
Rotational Rebound Attacks on Reduced Skein

Dmitry Khovratovich1,2, Ivica Nikolić1, and Christian Rechberger3

1: University of Luxembourg; 2: Microsoft Research Redmond, USA;
3: Katholieke Universiteit Leuven, ESAT/COSIC, and IBBT, Belgium

dkhovrat@microsoft.com, ivica.nikolic@uni.lu,

christian.rechberger@esat.kuleuven.be

Abstract. In this paper we combine a recent rotational cryptanaly-
sis with the rebound attack, which results in the best cryptanalysis of
Skein, a candidate for the SHA-3 competition. The rebound attack ap-
proach was so far only applied to AES-like constructions. For the first
time, we show that this approach can also be applied to very different
constructions. In more detail, we develop a number of techniques that
extend the reach of both the inbound and the outbound phase, leading
to cryptanalytic results on an estimated 53/57 out of the 72 rounds of
the Skein-256/512 compression function and the Threefish cipher.
The new techniques include an analytical search for optimal input values
in the rotational cryptanalysis, which allows to extend the outbound
phase of the attack with a precomputation phase, an approach never
used in any rebound-style attack before. Further we show how to combine
multiple inside-out computations and neutral bits in the inbound phase
of the rebound attack, and give well-defined rotational distinguishers
as certificates of weaknesses for the compression functions and block
ciphers.

Keywords: Skein, hash function, rotational cryptanalysis, rebound at-
tack, distinguisher.

1 Introduction

Rotational cryptanalysis and the rebound attack proved to be very effective
in the analysis of SHA-3 candidates and related primitives. Rotational crypt-
analysis succeeded in the analysis of Addition-Rotation-XOR primitives (ARX),
particularly in reduced variants of Threefish [10], Shabal [1], BMW [18]. Re-
bound attack, first presented in [16], is mostly aimed at byte-oriented primitives
with a SPN structure. It gives the best attacks so far on reduced variants of the
SHA-3 candidates Grøstl and ECHO [16,15], LANE [14], Cheetah [22] and the
hash function Whirlpool [12], among others.

In this paper we introduce the combination of these two attacks with the ap-
plication to the Skein compression function. We start with a number of prelim-
inaries in Section 2. Our attacks will be based on methods to show non-random
properties. For this we need definitions and bounds for distinguishers, which we

give in Section 3. There we introduce the rotational collision set property for
n-bit compression functions and ideal ciphers, and demonstrate a lower bound
about q · 2n for the complexity of finding such set of size q in the black-box
approach.

Then we proceed to the analysis of Skein and Threefish. We provide a much
more careful and precise estimation of rotational probabilities compared to [10].
We represent the propagation of the rotational property analytically, and derive
necessary conditions on the key bits to enlarge the rotational probability. We also
correct [10] in terms of the independence assumptions, and find the best values
of key bits with optimized search. Although we attack the tweaked version of
Threefish [8], we stress that our attack is well applicable to the first version, and
even benefits from more from the better diffusion the tweaked rotation constants
provide.

This analysis gives us a simple rotational distinguisher for Threefish on up
to 44 rounds. We advance even further and show how to put the rotational
property into the outbound phase of the recent powerful rebound attack. The
inner part of the rebound attack, the inbound phase, is accelerated with the
method of the auxiliary path [9] and neutral bits [3]. In contrast to the first
attacks on Skein, where auxiliary paths were used in the differential attacks,
we show how to involve them into the rotational attack. As a result, we get a
rotational distinguisher for the reduced Skein compression function. We attack
53 rounds of Skein-256 and 57 rounds of Skein-512 (Section 4).

Our results demonstrate substantial weaknesses both in the reduced Three-
fish cipher and the Skein compression function. The designers of Skein do not
directly address the security of these primitives in the model that we consider,
although the security of Threefish against all “standard attacks” is claimed.
Also, our attacks show that the reduced Threefish does not behave as an ideal
cipher, which is essential for the Skein security proofs. Had Skein have the re-
duced Threefish inside, the indifferentiability from the random oracle property
of the Skein hash would be violated.

2 Preliminaries

2.1 Description of Skein

Skein is a family of hash functions, based on the block cipher Threefish of which
the following versions are relevant for the SHA-3 proposal: Threefish-256 — 256-
bit block cipher with 256-bit key and Threefish-512 — 512-bit block and key.
Both the internal state I and the key K consist of Nw (Nw = 4, 8 for Threefish-
256,-512, respectively) 64-bit words. The Nw words of the s-th subkey Ks are

Rounds Attack Method Reference

Skein/Threefish-256 (72 rounds)

24∗ Key recovery Related-key differential [7]

39 Key recovery Related-key rotational [10]

53 Distinguisher Rotational rebound Section 4

Skein/Threefish-512 (72 rounds)

25∗ Key recovery Related-key differential [7]

33∗ Key recovery Related-key boomerang [5]

35∗ Key recovery Known-related-key distinguisher [2]

42 Distinguisher Related-key rotational [10]

57 Distinguisher Rotational rebound Section 4

Table 1. Summary of the attacks on Skein and Threefish.

∗ — the attack was designed for the untweaked version.

defined as follows:

Ks
j = K(s+j) mod (Nw+1), 0 ≤ j ≤ Nw − 4;

Ks
Nw−3 = K(s+Nw−3) mod (Nw+1) + ts mod 3;

Ks
Nw−2 = K(s+Nw−2) mod (Nw+1) + t(s+1) mod 3;

Ks
Nw−1 = K(s+Nw−1) mod (Nw+1) + s,

where s is a round counter, t0 and t1 are tweak words, and

t2 = t0 + t1, KNw
= b264/3c ⊕

Nw−1⊕

j=0

Kj .

The formal description of internal rounds is as follows. Let Nr be the number
of rounds (Nr = 72 for Threefish-256,-512). Then for every 1 ≤ d ≤ Nr

– If d mod 4 = 1 add a subkey by setting Ij ← Ij +K
d/4
j ;

– For 0 ≤ j < Nw/2 set (I2j , I2j+1)← MIX((I2j , I2j+1));
– Apply the permutation π on the state words.

At the end, a subkey KNr/4 is added. The operation MIX has two inputs x0, x1

and produces two outputs y0, y1 with the following transformation:

y0 = x0 + x1

y1 = (x1 ≪R(d mod 8)+1,j
)⊕ y0

The exact values of the rotation constants Ri,j as well the permutations π (which
are different for each version of Threefish) can be found in [7]. We note that the
rotation constants were changed in the Skein tweak [8], and we attack the new
version although a similar analysis is applicable to the old version as well.

The compression function F (Hi−1,Mi) of Skein is defined as:

F (Hi−1,Mi) = EHi−1,Ti
(Mi)⊕Mi,

where EK,T (P) is the Threefish cipher, Hi−1 is the previous chaining value, Ti
is the tweak, and Mi is the message block.

The best known analysis of Skein is rotational distinguishers on the under-
lying Threefish cipher [10], which attack 39 rounds of Skein-256 and 42 rounds
of Skein-512 (see Table 1).

2.2 Rotational cryptanalysis

The main idea of the rotational cryptanalysis is to consider a pair of words

where one is a rotation of the other. The (X,
←−
X) is called a rotational pair [with

a rotation amount r], where
←−
X the rotation of X by r bits to the left. A rotational

pair is preserved by any bitwise transformation, particularly by the bitwise XOR
and by any rotation. The probability that the rotational pair comes out of the
addition is given by the following formula[6]

P(
←−−−
x+ y =←−x +←−y) =

1

4
(1 + 2r−n + 2−r + 2−n).

For large n and small r we get the following table:

r pr log2(pr)

1 0.375 −1.415

2 0.313 −1.676

3 0.281 −1.831

For r = n/2 the probability is close to 1/4. The same holds for rotations to the
right. When an addition of rotational inputs does not produce rotational outputs
then we say that the addition produced a rotational error.

The use of constants can violate the rotational property. Yet, if the constants

are rotational as well, then the property is preserved, i.e. if C =
←−
C then

←−
X⊕C =←−−−−

X ⊕ C.
Rotational analysis deals with constants by introducing rotational corrections

in pairs of inputs:

(X,
←−
Xmodified).

Then the rotational path is constructed so that the pre-fixed corrections and the
errors from the failed modular addition compensate the errors from the use of
constants.

We stress that in order to apply the rotational attack for the full scheme, all
its inputs must be rotational pairs [with corrections].

2.3 Rebound attack

The rebound attack [13,16] was described as a variant of differential cryptanalysis
optimized to the cryptanalysis of hash functions, and at the same time can be
seen as a high-level model for hash function cryptanalysis. So far it was mainly
applied to AES-like constructions because of the simple way useful truncated
differential characteristics can be found in them for a number of rounds.

The rebound attack is aimed to construct solutions for the most expensive
part of a truncated differential trail. In the inbound phase, which covers only a
few rounds, we construct solutions that connect low-weight input and output
differences. In the outbound phase these solutions are propagated through the
other rounds in both directions.

3 Rotational distinguishers

In order to convincingly argue that a particular attack algorithm indeed shows
non-random behavior of a hash function or a compression function, we need to
argue that an attacker with only a black-box access to an ideal primitive of the
same domain and range is not able to produce the same behavior with the same
or better effort and probability.

Next in this section, we define a basic rotational distinguisher with corrections
and give bounds on complexity of the resulting problems. Any shortcut algorithm
will have to beat those bounds in order to make a convincing case for an attack.
To do this, we adapt two known distinguisher concepts. The q-multicollision
distinguisher of [4] will be the basis for a rotational distinguisher with corrections
fixed by the attacker.

3.1 Rotational distinguishers with fixed corrections

Due to the presence of counters, the rotational input pairs in Skein never convert
to rotational output pairs. However, low-weight corrections applied to the input
pairs, admit such a conversion:

Skein(
←−
X ⊕ e) P

=
←−−−−−−
Skein(X)

, where Skein is the compression function F , with reasonably high probability.
We say that X is a rotational collision for function f , if

f(
←−
X) =

←−
f (X ⊕ e).

When the rotational correction is not fixed, the rotational collision search com-
plexity is given by an equivalent of the birthday paradox and is about 2n/2.

However, we provide a stronger distinguisher for the Skein compression func-
tion F , which asks for a set of rotational collisions with the same correction

e:

←−−−−
F (X1) = F (

←−
X1 ⊕ e);←−−−−

F (X2) = F (
←−
X2 ⊕ e);

. . .
←−−−−
F (Xq) = F (

←−
Xq ⊕ e).

Since the value of e is defined from the first equation, each new rotational collision
costs about 2n for a random function, and less for the Skein compression function
as we show in the further text.

However, we prove the advantage of our distinguisher in a more strong setting
by taking into account the fact that the Skein compression function is built on
a block cipher EK(P):

F (IV,M) = EIV (M)⊕M.

We admit corrections only in the IV, so a rotational collision is formulated as

←−−−−−−
F (IV,M) = F (

←−
IV ⊕ e,

←−
M) ⇐⇒

⇐⇒
←−−−−−
EIV (M)⊕

←−
M = E←−

IV⊕e(
←−
M)⊕

←−
M ⇔

←−−−−−
EIV (M) = E←−

IV⊕e(
←−
M).

Thus the appropriate definition is as follows.

Definition 1. A set

{e; (P1,K1), (P2,K2), . . . , (Pq,Kq))}

is called a rotational q-collision set for a cipher EK(·) if

←−−−−−
EK1

(P1) = E←−
K1⊕e

(
←−
P1);

←−−−−−
EK2(P2) = E←−

K2⊕e
(
←−
P2);

. . .
←−−−−−
EKq (Pq) = E←−

Kq⊕e
(
←−
Pq).

We follow the line of the first attack on the full AES [4] and compare the
problem of finding a rotational collision set for an ideal cipher with that for
reduced Threefish. Our results demonstrate that the versions of Threefish that
we consider do not behave like an ideal cipher, and, thus, does not provide
required security level for the Skein mode of operation (i.e., violate the random
oracle property).

The complexity of the generic attack in measured in the number of queries
to the encryption and decryption oracles of an ideal cipher.

Lemma 1. To construct a rotational q-collision set for an ideal cipher with an

n-bit block an adversary needs at least O(q · 2
q−2
q+2n) queries on the average.

Proof. The proof is similar to the proof of the multicollision lemma in [4]. We
provide only a sketch of it.

First, we show that a rotational collision set is uniquely determined by q+ 1
query parameters. Then for any such set we compute the probability that it gives
a collision set. The exact formula depends on the total number L of queries and
their configuration, but the lower bound is

L ≥ O(q · 2
q−2
q+2n)

4 Rotational rebound attack on Skein

4.1 Overview

Our attack consists of three parts: an inbound phase, an acceleration phase, and
an outbound phase. In the inbound phase we prepare enough rotational pairs of
states for the outbound phase. The acceleration phase speeds up the outbound
phase. An illustration of the attack proposal is given Fig. 1), while also given in
Table 2.

40-44

rounds

2

rounds

Ks−1

4

rounds

Ks

4

rounds

3

rounds

Ks+1

Outbound Acceleration Inbound Acceleration

rot.

input
rot.

output

start start

Fig. 1. The complete rotational rebound attack on Skein-256, -512.

Table 2. Structure of the rebound attack on Skein.

Outbound Acceleration I Inbound Acceleration II

Rounds Probability Rounds Rounds Rounds

Skein-256 (53 rounds)

3-42 2−244 43-44 45-52 53-55

Skein-512 (57 rounds)

3-46 2−495 47-48 49-56 57-59

The probability of the outbound phase depends on the values of particular
key bits (see details in Section 4.4). As a result, we put global conditions on the
keys, which are given in Tables 3 and 4.

Table 3. Pre-fixed values of key bits in Skein-256. The middle 58 bits of ki
coincide (with regard to the rotation) in related keys.

K0 K1 K2 K3 K4

K 0111..10 0100..11 0011..10 0000..11 0101..01
←−
K ⊕ e 11..0011 00..1010 11..0110 00..1001 01..0011

Table 4. Pre-fixed values of key bits in Skein-512

K0 K1 K2 K3 K4 K5 K6 K7 K8

K 0111..01 0100..01 0011..01 0000..01 0111..10 0000..01 0011..01 0000..01 0001..10
←−
K ⊕ e 11..0011 00..0010 11..0010 00..0001 11..0011 00..0010 11..0010 00..0001 01..0101

For the distinguisher, we produce many M and K, such that

E←−
K⊕e(

←−
M) =

←−−−−−
EK(M),

where E is the Threefish-256 reduced to rounds 2-54 (2-58 for the 512-bit ver-
sion). For the Skein compression function, we produce many M , IV , and T such
that

F (
←−−−
IV ||T ⊕ e,

←−
M) =

←−−−−−−−−−
F (IV ||T,M)

for the same e. The total complexity is about 2244 per pair in Skein-256, and
2495 per pair in Skein-512. Therefore, we are able to construct a set of rotational
collisions for the Skein compression function with complexity lower than for
a random function. Also, we can construct a rotational q-collision set for the
cipher Threefish with complexity lower than for an ideal cipher. This proves the
relevance of our attack.

4.2 Inbound phase

The inbound phase can be seen as the inner loop of the attack algorithm. The
goal is to use all degrees of freedom available to efficiently provide enough start-
ing points for the outbound part. The details depend on the variant of Skein

considered, the choice of round key additions that are covered by the inbound
phase, etc. In the following we describe the technique in a way that is indepen-
dent of such details.

Let us consider 8 consecutive rounds. The addition of the round key Ks in
the middle will be our matching point. We enumerate a large set of internal
states both before and after the round key addition such that (1) the expected
rotational trail is followed in the 8 rounds, and (2) it is possible to compute a
subkey Ks that matches the global constraints set up for later phases of the
attack, and connects those two internal states. In experiments we found that by
simply forcing a part (less than a quarter of the bits) of the state to a particular
value can lead to pairs following a rotational trail with probability 1 for 3-5
rounds in forward direction. For the inbound phase we actually need less. Two
rounds in forward direction and backwards direction is enough for both chunks
of 4 rounds we operate on independently. In addition, for those two rounds,
many differentials exist that allow for manipulation of the outputs of those 4-
round chunks in a way that resembles message modification techniques in MD5
or SHA-1 [21,20]. To connect those chunks of 4-round computations, we use the
degrees of freedom in the choice of the subkey Ks. The global conditions

On the other hand, note that this does not fully determine the key yet, as
the compression function also has a tweak input which serves as another source
for degrees of freedom. This leaves some control over subkeys Kk+1 and Kk−1.

4.3 Acceleration phase

The acceleration phase of the attack may be seen as part of the inbound phase
or part of the outbound phase. Technically, starting from here computations
are done in an inside-out manner, yet remaining degrees of freedom are used to
accelerate the search for right pairs in the outbound phase.

As soon as we get a right pair of computations for the inbound phase, we
produce many more of them from the given one as follows. We follow the simple
idea of neutral bits as e.g. applied in the analysis of SHA-0 and SHA-1 [3].
We view them as auxiliary path [9] (also formalized as tunnels or submarines
in [11,19,17]) and apply the differences specified by the path to the key and the
tweak.

The configuration of the auxiliary path for Skein-256 is given in Table 5.
We apply the original path difference to the first execution of the pair, and the
rotated path difference to the second execution.

We consider ⊕-differences here, so we have to take into account the fact that
the tweak and the key are added by the modular addition. Therefore, we choose
the difference so that the probability of the carry is low. However, since adjacent
bits are often neutral as well, a carry bit may still preserve the rotational pair.

In Skein-256 we take various δ and apply the resulting auxiliary path Pδ to
the right pair. We choose δ so that the differences in the subkey K12 compensate
each other. Then we check whether the modular additions in rounds 43-44 and
53-55 are not affected by the modification. If so, we get another rotational pair
for rounds 43-55.

Table 5. Configuration of the auxiliary path for Skein-256. Ki is the i-th word
of the first subkey K0.

Round Subkey Subkey words

45 K11 K1 K2 K3 K4

0 0 δ δ

Tweak Tweak words

T 11 T⊕ T0

0 δ

49 K12 K2 K3 K4 K0

0 δ δ 0

T 12 T0 T1

δ δ

53 K13 K3 K4 K0 K1

δ δ 0 0

T 13 T1 T⊕
δ 0

In experiments, we found that 44 of the 64 possible individual bits that result
in a local collision of the latter type behave neutral with probability larger than
0.75 for three rounds in forward direction and simultaneously two rounds in
backwards direction, 37 consecutive bits of those have a probability very close
to 11. Details for this phase will be found in Appendix in Table 6. Overall,
the results mean that every time those five rounds in the outbound phase are
computed, and the effort of those is less than 237, the amortized effort for those
computations will be negligible. If the effort for those five rounds is more, the
effect of this acceleration phase, the speed-up, still grows roughly exponential
with the number of neutral bits used.

4.4 Outbound phase

We follow the idea of [10], and introduce corrections in the Threefish keys. But
unlike [10], we consider modular corrections, i.e. we define the related-key pair

by (K,
←−
K + e), where e is a low-weight correction, ”+” is modular addition,

and the rotation amount is fixed to 2 to bypass the key schedule constant. Each
64-bit word w in Skein can be seen as a concatenation of two words w1, w2, i.e.

1 The fact that carries have to behave equivalently for round key additions in both
forward and backward direction puts constraints on the inbound phase which are
ignored here to keep the exposition simple. This either results in less degrees of
freedom available to perform the exhaustive-search part of the attack, or reduces the
number of possible combinations of neutral bits, and has to be taken into account
in the overall estimate of the time complexity.

w = w1||w2 where w1 represent the two most significant bits of w and w2 the
rest 62 bits.

To obtain a high number of rounds in the outbound phase, we carefully
choose optimal corrections and fix some of the key bits. More specifically, we
found the best values of key bits with the optimized exhaustive search. Now we
explain how to optimize the search in Skein-256 (Figure 2).

<<<

a1

∣∣∣∣a2

a2||a1

b1||b2
b2||b1

[a1 + b1 + Ca2,b2]
∣∣∣∣[a2 + b2]

[a2 + b2 + Ca1,b1]
∣∣∣∣[a1 + b1]

r1||r2
r2||r1

[e1 +D2]||e2
[e2 +D1]||e1

[k′
8 + i1 + Ck′

7
,i2]||[k′

7 + i]

k7||k8 + i

[e1 + k7 +D2 + Ce2,k8,i]||[e2 + k8 + i]

[e2 + k′
8 + i1 +D1 + Ce1,k′

7
,i2]||[e1 + k′

7 + i2]

<<<

s1
∣∣∣∣s2

t2||t1

t1||t2
s2||s1

[s1 + t1 + Cs2,t2]
∣∣∣∣[s2 + t2]

[s2 + t2 + Cs1,t1]
∣∣∣∣[s1 + t1]

v1||v2
v2||v1

[w1 + U2]||w2

[w2 + U1]||w1

k′
4||k′

3

k3||k4
k′
6||k′

5

k5||k6

[w1 + k3 + U2 + Cw2,k4]||[w2 + k4]

[w2 + k′
4 + U1 + Cw1,k

′
3
]||[w1 + k′

3]

k′
2||k′

1

k1||k2

[
s2 + t2 + k′

6 + Cs1,t1,k′
5

] ∣∣∣∣[s1 + t1 + k′
5]

[s1 + t1 + k5 + Cs2,t2,k6]
∣∣∣∣[s2 + t2 + k6]

[
a2 + b2 + k′

2 + Ca1,b1,k
′
1

] ∣∣∣∣[a1 + b1 + k′
1]

[a1 + b1 + k1 + Ca2,b2,k2]
∣∣∣∣[a2 + b2 + k2]

f1||f2
f2||f1

[
s2 + t2 + k′

6 + f2 + Cs1,t1,k′
5
,f1

] ∣∣∣∣[s1 + t1 + k′
5 + f1]

[s1 + t1 + k5 + f1 + Cs2,t2,k6,f2]
∣∣∣∣[s2 + t2 + k6 + f2]

x1||x2

x2||x1

[
a2 + b2 + k′

2 + x2 + Ca1,b1,k
′
1
,x1

] ∣∣∣∣[a1 + b1 + x1 + k′
1]

[a1 + b1 + k1 + x1 + Ca2,b2,k2,x2]
∣∣∣∣[a2 + b2 + x2 + k2]

2

Fig. 2. Rotational pair through two rounds with key addition of Skein-256.

We consider two rounds of Skein-256 with a subkey addition in between
(rounds 4-5, 8-9, etc.). Note that the outer double rounds (6-7, 10-11, etc) simply
keep the rotational pairs, so the probability does not depend on the number of
round. The outer rounds probability is 2−8.5 for Skein-256 and 2−17 for Skein-
512.

We denote the four words of the internal state before the double rounds by
(A,B,C,D). Therefore, we have

(A,B,C,D) = (a1||a2, b1||b2, s1||s2, t1||t2);

(
←−
A,
←−
B,
←−
C ,
←−
D) = (a2||a1, b2||b1, s2||s1, t2||t1).

Similarly, we denote by

K = [k1||k2, k3||k4, k5||k6, k7||k8];
←−
K ⊕ e = [k′2||k′1, k′4||k′3, k′6||k′5, k′8||k′7].

the rotational pair of subkeys. Then the corrections ei can be defined as

ei = k′2i+1||k′2i+2 − k2i+1||k2i+2.

In Figure 2 the pairs are presented one a top of another with the symbol ”- - - - -
- -” between them. By Cz1,...,zk we denote the carry from the sum z1+. . .+zk, i.e.
when zi < 2r, then Cz1,...,zk = (z1+. . .+zk)≫r. The variables r, v,D,U , x, f are
introduced to maintain the 2+62 bit representation of the words. With i = i1||i2
we denote the round counter. Since the rotation preserves the rotational property,
we can omit the rotations in the second round of the double subkey rounds, and
only require rotational output pairs after the additions in this round. To obtain
such pairs for the first output, the following conditions have to hold:

a1 + b1 + k1 + x1 + Ca2,b2,k2,x2
= a1 + b1 + x1 + k

′
1

a2 + b2 + x2 + k2 = a2 + b2 + k′2 + x2 + Ca1,b1,k′1,x1

Similarly, for the rest 3 outputs, we get the following conditions:

w1 + k3 + U2 + Cw2,k4 = w1 + k′3

w2 + k4 = w2 + k′4 + U1 + Cw1,k′3

s1 + t1 + k5 + f1 + Cs2,t2,k6,f2 = s1 + t1 + k′5 + f1

s2 + t2 + k6 + f2 = s2 + t2 + k′6 + f2 + Cs1,t1,k′5,f1

e1 + k7 +D2 + Ce2,k8,i = e1 + k′7 + i2

e2 + k8 + i = e2 + k′8 + i1 +D1 + Ce1,k′7,i2

The above 8 equations, can be reduced to:

k′1 − k1 = Ca2,b2,k2,x2
(1)

k′2 − k2 = −Ca1,b1,k′1,x1
(2)

k′3 − k3 = Cw2,k4 + U2 (3)

k′4 − k4 = −(Cw1,k′3 + U1) (4)

k′5 − k5 = Cs2,t2,k6,f2 (5)

k′6 − k6 = −Cs1,t1,k′5,f1 (6)

k′7 − k7 = Ce2,k8,i +D2 − i2 (7)

k′8 − k8 = i− i1 − (Ce1,k′7,i2 +D1) (8)

This system gives as a hint how to choose the corrections ei and the values of
some of the subkey bits. For each carry Cz1,...,zk it holds 0 ≤ Cz1,...,zk < k.
Yet the probability that a carry will take a specific value in this range, when zi
are randomly chosen, is not uniformly distributed. When the carries come from
sums with 4 terms, the probability is highest for the values 1 and 2. Therefore,
for our brute force, we limit the differences k′1−k1, k2−k′2, k′5−k5, k

′
6−k6, only

to these two values.
The variables U1,U2,D1,D2, are determined as follows:

U1 = ((s2 + t2 + Cs1,t1)⊕ v2)− ((s2 + t2)⊕ v2)

U2 = ((s1 + t1 + Cs2,t2)⊕ v2)− ((s2 + t2)⊕ v2)

D1 = ((a2 + b2 + Ca1,b1)⊕ r2)− ((a2 + b2)⊕ r2)

D2 = ((a1 + b1 + Ca2,b2)⊕ r1)− ((a1 + b1)⊕ r1)

These variables can take only odd values and a zero. Since Cw2,k4 can take 0, 1
and U2 can take 0, 1 it means that k′3 − k3 (see (3)) can also take 1 and 2 (the
same values as the one for the subkeys discussed above). A similar reasoning
is applicable to the difference k4 − k′4. The differences k′7 − k7, k8 − k′8 that
are left, are the only one that actually depend on the round counter. Yet, since
Ce2,k8,i can take the values 0, 12, i.e. it is not fixed but rather flexible, the whole
expression Ce2,k8,i + D2 − i2, for any i2 can take the values 1, 2 (recall that D2

can be any odd value). Therefore the difference k′7 − k7 can be 1 or 2 (with
probability that depends on the round counter i2). Finally, let us focus on the
difference k′8 − k8 which is determined by the expression i− i1 − Ce1,k′7,i2 −D1.
For a specific counter i, when k′7 + e2 = 0, the carry Ce1,k′7,i2 is fixed. Hence in
this case, the whole expression can take only one value, 1 or 2, but not the both.
This limits k′8 − k8 to only a single value.

Now recall that ki, k
′
i are the values of the particular subkey words, and not

the key words. Once we fix all of the differences in the subkey words of some
round, then in the next round, practically the same differences will appear shifted
by one index. Also, since the value of the difference in the last key word K4 is
determined from the other words, we would have to fix the values of k1, k3, k5, k7

and the two least significant bits of k2, k4, k6, k8 so that the difference in K4 will
be as expected. We fix only two bits because we choose the initial difference to
be 1 or 2.

In our brute force search, first we find good values for the differences and the
two most significant key bits of each key word. We try all possible differences
1 or 2, and then we fix the key bits values, such that the difference in the two
most significant bits of K4 will also be 1 or 2, and we take into account the
limitation on k′8−k8 for each counter. Then, we try all possible differences 1 and
2 in the least 62 bits of the each key word. We choose the differences that pass
with highest probability through the double subkey rounds. Also, we fix the 2
least significant bits in each key word, so that the difference in the least 62 bits

2 It can take the value 2 as well, but the probability is really low because the counter
i is only 4-5 bits.

of K4 will also be 1 or 2. Finally, to increase the probability we fix the values of
the bits 60,61 (the next two bits after the 2 most significant bits). This results
in fixing the two most significant bits of k2, k4, k6, k8 which in return increases
the probability that the carries take the expected values.

Rather than finding the above values through a theoretically small brute
force, we have tested our approach on a real double subkey rounds Skein-256.
That is, most of the values, were found and confirmed to be good by taking
rotational input pairs of states and rotational input pair of key words with
corrections and testing the probabilities on double subkey rounds. In some cases
the theoretical probabilities did not coincide with the empirical. This is because
there are some hidden dependencies. For example, both U1 and k′5 − k5 depend
on s2, t2. Once we had the optimal corrections (and some bit values) of the keys
for the double subkey rounds, we found the probability for 4 consecutive rounds.
We start with a random rotational input pair of states and go through three
rounds. Then we add the subkeys (with the particular counters) and then we go
for an additional round.

We fix 6 bits in K: 4 MSBs and 2 LSBs, and 6 bits in KB : 2 MSBs and 4
LSBs. The values of these bits are given at Table 3. In Skein-256 the probability
to pass rounds 3–42 (i.e. 10 key additions) is 2−244. A detailed table with round-
by-round probabilities is given at Table 7 of the Appendix.

Optimal values for the differences and some key bits can be obtained for
Skein-512 as well. A property of the double subkey rounds Skein-512 that helps
to run the brute force search is that these two double subkey rounds can be split
into two non-intercepting halves (see Fig.3 in the Appendix). Then, for each half,
the optimal differences can be found independently. Note that this simply speeds
up the brute force for optimal differences and values, but has no impact on the
actual probability of the inbound phase. Unlike Skein-256, in Skein-512 we could
not find empirically the probabilities for 4 consecutive rounds because they were
too low. Hence, we considered each 4 rounds as double round + double subkey
round and simply multiplied the probabilities of these two. The values for the
optimal 6 bits of each key word in Skein-512 are given in Table 4. In Skein-512
the probability to pass rounds 3–46 is about 2−494 (details in Table 8).

4.5 Probabilities in the Khovratovich-Nikolić analysis

The paper [10] provided the rotational analysis of Threefish on up to 42 rounds.
The probability estimates were based on several independence assumptions,
which must be corrected as follows:

– The probability of the rotational pair propagation through double rounds
without key addition (2-3, 6-7, etc.) is not a multiplication of probabilities
for a single round. The problem is that two consecutive modular additions
((a � b) � c) have lower rotational probability than expected. For example,
the rotational probability of one round in Skein-256 is 2−3.35 for the rotation
by 2, but the probability of two rounds is 2−8.52 instead of 22·(−3.35) = 2−6.7.

– The rotational inputs to the round before the key addition (4, 8, etc.) are
not uniformly distributed, and this partly compensates the negative effect
of the dependency (see above). We note that the non-uniformity of inputs
is best approximated with restricting the two most significant bits from the
value {00}.

– The propagation of the rotational inputs through the double round with
the key addition in Threefish-256, with the appearance and the correction
of errors, can not be considered as two independent events (i.e., as getting
rotational pairs in the further MIX operations independently). As a result,
the probability of this event can not be computed as a multiplication of other
probabilities, and must be computed as a single value.

4.6 Degrees of freedom analysis

Now we discuss the following question: How often can this inbound phase be
repeated? After fixing the differences and the corrections, for Skein-256 we have

256 + 256 + 128 = 640

degrees of freedom available to perform the attack. The outbound phase fixes
24 of the 256 bits of the key, (also 12 bits of the 128-bit tweak), and in addition
may need up to 256 bits to follow the longest possible trail with high probability.
What remains is

640− 36− 256 = 348

degrees of freedom to be spent by the inbound and the acceleration phase. If vari-
ants with less rounds are targeted, this number is higher, as less repetitions are
needed for the shorter outbound phase. Overall, this is enough for our purposes.

4.7 Summary and complexity estimates

We experimentally verified the probabilities of the outbound phase, and took
various dependencies into account, and also experimentally verified parts of the
acceleration and inbound phase.

Using the Skein-256 compression function as an example, we describe the
resulting attack. As illustrated already in Fig. 1, the 8-round inbound part is
performed close to the output of the cipher/compression function, the 5 round
acceleration area (3 rounds in forward direction and 2 rounds in backward direc-
tion) surrounding it. The majority of the inside-out computation is then done
in backwards direction, covering about 40 rounds. In total this gives about 53
rounds. Additionally, early stopping techniques will only require the computa-
tion of a small number of rounds in the outbound part before another trial is
made, saving a factor of the computational complexity that is in the order of
the number of rounds.

We estimate the amortized cost for the rounds covered by inbound and accel-
eration phase for both Skein-256 and Skein-512 by 1, as there are plenty of long

ranging neutral bits that cover up costs in solving the right pairs in those inner
rounds. In Skein-256, we will spend 2244 in the outbound+acceleration phases
to find 2244 starting pairs for the outbound phase. One such pair will pass this
phase with probability close to one. Therefore with an effort that is roughly
equivalent to 2244 calls to the compression function of Skein-256 we can find one
rotational pair of messages and chaining values (with corrections) that produces
a rotational pair of updated chaining values. To produce 27 such pairs, i.e. to find
27-rotational collisions in Skein-256, we only need 27+244 = 2251 calls. On the

other hand, in a random function one has to make at least 27 · 2
128−2
128+2 256 ≈ 2255

calls (see Lemma 1).
Similarly, for the compression function of Skein-512, we can create 28 rota-

tional collisions with 28+495 = 2503 compression function calls, while a random

function would require 28 · 2
256−2
256+2 512 ≈ 2512 calls.

5 Conclusion and future work

Our results do not threaten the practical use of full-round Skein or Threefish.
However, we show that these constructions behave non-random in settings where
all or most inputs can be chosen, and this for more rounds than initially thought.
We do not assume any other modifications. We argue that variants of Threefish
reduced from 72 to about 53/57 rounds is not an ideal cipher in a similar way
as AES-256 was shown not to be an ideal cipher in the first attack on AES [4].
For the Skein compression function a similar argument is made. Since Skein has
a very light-weight output transformation, our non-randomness results can also
carry over to the actual hash function. There, less degrees of freedom limit, but
not prohibit, the applicability of some of our new techniques. To summarize, the
following ideas and approaches lead to the improved results:

– The rebound approach as a high-level model for the attack.
– Considering rotational corrections with respect to integer addition instead

of XOR
– Based on analytic reasoning, we find an efficient search method for fixing a

subset of input bits before other phases of attacks.
– Using the degrees of freedom in the internal state to efficiently solve for the

inner 8-rounds.
– Using the 8-round local collision as long-range neutral bits in an inside-out

manner to speed up the outbound phase.

It will be interesting to study how rotational properties found in other con-
structions, some of which have been reported recently, can also be amplified in a
way similar to what we demonstrated in this paper for Skein. The inbound and
acceleration techniques we use in our analysis are to a large extent independent
of the statistical property that is meant to be produced at the inputs and outputs
of Skein. Hence, in addition to the rotational attacks described in this paper, also
more traditional differential attacks aiming for collision or near-collision attacks
will be able to take advantage of those techniques.

Acknowledgements. This work was sponsored in part by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and by the Euro-
pean Commission under contract ICT-2007-216646 (ECRYPT II). Ivica Nikolić
is supported by the Fonds National de la Recherche Luxembourg grant TR-
PHD-BFR07-031.

References

1. G. V. Assche. A rotational distinguisher on Shabal’s keyed permutation and its im-
pact on the security proofs. Available online at http://gva.noekeon.org/papers/
ShabalRotation.pdf, 2010.

2. J.-P. Aumasson, Çagdas Çalik, W. Meier, O. Özen, R. C.-W. Phan, and K. Varici.
Improved cryptanalysis of Skein. In ASIACRYPT’09, volume 5912 of Lecture Notes
in Computer Science, pages 542–559. Springer.

3. E. Biham and R. Chen. Near-collisions of SHA-0. In CRYPTO’04, volume 3152
of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

4. A. Biryukov, D. Khovratovich, and I. Nikolic. Distinguisher and related-key attack
on the full AES-256. In CRYPTO’09, volume 5677 of Lecture Notes in Computer
Science, pages 231–249. Springer, 2009.

5. J. Chen and K. Jia. Improved related-key boomerang attacks on round-reduced
threefish-512. Cryptology ePrint Archive, Report 2009/526, 2009.

6. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
Universität Bochum, May 2005.

7. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein hash function family (2008). In Submitted to SHA-3
Competition.

8. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein hash function family - version 2. Submission to NIST
(Round 2), 2009.

9. A. Joux and T. Peyrin. Hash functions and the (amplified) boomerang attack. In
CRYPTO’07, volume 4622 of Lecture Notes in Computer Science, pages 244–263.
Springer, 2007.

10. D. Khovratovich and I. Nikolić. Rotational cryptanalysis of ARX. In FSE’10,
to appear, volume 6147 of Lecture Notes in Computer Science, pages 333–348.
Springer, 2010.

11. V. Klima. Tunnels in hash functions: MD5 collisions within a minute. available at
http://eprint.iacr.org/2006/105.pdf, 2006.

12. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. Re-
bound distinguishers: Results on the full Whirlpool compression function. In ASI-
ACRYPT’09, volume 5912 of Lecture Notes in Computer Science, pages 126–143.
Springer, 2009.

13. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. Cryptology
ePrint Archive, Report 2010/198, 2010. http://eprint.iacr.org/.

14. K. Matusiewicz, M. Naya-Plasencia, I. Nikolic, Y. Sasaki, and M. Schläffer. Re-
bound attack on the full LANE compression function. In ASIACRYPT’09, volume
5912 of Lecture Notes in Computer Science, pages 106–125. Springer, 2009.

http://gva.noekeon.org/papers/ShabalRotation.pdf
http://gva.noekeon.org/papers/ShabalRotation.pdf
http://eprint.iacr.org/2006/105.pdf
http://eprint.iacr.org/

15. F. Mendel, T. Peyrin, C. Rechberger, and M. Schläffer. Improved cryptanalysis
of the reduced Grøstl compression function, ECHO permutation and AES block
cipher. In Selected Areas in Cryptography’09, volume 5867 of Lecture Notes in
Computer Science, pages 16–35. Springer, 2009.

16. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In FSE’09, volume 5665 of Lecture
Notes in Computer Science, pages 260–276. Springer, 2009.

17. Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro, and K. Ohta. Improved
collision search for SHA-0. In ASIACRYPT’06, volume 4284 of Lecture Notes in
Computer Science, pages 21–36. Springer, 2006.

18. I. Nikolić, J. Pieprzyk, P. Sokolowski, and R. Steinfeld. Rotational
cryptanalysis of (modified) versions of BMW and SIMD. Available on-
line at https://cryptolux.org/mediawiki/uploads/0/07/Rotational_

distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf, 2010.
19. M. Stevens. On collisions for MD5. Master’s thesis, Eindhoven University of

Technology, Eindhoven, Netherlands, 2007.
20. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,

editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005.

21. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.

22. S. Wu. Semi-free start collision for 12-round Cheetah-256. NIST mailing list (local
link), 2009.

A Details

Table 6. Neutral bits in the acceleration phase. These are used in an inside-
out manner, with those computations being 8 rounds apart. A single 64-bit
word is used, enumeration is from 0 (LSB) to 63 (MSB). The probabilites are
measured over 100 right pairs over two rounds backwards and three rounds
forwards direction for Skein-256.

bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob.

7− 17 1.00 18 0.99 19 1.00 20 0.99 21 1.00 22 0.99 23 1.00 24 0.99
25 0.95 26 0.94 27 0.93 28 0.82 31 0.79 33 0.86 36 0.77 38− 45 1.00
46 0.99 47 1.00 48 0.99 49 0.98 50 0.97 51 0.96 52 0.96 53 0.96
54 0.90 55 0.84

https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf

Table 7. Round-by-round rotational probabilities for Skein-256

Rounds 1-2 3-5 6-9 10-13 14-17 18-21

Prob. log2 − −15.13 −21.97 −21.84 −24.44 −24.69

Rounds 22-25 26-29 30-33 34-37 38-41 42

Prob. log2 −23.83 −26.09 −23.44 −31.75 −27.09 −3.3

Table 8. Round-by-round rotational probabilities for Skein-512

Rounds 1-2 3 4-5 6-7 8-9 10-11 12-13 14-15

Prob. log2 − −6.7 −26.35 −17.05 −26.21 −17.05 −24.26 −17.05

Rounds 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31

Prob. log2 −28.26 −17.05 −28.29 −17.05 −23.79 −17.05 −23.56 −17.05

Rounds 32-33 34-35 36-37 38-39 40-41 42-43 44-45 46

Prob. log2 −27.18 −17.05 −32.23 −17.05 −35.17 −17.05 −31.86 −6.7

<<< <<< <<< <<<

KS
0 KS

2KS
1 KS

3 KS
4 KS

5 KS
6 KS

7

Fig. 3. Double subkey round in Skein-512 divided into two nonintersecting halves
– red and blue.

	Rotational Rebound Attacks on Reduced Skein
	Dmitry Khovratovich1,2, Ivica Nikolic1, and Christian Rechberger3

