
Finding Second Preimages of Short Messages for
Hamsi-256

Thomas Fuhr

ANSSI, Paris, France and TELECOM-ParisTech, Paris, France
thomas.fuhr@ssi.gouv.fr

Abstract. In this paper we study the second preimage resistance of
Hamsi-256, a second round SHA-3 candidate. We show that it is possible
to find affine equations between some input bits and some output bits
on the 3-round compression function. This property enables an attacker
to find pseudo preimages for the Hamsi-256 compression function. The
pseudo preimage algorithm can be used to find second preimages of the
digests of messages M with complexity 2251.3, which is lower than the
best generic attacks when M is short.

Key words: hash functions, Hamsi, second preimage.

1 Introduction

Hamsi is a family of hash functions that have been submitted to the NIST SHA-3
competition by Küçük [4]. It contains 4 versions, with respective outputs of 224,
256, 384, and 512 bits. It is based on the Merkle-Damgård domain extender,
however its design is rather original as it does not make use of a block cipher in
Davies-Meyer mode. The Hamsi compression function uses short message blocks
and its security relies on a complex message expansion. Instead of a keyed per-
mutation, a fixed permutation is applied to the concatenation of the incoming
chaining variable and the expanded message. The new chaining variable is ob-
tained by truncation of the output of the permutation and feedforward with the
previous chaining variable.

Previous work. Several distinguishers on the Hamsi compression function have
already been discovered. Some of them rely on the fact that the algebraic degree
of the internal permutation is small. In [1], Aumasson noticed that the algebraic
degree of 5 rounds of the compression function as a function of the incoming
chaining variable is at most 243. Aumasson and Meier then enhanced this obser-
vation to find zero-sum distinguishers on a 6-round version of the compression
function [2]. Several results of differential cryptanalysis have also been found
on the compression function. As a difference on the message has only a small
probability to propagate, they concern pseudo near collisions on the compression
function [8, 9]. Calik and Turan found out that for some given differences in the
incoming chaining variables, the difference on one output bit of the compression
function can be predicted with probability one, leading to a pseudo preimage
attack [3].

Our contribution. In this article we describe a weakness of the Hamsi compres-
sion function, that can be used to find second preimages for Hamsi-256 with
a complexity equivalent to 2251.3 compression evaluations, improving the best
known attack for short messages. This is the first attack that breaks the generic
bounds for one of the second round SHA-3 candidates. Our method can be re-
lated to cube attacks [5] and AIDA [11]. It is based on an accurate choice of
the variables, and on the setting of some initial conditions on the internal state
to control the propagation of these variables and to prevent the algbraic degree
from growing. We aim at solving a system of polynomial equations, and herefore
we set the values of some variables to constants and try to solve the system
with the remaining variables. Our main idea consists in setting some conditions
on the message block and the chaining variable in order to find affine relations
between the output of the compression function and some bits of the incoming
chaining variable. These relations can be used to find second preimages for the
full hash function.

Related work. Shamir and Dinur independently discovered an algebraic second
preimage attack against Hamsi-256 based on cube techniques. Their attack was
presented at the Crypto 2010 rump session, and also breaks the complexity of
generic attacks against single-pipe Merkle-Damgård hash functions when the
initial message is short [10].

Outline of the paper. In Section 2 we briefly describe the hash function Hamsi-
256. In Section 3, we display two algebraic properties of the S-box used in Hamsi,
and show how to use it to write the result of the first two rounds of the com-
pression function as an affine function of some bits of the chaining variable.
After that we show how to extend this property to find affine equations on the
full Hamsi-256 compression function in Section 4. Under some conditions on the
message block and the incoming chaining variable, we managed to find 14 (resp.
11) output bits of the compression function that can be written as an affine
function of 7 (resp. 8) bits of the incoming chaining variable, the message block
and the rest of the chaining variable being fixed. In Section 5, we describe how to
use these equations to find pseudo preimages for the full Hamsi-256 compression
function, along with some optimization techniques and an evalation of the com-
plexity1. Then, in Section 6, we show how to use the pseudo preimage algorithm
to find second preimages for the full hash function with a complexity equivalent
to 2251.32 compression evaluations, which is our main result. Finally, in Section 7,
we study the application of generic techniques on the Merkle-Damgård domain
extender variant used in Hamsi. The resulting complexity is slightly higher than
in the case of the Merkle-Damgård domain extender, due to the fact that the
message blocks have less entropy than required for a direct application of generic
techniques. Therefore our second preimage attack is more efficient than generic
techniques when the initial message is short.
1 A pseudo preimage of a chaining variable C∗ is a couple (m, C) where m is a message
block and C is a chaining variable such that the result of the compression function
F(C, m) is C∗.

Notation. Throughout the paper, variables represented by small letters are 32-
bit variables, and capital letters stand for the whole internal state, or messages.
The j-th LSB of variable v is denoted v(j).
H(M) represents the digest of message M by Hamsi-256. F(C,m) stands for

the output of the Hamsi-256 compression function applied to chaining variable
C and message block m, and the iteration of the compression function on several
message blocks is defined recursively as follows:

F1(C,m1) = F(C,m1)
∀i ≥ 2, Fi(C,m1, . . . ,mi) = F(Fi−1(C,m1, . . . ,mi−1),mi)

2 Description of Hamsi-256

In this article we focus on Hamsi-256. Our technique also applies to Hamsi-224,
however, unlike for Hamsi-256, it does not break the generic bounds.

Hamsi-256 uses a compression function that maps a 256-bit chaining variable
Hi−1 and a 32-bit message block to a new 256-bit chaining variable. It consists
of the following operations:

Message expansion. Firstly, the 32-bit message block m is expanded into a 256-
bit variable E(M) = (m0, ...,m7). The expansion function is a linear code over
GF (4).

Concatenation. The expanded message is then concatenated with the incoming
chaining variable C = (c0, ..., c7) to produce a 512 state S represented by a 4×4
matrix of 32-bit registers. The concatenation function is the following:

C : (E(M), C)→ (s0, s1, s2, s3, = (m0, m1, c0, c1,
s4, s5, s6, s7, c2, c3, m2, m3,
s8, s9, s10, s11, m4, m5, c4, c5,
s12, s13, s14, s15) c6, c7, m6, m7).

Round function. After the concatenation the following round permutation is
applied three times (or eight times for the last message block):

R : S → L(S(A(S))),

where A consists in adding a constant value and a counter to the state, S is a
substitution layer based on the use of the second 4-bit to 4-bit S-box of Serpent
and L is a diffusion layer that operates on 4 sets of 4 32-bit variables in parallel.

More precisely, S consists in applying, for all i ∈ {0 . . . 3} and j ∈ {0 . . . 31},
the S-box to bits j of words si, si+4, si+8, si+12. In other words, the same S-box
is applied in parallel to the 128 columns of the internal state.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2

Table 1. S-box used in Hamsi. Inputs and outputs in hexadecimal, lsb of x corresponds
to words s0, . . . , s3

The diffusion layer works as follows. It takes as inputs (a, b, c, d) = (s0, s5, s10, s15)
(resp. (s1, s6, s11, s12), (s2, s7, s8, s13), (s3, s4, s9, s14)) and consists of the follow-
ing operations:

a := a ≪ 13
c := c ≪ 3
b := (b⊕ a⊕ c) ≪ 1
d := (d⊕ c⊕ (a� 3)) ≪ 7
a := (a⊕ b⊕ d) ≪ 5
c := (c⊕ d⊕ (b� 7) ≪ 22

Truncation and feedforward. After the third round, the output of the compres-
sion function is obtained by applying a truncation function to the state and
xoring the result to the former chaining value.

T : S → Σ = (s0, s1, s2, s3, s8, s9, s10, s11)
X : Σ → C∗ = C ⊕Σ.

Domain extender. To build a variable-length hash function, Hamsi makes use
of the Merkle-Damgård construction. The padding consists in concatenating to
the message a “1” and as many “0”s as necessary to get an integer number of
blocks, and then by further concatenating the message length encoded on 64
bits. For the last block, the permutation consists of 8 rounds (instead of 3).

3 An observation on the two-round Hamsi-256
compression function

In this Section we focus on a reduced version of the Hamsi-256 compression
function, where the internal permutation is reduced to two rounds. The result
we get will be used in the following Sections to break the full version of Hamsi-
256. We show how to find pseudo preimages for this reduced-round version of
the compression function.

3.1 Study of the Hamsi S-box

On the Hamsi S-box we notice the following properties.

We use the fact that S[9] = 1, S[C] = 0, S[B] = 4, and S[E] = 5 to deduce
that

∀(x, b) ∈ {0, 1}2, S[(x, b, x̄, 1)] = (x+ b, 0, b, 0). (1)

As a result, only one bit of the output depends on x. Similarly we have S[3] = 9
and S[9] = 1, which leads to

∀x ∈ {0, 1}, S[(1, x, 0, x̄)] = (1, 0, 0, x). (2)

If the input of an S-box depends on only one variable bit, then the output of
the S-box can be expressed as an affine function of this bit. with that in mind,
properties 1 and 2 have been found according to the following criteria. First,
only one output bit of the S-box should depend on x. Second, input bits 0 and
2 or 1 and 3 must not depend on x, so that for an appropriate choice of a first
round S-box, only the input bits coming from the chaining variable depend on
x.

3.2 An interesting set of variables

Let us now consider any value of the message block m. Without knowing the
incoming chaining value, we can compute s0, s1, s6, s7, s8, s9, s14, s15 after the
first round constant addition. Let us now suppose that the j-th bit of s14 is
s
(j)
14 = 1. Then, independently of the value of s(j)6 , if s(j)2 = x(j) and s(j)10 = x(j),
only the first output bit of the j-th S-box of the 3-rd column will depend on x(j)

(according to equation 1). Let J be a set of variables that satisfies this property.
We can then define one variable bit x(j) ∈ {0, 1} for each j such that s(j)14 = 1.

After the first S-box layer, only the word s2 depends on the variable set X =
{x(j)}j∈J , through an affine relation. After the first round diffusion layer and
the second round constant addition, words s2,s7,s8, and s13 depend linearly on
X, which means that only one input bit of each S-box of the second substitution
layer can depend onX. As a consequence, the output of this layer is also an affine
function of X. The second diffusion layer, the truncation and the feedforward
cannot increase the degree, so the whole output of the compression function is
an affine function of X.

3.3 Building and solving the linear system

We can then try to invert the 2-round compression function F , ie to find a
message block M and a chaining value C that maps to a given value C∗. The
idea is to express the output of the compression function as an affine system of
a given set of variables, and to solve this system. With an appropriate choice
of variables, we know that the system is affine but we first need to compute its
coefficients. To achieve it we do the following:

1. Choose a message block M and compute the resulting value of s14 before
the first substitution layer.

2. Compute the resulting set of variables X = {x(j)}j∈J . If |J | < 16, choose
another value for M .

3. Choose a chaining value C such that for all j ∈ J , s(j)2 ⊕ s
(j)
10 = 1 after the

first constant addition. C is then divided into a variable part (the bits c(j)0

and c(j)4 for j ∈ J) and a constant part (the other bits).
4. Compute F(M,C) to get the constant coefficients of the system.
5. For each j ∈ J , derive Cj from C by complementing the values of c(j)0 and
c
(j)
4 . Compute F(M,Cj) ⊕ F(M,C) to get the coefficients of x(j), using an
interpolation method.

6. Solve the affine system of 256 equations in |J| unknowns to find a preimage
of C∗. If it has no solution, choose another value of the constant part of C.
If all the values have been tried, increase the value of M .

We can then assume that the complexity of solving the resulting equation
system is smaller that the complexity of one evaluation of the compression func-
tion. To avoid useless computation, one can for example try to find solutions
to subsystems, and abort as soon as an inconsistency is detected. Each system
allows us to test 2|J| values of F(M,C) with a complexity of less than |J | + 2
evaluations of the compression function. As |J | ≥ 16, the total complexity of
this algorithm is about 18× 2256−16 ≈ 2244 compression evaluations.

4 Linear equations for the full Hamsi-256 compression
function

In this Section we show how to apply similar techniques to find linear equations
for the full Hamsi-256 compression function.

If we try to use the same property on the S-box as in the previous Section,
we cannot find any large set of variables that lead to linear equations. To this
end, property 2 is more interesting. If the message block is such that before the
first substitution layer, s(j)0 = 1 and s(j)8 = 0, if we set s(j)4 = x(j) and s(j)12 = x(j),
only the j-th bit of s12 depends on x(j) after the S-box layer. The same remark
applies to s1, s5, s9, s13, with s

(j)
5 = y(j), s(j)13 = y(j), s(j)1 = 1, and s(j)9 = 0,.

In comparison with the technique used in Section 3, we use more freedom
degrees (for each variable, two bits of the message and one bit of the chaining
variable). However, as s12 is the d input of the diffusion layer, the dependence
in x(j) does not propagate fast during the first round.

The internal state S before the permutation rounds can then be divided into
three parts:

– Variable bits: The sets of variables X,Y .
– Conditional bits: Bits of the initial internal state that must take a given

value so that the dependence of the internal state in the variables after the
first substitution layer are as described in equation 2. Each Variable bit
requires the definition of three Conditional bits: two on the message block
and one on the incoming chaining variable.

– Constant bits: All the other parts of the internal state.

These bits are not necessarily directly bits from the incoming message block
or chaining variable: they can be a linear function of such bits. For example, when
considering equation 2, the Conditional bits on the incoming chaining value are
the exclusive or of two bits (s(j)4 and s(j)12 , or s

(j)
5 and s(j)13). The corresponding

Variable bit can then be taken as the value of one of these two bits.
As a result, it is possible to find sets of variables X = {x(j)}j∈Jx and Y =

{y(j)}j∈Jy
such that some output bits of the whole compression function depend

linearly on the Variable bits X,Y , provided the Conditional bits take a given
value and once the Constant bits are set.

Algebraic properties of the Hamsi-256 S-box. To find these sets of variables we
have to take into account the following properties.

1. Any function f from 1 bit to n bits is affine. It can be defined as f(b) =
f(0)⊕(f(1)⊕f(0))b. Therefore, if all input bits of a 4-bit S-box are constant
except one, the output ofthe S-box is an affine function of the remaining input
bit. If this input bit is an affine function of the variables in X ∪ Y , it is also
the case for the 4 output bits, as a composition of affine functions.

2. Similarly, if the input of an S-box depends on only one of the variables, its
output is an affine function of this variable.

3. If (b0, b1, b2, b3) is the output of an S-box with input (a0, a1, a2, a3) : the only
nonlinear monomial in the expression of b0 is a0a2, and b3 only depends on
nonlinear monomials a0a1a2 and a1a3. Therefore, if the monomial a0a2 is an
affine function of X ∪ Y , so is b0. Similarly, if monomials a1a3 and a0a1a2

are affine in X ∪ Y , so is b3.

We will now use these properties in an automated search as sufficient conditions
to guarantee that some final and intermediate bits involved in the computation
of the compression function are affine functions of a set of variables.

Optimal sets of variables. For our second preimage attack we then have to deter-
mine optimal sets of variable bits. In our attack two phases are time-consuming:
the generation of the affine equation system, and the test of the solutions. The
complexities mainly depend on the number of variables Nvar and the number
of resulting affine equations Neq. For a given number of variables Nvar, we then
look for the choice of the variable set that leads to the largest affine equation
system, using an exhaustive search. The cost of the system generation decreases
when the number of variables increases, whereas the cost of testing the solutions
mainly decreases when the number of equations increases. A precise evaluation
of the complexity of the attack is given in section 5. The optimal values for Nvar
and Neq can then be found as a tradeoff between the complexity of these two
algorithms.

Furthermore, the equation systems that have been generated can be reused
if one tries to find a pseudo preimage for multiple targets, which is the case in
some parts of our attack. Therefore, the optimal sets of equations are different
in the different parts of the attack.

Finding the optimal sets of variables. For a given value of Nvar, we determine
the set X ∪Y of variables that leads to the maximal value of Neq. We achieve it
through an automated exhaustive search on all the sets of variables Xi ∪Yi that
contain exactly Nvar elements.

Let us now consider a fixed set X∪Y . We try to determine which output bits
can always be expressed as an affine function of the Variables of X ∪ Y , under
the assumption that all the Conditional bits take the right constant value and
that all the Constant bits are fixed. We then do the following:

For each pair of variables {z, z′} ∈ X ∪ Y , we determine the set of output
bits Sz,z′ that are always affine functions of z and z′ when the Conditional bits
take the right value and the other parts of the initial state are set to a fixed
constant value. How to determine these sets will be depicted below. Once this is
done, the bits in the set SX,Y = ∩{z,z′}∈X∪Y Sz,z′ are affine functions of the set
of variables X ∪ Y . If the algebraic expression of an output bit b as a function
of the variables in X ∪ Y contains a monomial of degree 2 or more, let z and z′
be two variables of this monomial. Then b cannot be in Sz,z′ , because for some
assignment of all the other variables, the expression of b contains the monomial
zz′.

Let us now describe how to find Sz,z′ . After the first S-box layer, only one
bit depends on each of the variables z and z′. We then study the propagation of
these variables through the compression function. The propagation is not always
deterministic - it is probabilistic through the S-box layers. For each intermediate
bit of the internal state, we then determine if it is independent from z and z′, if
it can depend linearly on z and/or z′ or if it can be quadratic in z and z′. The
diffusion layer L is linear. Therefore a bit of the internal state after the diffusion
layer is always affine in z, z′ if and only if all the input bits it depends on also
are always affine in z, z′. A does no change the degree of each bit of the internal
state. S is nonlinear and can increase the degree. More precisely, if two different
input bits of a given S-box can depend respectively on z and z′, some output
bits may be quadratic. At the end of the compression function, T and X cannot
increase the degree.

Let us now consider a fixed set X∪Y . We try to determine which output bits
can always be expressed as an affine function of the Variables of X∪Y , under the
assumption that all the Conditional bits take the right constant value and that
all the Constant bits are fixed. Equivalently, we can try to determine the output
bits bi which polynomial expression as a function of the Variable bits can contain
monomials of degree ≥ 2. This means that for some choice of (z, z′) ∈ X∪Y and
for some assignment of all the other variables, the polynomial expression of bi
can contain the monomial zz′. Therefore, for each choice of (z, z′) ∈ X ∪ Y , we
compute which bits of the internal state can contain the monomials z, z′, and
zz′ during the intermediate computation and in the resulting chaining value.

Using this method, we found the following properties for 7 and 8 variables.
Provided that the message block and the whole chaining variable except the x
and y variables, and under the assumption that Ncond conditions on the message
block and the chaining value are verified:

– Output bits 9, 18, 44, 88, 144, 152, 183, 185, 188, 193, 219, 221, 228 and 246
depend linearly on (x3, x26, x30, y4, y6, y7, y15), which makes 14 output bits
and 7 variables with Ncond = 21.

– Output bits 11, 39, 46, 185, 188, 195, 218, 220, 230, 248 and 255 depend
linearly on (x3, x28, x29, y1, y6, y7, y15, y31) , which makes 11 output bits and
8 variables with Ncond = 24.

Once the Conditional bits are assigned the right value and the Constant
bits are assigned any value, the relation between some output bits (denoted
Equation bits) and the Variable bits can be described as a linear equation
system.

5 Pseudo preimages for the Hamsi-256 compression
function

In this Section we try to find pseudo preimages of a given value C∗ of the chaining
variable. We aim at finding m,C such that F(C,m) = C∗. In the first subsection
we describe an optimized algorithm that makes the following operations with a
reduced complexity. Once we know that Neq output bits t0, . . . , tNeq−1 are affine
functions of Nvar variable bits z0, . . . zNvar−1, computing the inverse of the com-
pression function can be achieved as follows. We also give here a correspondance
between the operations described and the steps of the algorithm that compute
them.

– Set the initial value of the chaining variable C and the message block m such
that all the conditions are verified (steps 1 and 2).

– Compute the output bits t0, . . . , tNeq−1 of F(C,m) (steps 3 to 7).
– The output bits t0, . . . , tNeq−1 of the compression function is then an affine

function of the variables. Compute the coefficients of this function (step 8).
– Solve the resulting system of affine equations (step 9). If it does not have

any solution, start again.
– If the linear system has a solution mi, Ci, compute the compression function

to determine whether F(Ci,mi) = C∗ (step 10). This occurs with probability
2Neq−256. If not, start again.

5.1 Building and solving the equation systems

A basic idea. The first idea to compute the coefficients of the equation system
would be to reuse the idea of Section 3. More precisely we could evaluate the
compression function with all the variables set to 0 to get the constant coef-
ficients, and once for each variable to get the coefficients for this variable, by
running the compression function.

But to determine the coefficients, we only need to compute the parts of the
state that really depend on the Variable bits and impact the Equation bits, which
involve less computation than running the whole compression function.

Furthermore, some small changes in the incoming chaining variable do not
impact immediately the whole internal state. Some parts of the computation can
then be reused when computing the constant coefficients of different equation
systems. We will describe a method to compute these systems below.

A more efficient method. To achieve a more efficient computation of the coeffi-
cients, we can use the following ideas:

– The coefficients of each variable only depend on the propagation of the vari-
able through the second and the third diffusion layer. Therefore they can be
recovered from the inputs of the affected S-boxes.

– The first two rounds of the Hamsi-256 compression function are an affine
function of the variables defined in Section 3.

We then use a set |J | of 8 variables as defined in section 3, denoted auxiliary
variables, to compute more efficiently 28 equation systems. We know from the
analysis of section 3 that the whole internal state up to the input of the third S-
box layer are affine functions of these variables, provided that some Conditional
bits have the apropriate value. Instead of running the whole compression function
to get the constant coefficients for each system, we only modify one auxiliary
variable from one system to the next one. Therefore, some intermediate values
do not need to be computed again.

Once we have computed the intermediate values of the internal state with all
the principal and auxiliary variables set to 0, we can deduce all the values of the
internal state for any of the 28 possible assignments of the auxiliary variables by
studying the propagation of the 8 auxiliary variables through the S-box layer of
round 2.

We can then improve the attack as follows.

1. Set the value of the Conditional bits from the chaining variable to their
appropriate value.

2. Choose the Constant bits of the chaining variable, and the message block m
such that all the conditions are verified.

3. Choose a set of 8 auxiliary variables such that the resulting auxiliary con-
ditions are verified. For a random value of the initial internal state, we can
find 8 auxiliary variables with a good probability. If not so, go back to step
2.

4. Compute the first two rounds of the compression function with all the Vari-
ables and auxiliary variables set to 0. Keep trace of the results of internal
operations.

5. Compute the propagation of the auxiliary variables in the first two rounds.
6. For each value of the set of auxiliary variables, recover the inputs of the

S-boxes involving the Variables in rounds 2 and 3.
7. Recover the constant coefficients by running the part of the third round that

affect the Equation bits.
8. Recover the other coefficients of the system by studying the propagation of

the Variables during rounds 2 and 3.

9. Solve the resulting linear equation system. If it does not have any solution,
go back to step 2.

10. Set the Variable bits according to one of the solutions of the equation system,
and compute the compression function. If the result is not the target C∗, go
back to step 2.

5.2 Complexity evaluation of the attack

We now aim at evaluating the complexity of the different steps of the attack.
As we try to avoid useless computations, we mainly use operations on bits and
not on 32-bit registers. We could use parallelism by building several systems
at the same time, with different values of the Constant bits of the incoming
chaining variable. Therefore we argue that the right metrics for evaluating the
complexity of the attack is the number of elementary bitwise operations (AND,
OR, XOR) it involves. To compare it to generic attacks, we use the analysis
of Shamir and Dinur [10] and evaluate the number of bitwise operations in the
Hamsi-256 compression function to about 10500.

Steps 1 to 3 are setup steps and have a negligible complexity compared to
the other steps. We also argue that the choice of auxiliary variables can be the
same for a large range of systems, therefore the study of which parts of the
intermediate internal state they impact can be precomputed once and has a
neligible complexity.

Step 4 involves the computation of about 2 out of 3 rounds of the compression
function. A careful analysis of which output bits of the S-boxes need to be
computed and which parts of the linear diffusion layers need to be run leads to
5248 operations for the 7-variable systems and 4852 operations for the 8-variable
systems.

Step 5 involves the computation of at most 7 second round S-boxes per
auxiliary variable, and at most 7×20 = 140 XOR operations per variable for the
second round diffusion layer, which makes at most 1120 elementary operations
for 28 systems.

Step 6 consists in xoring the values of the inputs of some S-boxes before
rounds 2 and 3 for different values of the auxiliary variables. The values of these
variables can be chosen following a Gray code, to minimize the parts of the state
that ha to be computed again. Therefore, only 7 input bits of the second S-box
layer can be affected. For the third S-box layer, only some S-boxes are useful
(45 for the 7-variable systems, 34 for the 8-variable systems). This step then
requires 7 + 4× 45 = 187 (resp. 7 + 4× 34 = 143) XORs for the 7-variable (resp.
8-variable) systems.

Step 7 requires to evaluate the constant coefficients of the system. These
coefficients can be recovered by computing some parts of the output of the com-
pression function, knowing the output of the second round. This consists in
applying the diffusion operations and the feedforward. To compute the feedfor-
ward one needs to invert Neq bits of the first round constant addition. This step
costs 473 + 54 + 28 = 555 (resp. 328 + 37 + 22 = 387) operations per system.

Step 8 consists in recovering the coefficients of degree 1 monomials. This can
be achieved by studying the propagation of the variables through the S-boxes.
For the 7-variable (resp. 8-variable) systems the inputs of 17 (resp. 20) S-boxes
depend on the variables before the second substitution layer. For some of them,
only some output bits need to be computed. For each 7-variable (resp. 8-variable)
system, this requires 210 (resp. 200) operations. The propagation through the
second diffusion layer to the inputs of the useful third round S-boxes requires 60
(resp. 46) XORs. In the third round, the outputs of 45 (resp. 34) S-boxes affect
the Equation bits. To evaluate the coefficients of the variables, 3 cases can occur
for the third round S-box layer:

1. The input of the S-box does not depend on Variables. Then the output does
not depend on the Variables either, and no computation is required. This
occurs for 5 (resp. 9) S-boxes.

2. One input bit can a priori depend on one or several Variables. Then its output
depend on the same Variables as its input, and computing the coefficients
is equivalent to one S-box evaluation. This occurs for 31 (resp. 17) S-boxes,
leading to a complexity of 364 (resp. 155) operations.

3. Two input bits can a priori depend on the Variables. As the dependences
are not deterministic, 3 different cases of dependences can occur during the
actual computation of the system. Each of them leads to a different propaga-
tion of the difference. If the adversary uses parallelism, he needs to compute
the dependences for the 3 cases, leading to a complexity equivalent to 3 S-box
computations. This occurs for 6 (resp. 8) S-boxes, leading to a complexity
of 211 (resp. 213).

The linear coefficients can be derived using simple operations from the bits
representing the propagation of the variables through the second and the third
S-box layer. The overall commplexity to retrieve the coefficients from these bits
is then at most 125 (resp. 101) operations.

Putting everything together, the average costs to compute the coefficients of
an equation system are:

– 5248+1120
28 + 187 + 210 + 60 + 555 + 364 + 211 + 125 = 1737 operations for

7-variable systems,
– 4852+1120

28 + 143 + 200 + 46 + 387 + 155 + 213 + 101 = 1268 operations for
8-variable systems,

Overall, the cost to construct the 7 variable system is about T (7)
build = 2−2.59

compression evaluations. The complexity to build the 8-variable system is T (8)
build =

2−3.05 compression evaluations.
Step 9 then consists in solving the equation system, which complexity Tsolve

is small compared to the evaluation of the compression function. We use the
Gauss algorithm. Therefore the complexity is as follows: for each of the Nvar
variables, for each of the Neq equations, we compute at most (Nvar + 1) XORs,
and the average number of XORs is Nvar/2. This leads to an overall complexity

of Nvar(Nvar + 1)Neq/2 operations per system, which means 392 operations for
7-variable systems and 396 operations for 8-variable systems. One can therefore
bound the complexity of this step by T (7)

solve = 2−4.74 and T (8)
solve = 2−4.72.

The success probability of step 10 is then 2Neq−256 = 2−242, leading to an
overall complexity of 2256−NeqTtest compression evaluations (the complexity to
test one solution is Ttest ≈ 1). Each system of equations enables to test 2Nvar

values of the chaining variable, therefore one needs to compute about 2256−Nvar

systems. The best pseudo-preimage algorithm is then obtained for 8 variables:

T
(8)
preimage = 2248(T (8)

build + T
(8)
solve) + 2245T

(8)
test ≈ 2246.2. (3)

Variability. We also need to make sure that the search space is big enough to
find the second preimages we need. We can only detect a certain type of pseudo
preimages for a given output, that can be defined by the conditions that are
imposed on the input message block and chaining variable. For 8 variables, we
have 24 such bit conditions (16 on the message block and 8 on the chaining
variable). The original search space has a size 2256+32 = 2288, we then expect
2288−24 = 2264 couples (C,m) to fulfill these conditions. We also need to find
8 auxliary variables. An auxiliary variable can be defined when one condition
on the message block and one condition on the chaining variable are verified
(according to Section 3). As we have 32 potential auxiliary variables, the proba-
bility that at least 8 of them can be chosen is at least 1/2. Therefore we expect
at least 2263 candidates, among which 27 are pseudo-preimages of a given value.
This argument confirms that the search space is big enough to make the attack
work.

6 Second preimages for the full Hamsi-256

As we showed in Section 5, pseudo preimages can be found for the Hamsi-256
compression function with a complexity about 2246.2 compression evaluations.
This threatens the security of Hamsi-256, because one can use a pseudo preimage
algorithm to build a second preimage finding algorithm using a basic meet-in-the
middle approach. In this section we describe this both this basic method and
show how to improve it. The main idea is the following: the complexity of the
pseudo-preimage attack is dominated by the complexity of the construction of
the equation systems, especially the complexity to recover the coefficients of the
equations. In the general second preimage setting, one can then try to invert one
of the intermediate chaining variables. As the coefficients of the linear system
are the same whatever the value of the chaining variable we try to invert, we
can spare some computation.

6.1 A basic second preimage algorithm

The most natural idea to generate second preimages using our pseudo preimages
algorithm consists in using a basic meet-in-the middle approach. The algorithm
is the following :

1. Compute 25.9 pseudo preimages of the chaining value after the ninth message
block.

2. Compute intermediate hash values for sequences of 8 message blocks until
reaching one of the values computed in step 1. The expected number of such
messages is around 2251.1.

This would lead to a second preimage attack with a complexity about 2 ×
2251.1 = 2252.1. However, the original message must be contain at least 9 blocks,
so as to make sure that we have enough variability to build a second preimage
of an equivalent length. An improvement of our technique would lead to an
improvement of the best second preimage attacks on Hamsi-256.

6.2 Pseudo preimages in a set of images

In the first step of the basic attack, a large amount of the computation time is
consumed to generate the systems. If one has several targets, this computation
can be done only once. In this section we will describe another algorithm that
benefits from this remark.

We will now describe how to find pseudo preimages of an element of a set of
N images, which is an easier problem than finding a pseudo preimage of given
element. In our method, the computation of the coefficients of the linear equation
systems only depends on the target by xoring it to the constant coefficients. We
can therefore use a similar method to compute a preimage of an element of a
set by computing the coefficients only once, and trying to solve the system of
equations for all the N elements of the set.

The beginning of the resolution of the equation system is also common for
all the targets. One aim at solving the equation yi = Ax, where {yi}, i ∈ I are
constant binary vectors of size Neq, x is an unknown binar vector of size Nvar
and A is a fixed binay matrix. One can then begin with the computation of the
Gauss algorithm on a basis of the y space. The complexity of this part can be
denoted Tinvert. A similar argument than the one used in previous section allows
to estimate it as NeqNvar(Neq + Nvar)/2. The end of the resolution consists in
checking whether the remaining equations are verified. In other words, testing
at most Neq linear relations on the ouptut bits, leading to a complexity of at
most Tcheck = N2

eq elementary operations. Therefore this step can be overlooked
in numerical applications.

As a result, the complexity of the new algorithm is derived from equation 3:

Tset(N) =
2256−Nvar

N
(Tbuild + Tinvert) + 2256−NvarTcheck + 2256−NeqTtest (4)

We also have T (7)
invert ≈ 1029 operations, and T (8)

invert ≈ 836 operations, which
means T (7)

invert ≈ 2−3.35, ad T (8)
invert ≈ 2−3.65 compression evaluations.

6.3 Second preimages for short messages

We can now consider the following algorithm. It requires that the original mes-
sage contains at least 10 complete blocks. If this condition is fulfilled, its com-
plexity does not depend on the message length. Therefore it is more efficient
than Kelsey and Schneier’s attack only for short messages.

We consider a message M = m0|| . . . ||m9|| . . . ||m` and try to find a second
preimage of the digest of M . Therefore we consider the chaining variable h10 =
F10(IV,m0, . . . ,m9). First, we try to find x pseudo preimages of h10, namely
(h9,1,m9,1), . . . , (h9,x,m9,x). We use our 8-variable set. The complexity of this
step is about:

T1(x) = x× (2248(T (8)
build + T

(8)
solve) + 2245T

(8)
test) ≈ 2246.2 × x (5)

In a second step, starting from S = {h9, h9,1, . . . , h9,x} where h9,0 = F9(IV,m0, . . . ,m8),
we search y pseudo preimages of one element of the set S, (h8,1,m8,1), . . . , (h8,y,m8,y).
For this step we use 7-variable equation systems. The complexity of the second
step is:

T2(x, y) = (
2249

x+ 1
(T (7)
build + T

(7)
invert) + 2242T

(7)
test)× y ≈ 2247.1 y

x+ 1
+ 2242y. (6)

Finally, using a probabilistic approach, we try to find (m∗0|| . . . ||m∗7) 6= (m0|| . . . ||m7)
such that the resulting chaining variable h∗8 = F7(IV,m∗0, . . . ,m

∗
7) collides with

one of the h8,j with h8,0 = F8(IV,m0, . . . ,m7). The complexity of this step is
then:

T3(y) =
2256

y + 1
. (7)

Let us denote m8,0 = m8 and m9,0 = m9. For j as defined above, there exists
i such that F(h8,j ,m8,j) = h9,i. As a result, F10(IV,m∗0, . . . ,m

∗
7,m8,j ,m9,i) =

h10, and

H(m∗0|| . . . ||m∗7||m8,j ||m9,i|| . . . ||m`) = H(M). (8)

This leads to a second preimage for H(m) with complexity

T (x, y) = T1(x) +T2(x, y) +T3(y) ≈ 2246.2×x+
2247.1y

x+ 1
+ 2242× y+

2256

y + 1
. (9)

For Hamsi-256 the best compromise is found when the complexity of all these
steps are almost the same. For x = 11 and y = 71 we then have :

T1(x) ≈ 2249.66, T2(x, y) ≈ 2249.66, T3(y) ≈ 2249.83

This leads to a complexity of about T (x, y) ≈ 2251.30 compression evaluations.

7 The Kelsey-Schneier second preimage attack

In previous sections we described a second preimage attack that runs faster than
generic attacks on hash functions. To be exhaustive we also need to argue that
it runs faster than generic attacks on the domain extender used to design Hamsi.

In [7], Kelsey and Schneier showed a generic attack on single-pipe Merkle-
Damgård hash functions. To achieve it, they use either a multicollision finding
algorithm created by Joux [6], or fixed points. As Hamsi-256 is based on the
Merkle-Damgård domain extender, this attack can also be used against Hamsi-
256. However, it makes use of very short message blocks, that do not give the ad-
versary enough freedom degrees to apply the attack to Hamsi-256. Furthermore,
the specific design of the compression function does not enable an adversary to
generate fixed points easily.

In this Section we describe a modified version of the attack, so as to make it
applicable to Hamsi-256. The modification is trivial, however the complexity of
the new attack slightly differs from the complexity of the original attack. The
aim of this Section is therefore to find an estimation of the complexity of the
best generic attack against Hamsi-256.

7.1 Description of the attack

Definition 1. A (p, q) expandable message for a Merkle-Damgård hash function
H is a set of (q − p+ 1) messages (µp, . . . , µq) such that

1. H(µp) = H(µp+1) = . . . = H(µq) = h.
2. ∀i ∈ {p, . . . , q}, µi contains exactly i blocks after the padding.

The original second preimage attack works as follows. Let us now suppose
that we want to find a second preimage of the Hamsi-256 digest of an `-block
message M = m0||m1||...||m`−1 . We aim at finding a message M ′ such that
H(M) = H(M ′). We look for M ′ such that M and M ′ have the same length.

1. Generate a (p, q) expandable message for H, for some appropriate values of
p and q that will be discussed later on.

2. Choose the common digest value h as chaining variable, and compute the
compression function for random sequences of 8 message blocks, to find
(m∗1, . . . ,m

∗
8) such that F8(h,m∗1, . . . ,m

∗
8) is one of the chaining values in-

volved in the computation of H(M), CVi = Fi(IV,m0, . . . ,mi) for i ∈
{p+ 8, . . . , q + 8}.

3. Compute µj−8. The message M ′ = µj−8||m∗1|| . . . ||m∗8||mj+1||..||m`−1 is a
second preimage of H(M).

7.2 Expandable messages for Hamsi-256

Expandable messages are generated using the multicollision algorithm of [6].
Expandable messages of size 2k can be generated by iterating the following
search.

Set C0 = IV (the initialization vector of Hamsi-256). For all i in {0, . . . , k −
1}, find two sequences of message blocks Li,0 = (ai,1, . . . , ai,αi) and Li,1 =
(bi,1, . . . , bi,αi+2i) such that :

Ci+1 = Fα(Ci, ai,1, . . . , ai,αi) = Fαi+2i(Ci, bi,1, . . . , bi,αi+2i).

Let p =
∑k−1
i=0 αi, and j ∈ {p, . . . , r + 2k − 1}. We can write j = p+

∑k−1
i=0 xi2

i,
with xi ∈ {0, 1}. Then the sequence µj = (L0,x0 , . . . Lk−1,xk−1) has length j, and
Fj(C0, µj) = Ck. In the generic case, Kelsey and Schneier take αi = 1 for all i.
The cost of each step of the search is then about 2n/2 because of the birthday
paradox, leading to an overall complexity of about k2n/2.

Hamsi-256 has the specific property that the message blocks are small com-
pared to the chaining variables. Therefore, if the attacker chooses αi = 1 , he
can generate only 232 values for the sequence Li,0. In the first iterations, the
probality to find a collision is very small, and the cost of iterations for i ≥ 3
is about 2256−32 = 2224. To keep an equivalent complexity, one then needs to
choose αi = 4 for each value of i leading to a (4k, 4k+2k−1) expandable message
after about k2128 compression evaluations.

7.3 Complexity evaluation

In the case of Hamsi-256 we choose p = 4k and q = 4k + 2k − 1 such that
q + 8 ≤ `− 1. The last two compression functions of the computation of H(M)
involve message blocks representing the bitlength of m, and the block before
contains padding bits so we do not take the resulting chaining value into account.

The cost of the expandable message generation is then about k2128 compres-
sion function evaluations. The average number of trials for the second step is
then about 2256

q−p+1 = 2256−k. The message µj−8 can be recovered easily. The
overall complexity of the attack is then:

T (k) = k2128 + 2256−k (10)

The complexity of the attack is the same as the one found by Kelsey and
Schneier, but the condition on the message length is slightly different (` ≥ 4k +
2k + 8 instead of ` ≥ k + 2k + 1). As a result, our attack described in previous
Section is more efficient than this generic attack for messages which length is
between 10 and 96 blocks.

7.4 Possible improvements

Some small improvement of our second preimage attack could be obtained by
mixing the attack on the domain extender by Kelsey and Schneier with our
pseudo preimage finding algorithm. For example, one could try to invert some of
the intermediate chaining variables involved in the computation ofH(m) between
the two steps of the generic attack, so as to increase the potential number of
targets for the second phase. Such an attack could however only be efficient

for short messages, as the interest of our pseudo preimage algorithm is that it
discards some values of (C,m) due to linear relations. If the target space becomes
larger than 214, almost every value of F(m,C) will be computed anyway, and
applying our technique is pointless.

8 Conclusion and openings

In this article we displayed the first attack on Hamsi-256 that runs faster than
generic attacks on hash functions. Though it has some similarities with differen-
tial attacks, such as the study of the propagation of variables or the reduction
of the search space by setting some conditions, it is mainly an algebraic at-
tack. For short messages, our algorithm is faster than generic attacks on the the
Merkle-Damgård domain extender as used for Hamsi. While the attack complex-
ity does not represent any practical immediate threat for the use of Hamsi-256,
it enlightens some weaknesses in its design.

9 Acknowledgements

I would like to thank Henri Gilbert and the anonymous reviewers of Asiacrypt
2010 for their helpful comments on earlier versions of this paper. Many thanks
to Adi Shamir and Itai Dinur for the ideas we exchanged on Hamsi-256.

References

1. Jean-Philippe Aumasson. On the pseudorandomness of hamsi. NIST mailing list
(local link), 2009.

2. Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
keccak-f and for the core functions of luffa and hamsi. NIST mailing list, 2009.

3. Cagdas Calik and Meltem Sonmez Turan. Message recovery and pseudo-preimage
attacks on the compression function of hamsi-256. Cryptology ePrint Archive,
Report 2010/057.

4. Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 2009.
5. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In

EUROCRYPT, pages 278–299, 2009.
6. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded

constructions. In CRYPTO, pages 306–316, 2004.
7. John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for

much less than 2n work. In EUROCRYPT, pages 474–490, 2005.
8. Keting Jia Meiqin Wang, Xiaoyun Wang and Wei Wang. New pseudo-near-

collision attack on reduced-round of hamsi-256. Cryptology ePrint Archive, Report
2009/484, 2009. urlhttp://eprint.iacr.org/.

9. Ivica Nikolic. Near collisions for the compression function of hamsi-256. CRYPTO
rump session, 2009.

10. Adi Shamir and Itai Dinur. An algebraic attack on hamsi-256. To appear.
11. Michael Vielhaber. Aida algebraic iv differential attack breaking one.fivium by

aida an algebraic iv differential attack, 2007.

