
Signature Schemes with

Bounded Leakage Resilience

Jonathan Katz1⋆ and Vinod Vaikuntanathan2

1 University of Maryland
jkatz@cs.umd.edu
2 IBM Research

vinodv@alum.mit.edu

Abstract. A leakage-resilient cryptosystem remains secure even if arbi-
trary, but bounded, information about the secret key (and possibly other
internal state information) is leaked to an adversary. Denote the length
of the secret key by n. We show:
– A full-fledged signature scheme tolerating leakage of n − nǫ bits of

information about the secret key (for any constant ǫ > 0), based on
general assumptions.

– A one-time signature scheme, based on the minimal assumption of
one-way functions, tolerating leakage of ( 1

4
−ǫ) ·n bits of information

about the signer’s entire state.
– A more efficient one-time signature scheme, that can be based on

several specific assumptions, tolerating leakage of ( 1

2
− ǫ) · n bits of

information about the signer’s entire state.
The latter two constructions extend to give leakage-resilient t-time sig-
nature schemes. All the above constructions are in the standard model.

1 Introduction

Proofs of security for cryptographic primitives traditionally treat the primitive
as a “black box” that an adversary is able to access in a relatively limited fash-
ion. For example, in the usual model for proving security of signature schemes,
an adversary is given the public key and allowed to request signatures on any
messages of its choice, but is unable to get any other information about the se-
cret key or any internal randomness or state information used during signature
generation.

In real-world implementations of cryptographic primitives, on the other hand,
an adversary may be able to recover a significant amount of additional informa-
tion not captured by standard security models. Examples include information
leaked by side-channel cryptanalysis [20, 21], fault attacks [5, 3], or timing at-
tacks [4], or even bits of the secret key itself in case this key is improperly stored
or erased [17]. Potentially, schemes can also be attacked when they are imple-
mented using poor random number generation [28] (which can be viewed as

⋆ Work done while visiting IBM, and supported in part by NSF grants #0627306
and #0716651.



giving the adversary additional information on the internal state, beyond what
would be available if the output were truly random), or when the same key is
used in multiple contexts (e.g., for decryption and signing).

In the past few years, cryptographers have made tremendous progress to-
ward modeling security in the face of such information leakage [25, 35], and in
constructing leakage-resilient cryptosystems secure even in case such leakage oc-
curs. (There has also been corresponding work on reducing unwanted leakage
by, e.g., building tamper-proof hardware; this is not the focus of our work.)
Most relevant to the current work is a recent series of results [11, 1, 31, 9, 10, 26,
2] showing cryptosystems that guarantee security even when arbitrary informa-
tion about the secret key is leaked (under suitable restrictions); we discuss this
work, along with other related results, in further detail below. This prior work
gives constructions of stream ciphers [11, 31] (and hence stateful symmetric-key
encryption and MACs), symmetric-key encryption schemes [9], public-key en-
cryption schemes [1, 10, 26], and signature schemes [2] achieving various notions
of leakage resilience.

Most prior work has focused on primitives for ensuring secrecy. The only work
of which we are aware that deals with authenticity is that of Alwen et al. [2] which
shows, among other results, leakage-resilient signature schemes based on number-
theoretic assumptions in the random oracle model.1 Here we give constructions of
leakage-resilient signature schemes based on general assumptions in the standard
model ; our main construction also tolerates more leakage than the schemes of [2].
(In the full version we also show some technical improvements to the results
of [2].) We postpone a more thorough discussion of our results until after we
define leakage resilience in more detail.

1.1 Modeling Leakage Resilience

At a high level, definitions of leakage resilience take the following form: Begin
with a “standard” security notion (e.g., existential unforgeability under adaptive
chosen message attacks [15]) and modify this definition by allowing the adver-
sary to (adaptively) specify a series of leakage functions f1, . . .. The adversary,
in addition to getting whatever other information is specified by the original
security definition, is given the result of applying fi to the secret key and pos-
sibly other internal state of the honest party (e.g., the signer). We then require
that the adversary’s success probability — for signature schemes, the probability
with which it can output a forged signature — remain negligible. It should be
clear that this is a general methodology that can be applied to many different
primitives. The exact model is then determined by the restrictions placed on the
leakage function(s) fi:

Limited vs. arbitrary information. A first consideration regards whether
the {fi} can be arbitrary (polynomial-time computable) functions, or whether
they are restricted to be in some more limited class. Early work considered the

1 The results of [2] were obtained independently of our own work.



latter case, for example where the adversary is restricted to learning specific bits
of the secret key [6], or the values on specific wires of the circuit implementing
the primitive [19]. More recent work [11, 1, 31, 9, 10, 26, 2] allows arbitrary {fi}.

Bounded vs. unbounded information leakage. Let n denote the length of
the secret key. If the secret key does not change over time, and the {fi} are
allowed to be arbitrary, then security in the traditional sense cannot be achieved
once the total length of the leakage — that is, the outputs of all the {fi} — is
n bits or more. For the case of signatures, the length of the leakage must also
be less than the signature length. This inherent restriction is used in [1, 10, 26].
(Alwen et al. [2] do not impose this restriction, but as a consequence can only
achieve a weaker notion of security.)

One can avoid this restriction, and potentially tolerate an unbounded amount
of leakage overall, if the secret key is updated over time; even in this case, one
must somehow limit the amount of leakage between successive key updates. This
approach to leakage resilience was considered in [11, 31] in the context of stateful
symmetric-key primitives, and [12] in the context of stateful signature schemes.

One can also avoid imposing a bound on the leakage by restricting the {fi},
as discussed next.

Computational min-entropy of the secret key. If the leakage is much
shorter than the secret key (as discussed above), then the secret key will have
high min-entropy conditioned on the leakage. This setting is considered in [1,
26, 10, 2], and is also enforced on a per-period basis in the work of [11, 31] (i.e.,
the leakage per time period is required to be shorter than the secret key). More
recent work [9, 10] shows schemes that remain secure for leakage of arbitrary
length, as long as the secret key remains exponentially hard to compute given
the leakage (but even if the secret key is fully determined by the leakage in an
information-theoretic sense). A drawback of this guarantee is that given some
collection of functions {fi} (say, as determined experimentally for some par-
ticular set of side-channel attacks) there is no way to tell, in general, whether
they satisfy the stated requirement or not. Furthermore, existing results in this
direction currently require super-polynomial hardness assumptions.

Inputs to the leakage functions. A final issue is the allowed inputs to the
leakage functions. Work of [11, 31] assumes, following [25], that only computation
leaks information; this is modeled by letting each fi take as input only those
portions of the secret key that are accessed during the ith phase of the scheme.
Halderman et al. [17], however, show that memory contents can be leaked even
when they are not being accessed. Motivated (in part) by this result, the schemes
of [1, 9, 10, 26, 2] allow the {fi} to take the entire secret key as input at all times.

For the specific primitives considered in [11, 1, 31, 9, 10, 26], the secret key
sk is the only internal state maintained by the party holding the secret key,
and so allowing the {fi} to depend on sk is (almost) the most general choice.2

For signature schemes, however, any randomness used during signing might also

2 More generally, one could also allow the {fi} to depend on the randomness used
to generate the (public and) secret key(s); this possibility is mentioned in [26, Sec-



be leaked to an adversary. The strongest definition of leakage resilience is thus
obtained by allowing the {fi} to depend on all the state information used by
the honest signer during the course of the experiment.

All these variants may be meaningful depending on the particular attacks
one is trying to model. Memory attacks [17, 1], which probe long-term secret
information during a time when computation is not taking place, can be faith-
fully modeled by allowing the leakage functions to take only sk as input. On the
other hand, side-channel attacks that collect information while computation is
occurring might be more accurately captured by allowing the leakage functions
to take as input only those portions of the internal state that are being accessed.

1.2 Our Results

With the preceding discussion in mind, we can now describe our results in further
detail. In all cases, we allow the leakage function(s) to be arbitrary as long as
the total leakage is bounded as some function of the secret key length n; recall
that such a restriction on the leakage is essential if the secret key is unchanging,
as it is in all our schemes. Our results can be summarized as follows:

1. We show a construction of a leakage-resilient signature scheme that is exis-
tentially unforgeable against chosen-message attacks in the standard model,
based on general (as opposed to number-theoretic) assumptions. This scheme
tolerates leakage of n − nǫ bits of information about the secret key for any
ǫ > 0 based on polynomial hardness assumptions, and can tolerate (optimal)
n−ω(log n) bits of leakage based on sub-exponential hardness assumptions.

2. We also construct two leakage-resilient one-time (resp., t-time) signature
schemes in the standard model. These schemes are more efficient than the
scheme above; they also tolerate leakage that may depend on the entire state
of the signer (rather than just the secret key).
– Our first scheme is based on the minimal assumption that one-way func-

tions exist, and tolerates leakage of (1
4 − ǫ) · n bits for any ǫ > 0. The

construction extends to give a t-time signature scheme tolerating leakage
of Θ(n/t) bits.

– Our second scheme, which can be based on various concrete assumptions,
is more efficient and tolerates leakage of up to (1

2 − ǫ) · n bits for any
ǫ > 0. This construction also extends to give a t-time signature scheme
tolerating leakage of Θ(n/t) bits.

In the full version of this work, we also discuss efficient constructions of full-
fledged signature schemes based on number-theoretic assumptions (in the ran-
dom oracle model) that are secure as long as the leakage is bounded by (1

2−ǫ) ·n
bits for any ǫ > 0. Similar schemes were discovered independently by Alwen et
al. [2], but our analysis offers some advantages as compared to theirs. Specifi-
cally, we make explicit the fact that the leakage can depend on the entire state
of the signer, and we allow leakage queries to depend on the random oracle.

tion 8.2]. (For the specific schemes considered in [11, 1, 31, 9, 10, 26], however, this
makes no substantive difference.)



Independent of our work, Faust et al. [12] describe a transformation from
any 3-time signature scheme tolerating α(n) bits of leakage to a full-fledged (but
stateful) signature scheme where the secret key is updated over time; the result-
ing scheme tolerates α(n) bits of leakage between key updates, and unbounded
leakage overall. (In the transformed signature scheme, security is ensured as long
as the leakage depends only on the active portion of the secret-key.) Applying
this transformation to our constructions, we get full-fledged signature schemes
that tolerate unbounded leakage (subject to the restrictions mentioned above).

1.3 Overview of Our Techniques

Our constructions all rely on the same basic idea. Roughly, we consider signature
schemes with the following properties:

– A given public key pk corresponds to a set Spk of exponentially many secret
keys. Furthermore, given (sk, pk) with sk ∈ Spk it remains hard to compute
any other sk′ ∈ Spk.

– The secret key sk used by the signer has high min-entropy (at least in a
computational sense) even for an adversary who observes signatures on mes-
sages of its choice. (For our one-time scheme, this is only required to hold
for an adversary who observes a single signature.)

– A signature forgery can be used to compute a secret key in Spk.

To prove that any such signature scheme is leakage resilient, we show how to
use an adversary A attacking the scheme to find distinct sk, sk′ ∈ Spk given
(sk, pk) (in violation of the assumed hardness of doing so). Given (sk, pk), we
simply run A on input pk and respond to its signing queries using the given
key sk. Leakage queries can also be answered using sk. If the adversary forges
a signature, we extract some sk′ ∈ Spk; it remains only to show that sk′ 6= sk
with high probability. Let n = log |Spk| be the (computational) min-entropy of sk
conditioned on pk and the signatures seen by the adversary. (We assume that all
secret keys in Spk are equally likely, which will be the case in our constructions.)
A standard argument (cf. Lemma 1) shows that if the leakage is bounded by ℓ
bits, then the conditional min-entropy of the secret key is still at least n− ℓ− t
bits except with probability 2−t. So as long as the leakage is bounded away
from n, with high probability the min-entropy of sk conditioned on A’s entire
view is still at least 1. But then sk′ 6= sk with probability at least 1/2. This
concludes the outline of the proof. We remark, however, that various subtleties
arise in the formal proofs of security.

Some existing signature schemes in the random oracle model already satisfy
the requirements stated above. In particular, these include schemes constructed
using the Fiat-Shamir transform [13] applied to a witness-indistinguishable Σ-
protocol where there are an exponential number of witnesses for to a given
statement. Concrete examples include the signature schemes of Okamoto [29]
(extending the Schnorr [34] and Guillou-Quisquater [16] schemes) based on the
discrete logarithm or RSA assumptions, as well as the signature scheme of Fis-
chlin and Fischlin [14] (extending the Ong-Schnorr [30] scheme) based on the



hardness of factoring. This class of schemes was also considered by Alwen et
al. [2]. See the full version of our paper for further discussion.

We are not aware of any existing signature scheme in the standard model
that meets our requirements. We construct one as follows. Let H be a universal
one-way hash function (UOWHF) [27] mapping n-bit inputs to nǫ-bit outputs.
The secret key of the signature scheme is x ∈ {0, 1}n, and the public key is
(y = H(x), pk, r) where pk is a public key for a CPA-secure public-key encryption
scheme, and r is a common reference string for an unbounded simulation-sound
NIZK proof system [33, 8]. A signature on a message m consists of an encryption
C ← Encpk(m‖x) of both m and x, along with a proof π that C is an encryption
of m‖x′ with H(x′) = y. Observe that, with high probability over choice of x,
there are exponentially many pre-images of y = H(x) and hence exponentially
many valid secret keys; furthermore, finding another such secret key sk′ 6= sk
requires finding a collision in H . Details are given in Section 3.

Our leakage-resilient one-time signature schemes are constructed using a sim-
ilar idea. The first construction is inspired by the Lamport signature scheme [23].
The secret key is {(xi,0, xi,1)}

k
i=1 and the public key is {(yi,0, yi,1)}

k
i=1 where

yi,b = H(xi,b) for H a UOWHF. Once again, there are exponentially many se-
cret keys associated with any public key and finding any two such keys yields a
collision in H . Adapting the Lamport scheme, so that the signature on a message
m = m1 · · ·mk is {xi,mi

}ki=1, yields a signature scheme secure against leakage of
n1−ǫ bits. By first encoding the message using an error-correcting code with high
minimum distance, it is possible to “boost” the leakage resilience to (1

4−ǫ)·n bits.
Using cover-free families this approach extends also to give a leakage-resilient
t-time signature scheme. These constructions are all described in Section 4.

Our second construction builds on ideas that can be traced back to [7, 24].
Roughly, let (G,⊕) and (G′,⊗) be groups with log |G′| ≤ ǫ · log |G|, and let
H = {Hs : G→ G′} be a family of collision-resistant hash functions that are also
homomorphic (i.e., for which Hs(a)⊗Hs(b) = Hs(a⊕b)); such hash functions can
be constructed based on a variety of concrete assumptions (see Section 4.3). The
secret key is a pair of elements a, b ∈ G, and the public-key is (s, Hs(a), Hs(b))
for a random key s. Note, there are exponentially many secret keys associated
with any public key and finding any two such secret keys yields a collision in Hs.
The signature on a message m ∈ {1, . . . , ord(G)} is simply σ = a⊕mb, which can

be verified by checking that Hs(σ)
?
= Hs(a)⊗mHs(b). The important property

for our purposes is that given a single signature a ⊕ mb, the secret key (a, b)
still has high min-entropy. So if the adversary forges another signature σ′ for a
message m′ 6= m, with high probability it holds that σ′ 6= a⊕m′b and we obtain
a collision in Hs.

2 Definitions and Preliminaries

We provide a formal definition of leakage resilience for signature schemes, and
state a technical lemma that will be used in our analysis. We denote the security
parameter by k, and let ppt stand for “probabilistic polynomial time”.



Definition 1. A signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy)
such that:

– Gen is a randomized algorithm that takes as input 1k and outputs (pk, sk),
where pk is the public key and sk is the secret key.

– Sign is a (possibly) randomized algorithm that takes as input the secret key
sk, the public key pk, and a message m, and outputs a signature σ. We
denote this by σ ← Signsk(m), leaving the public key implicit.3

– Vrfy is a deterministic algorithm that takes as input a public key pk, a mes-
sage m, and a purported signature σ. It outputs a bit b indicating acceptance
or rejection, and we write this as b := Vrfypk(m, σ).

It is required that for all k, all (pk, sk) output by Gen(1k), and all messages m
in the message space, we have Vrfypk(m, Signsk(m)) = 1.

Our definition of leakage resilience is the standard notion of existential un-
forgeability under adaptive chosen-message attacks [15], except that we addition-
ally allow the adversary to specify arbitrary leakage functions {fi} and obtain
the value of these functions applied to the secret key (and possibly other state
information).

Definition 2. Let Π = (Gen, Sign, Vrfy) be a signature scheme, and let λ be a
function. Given an adversary A, define the following experiment parameterized
by k:

1. Choose r ← {0, 1}∗ and compute (pk, sk) := Gen(1k; r). Set state := {r}.
2. Run A(1k, pk). The adversary may then adaptively access a signing oracle

Signsk(·) and a leakage oracle Leak(·) that have the following functionality:

– In response to the ith query Signsk(mi), this oracle chooses random ri ←
{0, 1}∗, computes σi := Signsk(mi; ri), and returns σi to A. It also sets
state := state ∪ {ri}.

– In response to the ith query Leak(fi) (where fi is specified as a circuit),
this oracle gives fi(state) to A. (To make the definition meaningful in
the random oracle model, the {fi} are allowed to be oracle circuits that
depend on the random oracle H.)
The {fi} can be arbitrary, subject to the restriction that the total output
length of all the fi is at most λ(|sk|).

3. At some point, A outputs (m, σ).

A succeeds if (1) Vrfypk(m, σ) = 1 and (2) m was not previously queried to the

Signsk(·) oracle. We denote the probability of this event by Pr[Succ
λ-leakage∗

A,Π (k)].

We say Π is fully λ-leakage resilient if Pr[Succ
λ-leakage∗

A,Π (k)] is negligible for every
ppt adversary A.

3 Usually one assumes without loss of generality that the public key is included as part
of the secret key. Since we measure leakage as a function of the secret-key length,
however, we seek to minimize the size of the secret key.



If state is not updated after each signing query (and therefore, always con-
tains only the randomness r used to generate the secret key), we denote the

probability of success by Pr[Succ
λ-leakage
A,Π (k)] and say Π is λ-leakage resilient if

Pr[Succ
λ-leakage
A,Π (k)] is negligible for every ppt adversary A.

Leakage resilience in the definition above corresponds to the memory attacks
of [1] (except that we allow the leakage to depend also on the random coins
used to generate the secret key). Other variations of the definition are, of course,
also possible: state could include only sk (and not the random coins r used to
generate it), or could include only the most recently used random coins ri.

2.1 A Technical Lemma

Let X be a random variable taking values in {0, 1}n. The min-entropy of X is

H∞(X)
def
= min

x∈{0,1}n

{− log2 Pr[X = x]}.

The conditional min-entropy of X given an event E is defined as:

H∞(X | E)
def
= min

x∈{0,1}n

{− log2 Pr[X = x | E]}.

Lemma 1. Let X be a random variable with H
def
= H∞(X), and fix δ ∈ [0, H ].

Let f be a function whose range has size 2λ, and set

Y
def
=

{

y ∈ {0, 1}λ | H∞(X | y = f(X)) ≤ H −∆
}

.

Then

Pr[f(X) ∈ Y ] ≤ 2λ−∆.

In words: the probability that knowledge of f(X) decreases the min-entropy of
X by ∆ or more is at most 2λ−∆. Put differently, the min-entropy of X after
observing f(X) is greater than H ′ except with probability at most 2λ−H+H′

.

Proof. Fix y in the range of f and x ∈ {0, 1}n with f(x) = y. Since

Pr[X = x | y = f(X)] =
Pr[X = x]

Pr[y = f(X)]
,

we have that y ∈ Y only if Pr[y = f(X)] ≤ 2−∆. The assumption regarding the
range of f implies |Y | ≤ 2λ, and so Pr[f(X) ∈ Y ] ≤ 2λ−∆ as claimed.



3 A Leakage-Resilient Signature Scheme

We construct a leakage-resilient signature scheme in the standard model, fol-
lowing the intuition described in Section 1.2. Let (GenH , H) be a public-coin4

UOWHF [27] mapping n-bit inputs to 1
2 · n

ǫ-bit outputs for n = poly(k) and
ǫ ∈ (0, 1). Let (GenE , Enc, Dec) be a CPA-secure, dense5 public-key encryption
scheme, and let (ℓ,P ,V ,S1,S2) be an unbounded simulation-sound NIZK proof
system [8] for the following language L:

L = {(s, y, pk, m, C) : ∃x, ω s.t. C = Encpk(x; ω) and Hs(x) = y} .

The signature scheme is defined as follows:

Key generation: Choose random x ← {0, 1}n and compute s ← GenH(1k).
Obliviously sample a public key pk for the encryption scheme, and choose
a random string r ← {0, 1}ℓ(k). The public key is (s, y := Hs(x), pk, r) and
the secret key is x.

Signing: To sign message m using secret key x and public key (s, y, pk, r),
first choose random ω and compute C := Encpk(x; ω). Then compute π ←
Pr((s, y, pk, m, C), (x, ω)); i.e., π is a proof that (s, y, pk, m, C) ∈ L using
witness (x, ω). The signature is (C, π).

Verification: Given a signature (C, π) on the message m with respect to the
public key (s, y, pk, r), output 1 iff Vr((s, y, pk, m, C), π) = 1.

Theorem 1. Under the stated assumptions, the scheme above is (n−nǫ)-leakage
resilient.

Proof (Sketch) Let Π denote the scheme given above, and let A be a ppt

adversary with δ = δ(k)
def
= Pr[Succ

λ-leakage
A,Π (k)]. We consider a sequence of ex-

periments, and let Pri[·] denote the probability of an event in experiment i. We

abbreviate Succ
λ-leakage
A,Π (k) by Succ.

Experiment 0: This is the experiment of Definition 2. Given the public key
(s, y, pk, r) defined by the experiment, Succ denotes the event that A outputs
(m, (C, π)) where Vr((s, y, pk, m, C), π) = 1 and m was never queried to the sign-
ing oracle. By assumption, we have Pr0[Succ] = δ.

Experiment 1: We introduce the following differences with respect to the pre-
ceding experiment: when setting up the public key, we now generate the common
random string r of the simulation-sound NIZK by computing (r, τ) ← S1(1

k).
Furthermore, signing queries are now answered as follows: to sign m, generate
C ← Encpk(x) as before but compute π as π ← S2((s, y, pk, m, C), τ).

4 For a public-coin UOWHF (cf. [18]), it is hard to find a second pre-image even given
the randomness used to generate the hash key. Standard constructions of UOWHFs
have this property.

5 This means it is possible to sample a public key “obliviously,” without knowing the
corresponding secret key.



It follows from the (adaptive) zero-knowledge property of (ℓ,P ,V ,S1,S2),
that the difference |Pr1[Succ]− Pr0[Succ]| must be negligible.

Experiment 2: We modify the preceding experiment in the following way: to
answer a signing query for a message m, compute C ← Encpk(0n) (and then
compute π as in Experiment 1). CPA-security of the encryption scheme implies
that |Pr2[Succ]− Pr1[Succ]| is negligible.

Experiment 3: We now change the way the public key is generated. Namely,
instead of obliviously sampling the encryption public key pk we compute it as
(pk, sk)← GenE(1k). Note that this is only a syntactic change and so Pr3[Succ] =
Pr2[Succ]. (This assumes perfect oblivious sampling; if an obliviously generated
public key and a legitimately generated public key are only computationally
indistinguishable, then the probability of Succ is affected by a negligible amount.)

Given the public key (s, y, pk, r) defined by the experiment, let Ext be the
event that A outputs (m, (C, π)) such that the event Succ occurs and further-
more, Hs(Decsk(C)) = y. Unbounded simulation soundness of the NIZK proof
system implies that |Pr3[Ext]− Pr3[Succ]| is negligible. (Note that by definition
of L the message m is included as part of the statement being proved, and so if
A did not request a signature on m then it was never given a simulated proof of
the statement (s, y, pk, m, C).)

To complete the proof, we show that Pr3[Ext] is negligible. Consider the
following adversary B finding a second preimage in the UOWHF: B chooses
random x ← {0, 1}n and is given key s (along with the randomness used to
generate s). B then runs Experiment 3 with A. In this experiment all signatures
given to A are simulated (as described in Experiment 3 above); furthermore B
can easily answer any leakage queries made by A since B knows a legitimate
secret key. (Recall that here we allow the leakage functions to be applied only to
[the randomness used to generate] the secret key, but not to any auxiliary state
used during signing.) If event Ext occurs when A terminates, then B recovers

a value x′ def
= Decsk(C) for which Hs(x

′) = y = Hs(x); i.e., B recovers such
an x′ with probability exactly Pr3[Ext]. We now argue that x′ 6= x with high
probability.

The only information about x revealed to A in Experiment 3 comes from the
value y included in the public key and the leakage queries asked by A; these total
at most 1

2 ·n
ǫ+(n−nǫ) = n− 1

2 ·n
ǫ bits. Using Lemma 1 with ∆ = H∞(x) = n, the

probability that H∞(x | A’s view) = 0 (i.e., the probability that x is uniquely
determined by the view of A) is at most 2−nǫ/2, which is negligible. When the
conditional min-entropy of x is greater than 0 there are at least two (equally
probable) possibilities for x and so x′ 6= x with probability at least 1

2 . Taken
together, the probability that B recovers x′ 6= x with Hs(x

′) = Hs(x) is at least

1

2
·
(

Pr3[Ext]− 2−nǫ/2
)

.

We thus see that if Pr3[Ext] is not negligible then B violates the security of the
UOWHF with non-negligible probability, a contradiction. ⊓⊔



If we are willing to rely on sub-exponential hardness assumptions, we can
construct a UOWHF with ω(log n)-bit outputs. In that case, the same signature
scheme tolerates (optimal) leakage of n− ω(log n) bits.

4 Fully Leakage-Resilient Bounded-Use Signature

Schemes

In this section we describe constructions of fully leakage-resilient one-time and
t-time signature schemes. These results are incomparable to the result of the
previous section: on the positive side, here we achieve full leakage resilience
(that is, where the leakage depends not only on the secret-key, but also on the
randomness used by the signer) as well as better efficiency (and, in one case, rely
on weaker assumptions); on the downside, the schemes given here are only secure
when the adversary obtains a bounded number of signatures, and the leakage
that can be tolerated is lower.

4.1 A Construction Based on One-Way Functions

We describe a basic one-time signature scheme, and then present an extension
that tolerates leakage of up to a constant fraction of the secret key length. Let
(GenH , H) be a UOWHF mapping kc-bit inputs to k-bit outputs for some c > 1.
(As before, we assume that H is a public-coin UOWHF, i.e., it is secure even
given the randomness used to generate the hash key.) Our basic scheme is a
variant on Lamport’s signature scheme [23], using H as the one-way function:

Key generation: Choose random xi,0, xi,1 ← {0, 1}k
c

for i = 1, . . . , k, and
generate s ← GenH(1k). Compute yi,b := Hs(xi,b) for i ∈ {1, . . . , k} and
b ∈ {0, 1}. The public key is (s, {yi,b}) and the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1 · · ·mk consists of the k
values x1,m1

, . . . , xk,mk
.

Verification: Given a signature x1, . . . , xk on the k-bit message m = m1 · · ·mk

with respect to the public key (s, {yi,b}), output 1 iff yi,mi

?
= Hs(xi) for all i.

It can be shown that the above scheme is fully n(c−1)/(c+1)-leakage resilient
(as a one-time signature scheme), where n = 2kc+1 denotes the length of the
secret key. Setting c appropriately, the above approach thus tolerates leakage
n1−ǫ for any desired ǫ > 0. (We omit the proof, since we will prove security for
an improved scheme below.) The bound on the leakage is essentially tight, since
an adversary who obtains the signature on the message 0k and then leaks the
value x1,1 (which is only kc = (n/2)c/(c+1) bits) can forge a signature on the
message 10k−1.

Tolerating leakage linear in the secret key length. An extension of the
above scheme allows us to tolerate greater leakage. Specifically, we apply Lam-
port’s scheme to a high-distance encoding of the message. Details follow.



If A is a k × ℓ matrix over {0, 1} (viewed as the field F2), then A defines a
(linear) error-correcting code C ⊂ {0, 1}ℓ where the message m ∈ {0, 1}k (viewed
as a row vector) is mapped to the codeword m ·A. It is well known that for every
ǫ > 0 there exists a constant R such that choosing A ∈ {0, 1}k×Rk uniformly
at random defines a code with relative minimum distance 1

2 − ǫ, except with
probability negligible in k. (We will not need efficient decodability.)

Fix a constant ǫ ∈ (0, 1) and let R be as above; set ℓ = Rk. Let (GenH , H)
be a UOWHF mapping ℓin-bit inputs to k-bit outputs where ℓin = 2k/ǫ. The
signature scheme is defined as:

Key generation: Choose random A ∈ {0, 1}k×ℓ and xi,0, xi,1 ← {0, 1}ℓin for
i = 1, . . . , ℓ. Generate s ← GenH(1k). Compute yi,b := Hs(xi,b) for i ∈
{1, . . . , ℓ} and b ∈ {0, 1}. The public key is (A, s, {yi,b}) and the secret key
is {xi,b}.

Signing: To sign a message m ∈ {0, 1}k, first compute m̄ = m · A ∈ {0, 1}ℓ.
The signature then consists of the ℓ values x1,m̄1

, . . . , xℓ,m̄ℓ
.

Verification: Given a signature x1, . . . , xℓ on the message m with respect to
the public key (A, s, {yi,b}), first compute m̄ = m · A and then output 1 iff

yi,m̄i

?
= Hs(xi) for all i.

Theorem 2. If H is a UOWHF then the scheme above is a one-time signature
scheme that is fully (1

4 − ǫ) · n-leakage resilient, where n = 2ℓ · ℓin denotes the
length of the secret key.

Proof. Let Π denote the scheme given above, and let A be a ppt adversary

with δ = δ(k)
def
= Pr[Succ

λ-leakage∗

A,Π (k)]. We construct an adversary B breaking
the security of H with probability at least (δ−negl(k))/4ℓ, implying that δ must
be negligible.
B chooses random A ∈ {0, 1}k×ℓ and xi,0, xi,1 ← {0, 1}ℓin for i = 1, . . . , ℓ; we

let X = {xi,b} denote the set of secret key values B chooses and observe that
H∞(X ) = 2ℓ · ℓin. Next, B selects a random b∗ ∈ {0, 1} and a random index
i∗ ∈ {1, . . . , ℓ}, and outputs xi∗,b∗ ; it is given in return a hash key s. Then B
computes yi,b := Hs(xi,b) for all i, b and gives the public key (A, s, {yi,b}) to A.
B answers the signing and leakage queries of A using the secret key {xi,b}

that it knows. Since this secret key is distributed identically to the secret key of
an honest signer, the simulation for A is perfect and A outputs a forgery with
probability δ.

Let m̄ denote the encoding of the message m whose signature was requested
byA. The informationA has about the secret-key X consists of: (1) the signature
(x1,m̄1

, . . . , xℓ,m̄ℓ
) it obtained; (2) the values {yi,1−m̄i

}ℓi=1 from the public key
and (3) the answers to the leakage queries asked by A. Together, these total
ℓ ·ℓin +ℓk+(1

4−ǫ) ·2ℓ ·ℓin bits. By Lemma 1, it follows that H∞(X | A’s view) >
(1
2 + ǫ) · ℓ · ℓin except with probability at most

2(ℓ·ℓin+ℓk+( 1

2
−2ǫ)ℓ·ℓin)−2ℓ·ℓin+( 1

2
+ǫ)·ℓ·ℓin = 2ℓk−ǫℓ·ℓin ,

which is negligible.



Assuming H∞(X | A’s view) > (1
2 + ǫ) · ℓ · ℓin, there is no set I ⊆ [ℓ] with

|I| ≥ (1
2 − ǫ) · ℓ for which the values {xi,1−m̄i

}i∈I are all fixed given A’s view.
To see this, assume the contrary. Then

H∞(X | A’s view) ≤
∑

i6∈I

H∞(xi,1−m̄i
| A’s view) ≤

(

1

2
+ ǫ

)

ℓ · ℓin,

in contradiction to the assumed bound on the conditional min-entropy of X .
Let (m∗, (x∗

1, . . . , x
∗
ℓ )) denote the forgery output by A, and let m̄∗ = m∗ · A

denote the encoding of m∗. Let I be the set of indices where m̄ and m̄∗ differ;
with all but negligible probability over choice of the matrix A it holds that
|I| ≥ (1

2 − ǫ) · ℓ and so we assume this to be the case. By the argument of the
previous paragraph, it cannot be the case that the {xi,1−m̄i

}i∈I are all fixed
given A’s view. But then with probability at least half we have x∗

i 6= xi,m̄∗

i
for

at least one index i ∈ I. Assuming this to be the case, with probability at least
1/2ℓ this difference occurs at the index (i∗, b∗) guessed at the outset by B; when
this happens B has found a collision in H for the given hash key s. Putting
everything together, we see that B finds a collision in H with probability at
least (δ − negl(k)) · 1

2 ·
1
2ℓ , as claimed.

A t-time signature scheme. The idea above can be further extended to give
a fully leakage resilient t-time signature scheme using cover-free families. We
follow the definition of [22].

Definition 3. A family of non-empty sets S = {S1, . . . , SN}, where Si ⊂ U , is

(t, 1
2 )-cover-free if for all distinct S, S1, . . . , St ∈ S we have

∣

∣

∣
S \

⋃t
i=1 Si

∣

∣

∣
≥ |S|/2.

Porat and Rothschild [32] show an explicit construction that, for any t and k,
yields a (t, 1

2 )-cover free family S = {S1, . . . , SN} where the number of sets
is N = Ω(2k), the size of each set is |Si| = O(kt), and the universe size is
|U | = O(kt2). If we let f : {0, 1}k → S denote an injective map, we obtain the
following scheme:

Key generation: Set ℓ = O(kt2) and ℓin = 8tk. Choose xi ← {0, 1}ℓin for i =
1, . . . , ℓ. Generate s← GenH(1k), and compute yi := Hs(xi) for i ∈ {1, . . . , ℓ}.
The public key is (s, {yi}

ℓ
i=1) and the secret key is {xi}

ℓ
i=1.

Signing: To sign a message m ∈ {0, 1}k, first compute f(m) = Sm ∈ S. The
signature then consists of {xi}i∈Sm

.
Verification: Given a signature {xi} on the message m with respect to the

public key (s, {yi}), first compute Sm = f(m) and then output 1 iff yi
?
=

Hs(xi) for all i ∈ Sm.

A proof of the following proceeds along exactly the same lines as the proof
of Theorem 2:

Theorem 3. If H is a UOWHF then the scheme above is a t-time signature
scheme that is fully Θ(n/t)-leakage resilient, where n = ℓ · ℓin denotes the length
of the secret key.



4.2 A Construction from Homomorphic Collision-Resistant Hashing

Our second construction of fully leakage-resilient bounded-use signature schemes
relies on homomorphic collision-resistant hash functions, defined below. In Sec-
tion 4.3, we describe efficient instantiations of the hash functions we need based
on several concrete assumptions.

We concentrate on the case of one-time signatures, and defer a treatment of
t-time signatures to the full version.

Definition 4. Fix ǫ ∈ (0, 1). A pair of ppt algorithms (GenH , H) is an ǫ-
homomorphic collision-resistant hash function family (ǫ-hCRHF) if:

1. GenH(1k) outputs a key s that specifies groups (G,⊕), (G′,⊗) (written addi-
tively), and two sets S, T ⊆ G such that

– log |S| = ω(log k) and log |G′| ≤ ǫ · log |S| and log |T | ≤ (1 + ǫ) log |S|.

– S is efficiently sampleable, and elements of S can be represented using
log |S|+O(1) bits.

– T is efficiently recognizable, and {x + my | x, y ∈ S, 0 ≤ m < 2k} ⊆ T .

2. The key s defines a function Hs : G→ G′ with Hs(x⊕ y) = Hs(x) ⊗Hs(y)
for all x, y ∈ G.

3. There exists a constant c (independent of k) for which the following holds.
For any s, any m, m′ with 0 ≤ m < m′ < 2k, and any σ, σ′:

∣

∣

∣
{x, y ∈ S | Hs(x + my) = σ ∧Hs(x + m′y) = σ′}

∣

∣

∣
≤ 2c.

4. No ppt algorithm A can find two elements x, y ∈ T such that Hs(x) = Hs(y).
Namely, the following is negligible for all ppt A:

Pr[s← GenH(1k); (x, y)← A(s) : x, y ∈ Tk ∧ x 6= y ∧Hs(x) = Hs(y)].

If the above holds even when A is given the randomness used to generate s,
then (GenH , H) is a strong ǫ-hCRHF.

Define a signature scheme as follows.

Key generation: Compute s← GenH(1k); this specifies groups (G,⊕), (G′,⊗)
and sets S, T . Choose x, y uniformly at random from S. Output sk := (x, y)
and pk := (s, Hs(x), Hs(y)).

Signing: The scheme is defined for messages m satisfying 0 ≤ m < 2k. Given
m, output the signature σ := x⊕my.

Verification: Given a signature σ on the message m with respect to the public

key pk = (s, a, b), output 1 iff σ ∈ T and Hs(σ)
?
= a⊗mb.

Theorem 4. If (GenH , H) is a (strong) ǫ-hCRHF, then the above is a one-time
signature scheme that is (fully)

(

1
2 − 2ǫ

)

· n-leakage resilient.



Proof. Correctness is easily verified. Let Π denote the scheme given above, and

let A be a ppt adversary with δ = δ(k)
def
= Pr[Succ

λ-leakage∗

A,Π (k)]. We construct
an adversary B breaking the security of (GenH , H) with probability at least
δ/2− negl(k), implying that δ must be negligible.
B is given as input a key s (along with the randomness used to generate

it). B chooses x, y ∈ S, sets sk := (x, y), and gives the public key pk :=
(s, Hs(x), Hs(y)) to A. Algorithm B then answers the signing and leakage queries
of A using the secret key (x, y) that it knows. Since this secret key is distributed
identically to the secret key of an honest signer, the simulation for A is perfect
and A outputs a valid forgery (m′, σ′) with probability δ. If this occurs, then B
outputs (σ′, x⊕m′y) as a candidate collision for Hs.

Note that x⊕m′y ∈ T . If σ′ is a valid signature on m′, we have σ′ ∈ T and

Hs(σ
′) = Hs(x)⊗m′Hs(y) = Hs(x⊕m′y).

It remains to show that σ′ 6= x⊕m′y with significant probability.
Let c be the constant guaranteed to exist by condition 3 of Definition 4. The

length of the secret key is n
def
= 2 log |S| bits.6 The information A has about

sk = (x, y) consists of: (1) the signature x ⊕ my it obtained; (2) the values
Hs(x), Hs(y) from the public key; and (3) the answers to the leakage queries
asked by A. These total at most

log |T |+ 2 log |G′|+

(

1

2
− 2ǫ

)

2 log |S| ≤ (1 + ǫ) log |S|+ 2ǫ log |S|

+ log |S| − 4ǫ log |S|

= 2 log |S| − ǫ log |S|

bits of information about sk. The min-entropy of sk is 2 log |S| bits, so by
Lemma 1 it follows that H∞(sk | A’s view) ≥ c + 1 except with probability
at most 2−ǫ log |S|+c+1, which is negligible.

Assuming H∞(sk | A’s view) ≥ c + 1, we claim that for any m′ 6= m (with
0 ≤ m′ < 2k) the value x ⊕m′y has min-entropy at least 1; this follows from
the fact that, for any fixed σ̂′, the two equations σ = x⊕my and σ̂′ = x⊕m′y
constrain (x, y) to a set of size at most 2c (by condition 3 of Definition 4). Thus,
σ′ = x⊕m′y with probability at most 1/2. Putting everything together, we see
that B finds a collision in Hs with probability at least (δ−negl(k)) · 12 as claimed.

4.3 Constructing (Strong) Homomorphic CRHFs

Homomorphic CRHFs can be constructed from a variety of standard assump-
tions. Here, we describe constructions based on the discrete logarithm and the
RSA assumptions; in the full version, we show a construction based on lattices.
All except the RSA-based construction are strong ǫ-hCRHFs.

6 We assume for simplicity that elements of S can be described using exactly log |S|
bits; the proof can be modified suitably if this is not the case.



An instantiation based on the discrete logarithm assumption. Let G′

be a group of prime order p > 2k where the discrete logarithm problem is hard.
Let ℓ = ⌈ 1ǫ ⌉, and set S = T = G = Z

ℓ
p.

The key-generation algorithm GenH outputs random g1, . . . , gℓ ∈ G as the
key. Given s = (g1, . . . , gℓ), define Hs(x1, . . . , xℓ) =

∏ℓ
i=1 gxi

i . This function is
clearly homomorphic, and collision resistance follows by standard arguments.

An instantiation based on the RSA assumption. Fix ℓ = ⌈ 2ǫ ⌉. On security
parameter k, algorithm GenH(1k) chooses safe primes p = 2p′+1 and q = 2q′+1
with p′, q′ > 2k, and sets N = pq. (The primes p and q are not used after
key generation, but because they are in memory during key generation this
construction is not strong.) GenH then chooses a random element u ∈ Z

∗
N , as

well as a prime e > 2(ℓ+1)·k. The key is s = (N, e, u).
Let G = Z

∗
N × Z and G′ = Z

∗
N . Define

Hs(r, x) = re · ux mod N.

Take S = QRN × {0, . . . , 2ℓk} ⊂ G (where QRN denotes the set of quadratic
residues modulo N) and T = Z

∗
N × {0, . . . , 2(ℓ+1)·k}.

The homomorphic property of Hs is easy to see. One can also verify that:

1. log |S| = ω(log k) and log |G′| ≤ ǫ · log |S| and log |T | ≤ (1 + ǫ) log |S|.
2. T is efficiently recognizable, and {x + my | x, y ∈ S, 0 ≤ m < 2k} ⊆ T .
3. For any s, any m, m′ with 0 ≤ m < m′ < 2k, and any σ, σ′:

∣

∣

∣
{x, y ∈ S | Hs(x + my) = σ ∧Hs(x + m′y) = σ′}

∣

∣

∣
≤ 1.

(This uses the fact that QRN ≃ Zp′× Zq′ has no elements other than the
identity whose order is less than 2k.)

Collision resistance follows via standard arguments (e.g., [29]).
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