊d′⊥/2⌋ respectively. Create for j = 0, 1,

L̃ℎ′
j

=

⎧⎨⎩
(
�

′
ℎ′
j
, Xj , X

′
j , ('̄(ℎ

′
j)⊗ In′ ) ⋅ (�′

ℎ′
j

+ 0)

)
∣ (�′

ℎ′
j
, Xj , X

′
j) ∈

∑
i∈�(ℎ′

j
)

Li

⎫⎬⎭
both sorted on their fourth component.

5. Join Phase. Create Lℎ′ consisting exactly of those elements �′ℎ′
0

+ �′ℎ′
1

for which (�′ℎ′
0
, X0, X

′
0, Y0) ∈ L̃ℎ′

0
, (�′ℎ′

1
, X1, X

′
1, Y1) ∈ L̃ℎ′

1
and Y0 = Y1.

6. Collision Pruning. For all (�′ℎ′ , X,X ′) ∈ Lℎ′ create the unique �′

corresponding to it and check whether it results in �i ∈ Li for all i ∈ ℐ(=

ℐ̃). If so, keep �′ =
∑

i∈ℐ̃ �i in Lℐ . Formally

Lℐ =

⎧⎨⎩(�
′
, X̃, X̃

′
) = (�

′
ℎ′ , X,X

′
) ∈ Lℎ′ +

∑
i∈ℐ̃∖�(ℎ′)

Li∣�′ ∈ ℑ(C
′pre

)

⎫⎬⎭ .

7. Skip. & 8. Finalization. As in Algorithm 3.

when restricted to this subspace, is not surjective. As a consequence, we will
be able to prune significantly the total collection of candidate �′s keeping only
those that are possibly in ℑ(C ′

pre
) (restricted to

⊕
i∈ℐℎ′

Vi). In the sequel, we
will show how to efficiently find an index set ℐℎ′ , and how to efficiently prune.

An important parameter determining the runtime of our collision attack is
d′
⊥

, the minimum distance of the dual shortened code. Let � be the function
that maps ℎ′ ∈ Fr−�2e to the set of indices of non-zero entries in ℎ′. Thus, �(ℎ′) ⊆
{1, . . . , r} and ∣�(ℎ′)∣ equals the Hamming weight of the codeword ℎ′.

An easy adaptation of Proposition 1 shows that if we are given a codeword

ℎ′ ∈ C′⊥ and an element �′ ∈ F
(r−�)en′

2 , then �′ can only be in ℑ(C ′
pre

)

if ('̄(ℎ′
T

) ⊗ In′) ⋅ �′ = 0, where the only parts of �′ relevant for this check
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are those lining up with the nonzero entries of ℎ′. Indeed, an element �′ℎ′ ∈∑
i∈�(ℎ′) Li can be completed to an element in the range of derived mapping

C ′
pre

iff ('̄(ℎ′
T

)⊗ In′) ⋅ (�′ℎ′ + 0) = 0. Efficient creation of

Lℎ′ =

⎧⎨⎩(�′ℎ′ , X,X ′) ∈
∑

i∈�(ℎ′)

Li ∣ ('̄(ℎ′
T

)⊗ In′) ⋅ (�′ℎ′ + 0) = 0

⎫⎬⎭
can be done adapting standard techniques [2,13,11] by splitting the codeword
in two and looking for all collisions in respective entries. That is, assume that
ℎ′ = ℎ′0 + ℎ′1 with �(ℎ′0) ∩ �(ℎ′1) = ∅, and define, for j = 0, 1

L̃ℎ′
j

=

⎧⎨⎩(�′ℎ′
j
, Xj , X

′
j , ('̄(ℎ′j

T
)⊗ In′) ⋅ (�′ℎ′

j
+ 0)

)
∣ (�′ℎ′

j
, Xj , X

′
j) ∈

∑
i∈�(ℎ′

j)

Li

⎫⎬⎭
Then Lℎ′ consists of those elements �′ℎ′

0
+ �′ℎ′

1
for which (�′ℎ′

0
, X0, X

′
0, Y0) ∈

L̃ℎ′
0
, (�′ℎ′

1
, X1, X

′
1, Y1) ∈ L̃ℎ′

1
and Y0 = Y1.

By sorting the two L̃ ’s the time complexity of creating Lℎ′ is then roughly
the maximum cardinality of the two sets L̃ℎ′

0
and L̃ℎ′

1
. Hence, the main trick to

reduce the time complexity is to minimize the Hamming weights of ℎ′0 and ℎ′1,

which is done by picking a codeword ℎ′ ∈ C′⊥ of minimum distance d′
⊥

and split-
ting it (almost) evenly. As a result, for the partial collision lists of (almost) same

cardinality S, Lℎ′ can be constructed in S⌈d
′⊥/2⌉ time using S⌊d

′⊥/2⌋ memory
(ignoring inconsequential factors). We summarize our analysis in Thm. 4.

Theorem 4. Let H = KPb([r, k, d]2e) be given and C′ be a shortened [r− �, k−
�, d]2e code derived from C for � = r−k. Let d′

⊥
be the minimum distance of the

dual code of C′. Suppose C is MDS (so is C′ with d′
⊥

= 2k− r+ 1) and consider
the collision attack described in Alg. 4 run against Hn using q = 2�n queries for
� = k/(3k − r). Then the expected number of collision outputs is equal to one
and the expectations for the internal list sizes are (for i ∈ ℐ):

∣Li∣ = 2(2�−1)n , ∣Lℎ′ ∣ = 2((2�−1)d′⊥−�)n ,

∣L̃ℎ′
0
∣ = 2(2�−1)⌈ d′

⊥
2 ⌉n , ∣L̃ℎ′

1
∣ = 2(2�−1)⌊ d′

⊥
2 ⌋n

The average case time complexity of the algorithm is max
(
q, ∣L̃ℎ′

0
∣, ∣Lℎ′ ∣

)
with

a memory requirement of max
(
q, ∣L̃ℎ′

1
∣
)

(expressed in cn-bit blocks).

7 Conclusion

In this paper we provide an extensive security analysis of the Knudsen-Preneel
compression functions by focusing on their collision resistance. We present three
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improved collision attacks namely the revised Watanabe, symbiotic collision and
parametrized collision attacks. Our new attacks work with the least number
of queries reported so far. Moreover, except for only one out of 16 suggested
parameters, these attacks beat the time-complexity of any prior attack we are
aware of.

Acknowledgments. We thank Joachim Rosenthal and Thomas Shrimpton for
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