
Cache-Timing Template Attacks

Billy Bob Brumley⋆ and Risto M. Hakala

Department of Information and Computer Science,
Helsinki University of Technology,

P.O.Box 5400, FI-02015 TKK, Finland,
{billy.brumley,risto.m.hakala}@tkk.fi

Abstract. Cache-timing attacks are a serious threat to security-critical
software. We show that the combination of vector quantization and hid-
den Markov model cryptanalysis is a powerful tool for automated analysis
of cache-timing data; it can be used to recover critical algorithm state
such as key material. We demonstrate its effectiveness by running an
attack on the elliptic curve portion of OpenSSL (0.9.8k and under). This
involves automated lattice attacks leading to key recovery within hours.
We carry out the attack on live cache-timing data without simulating
the side channel, showing these attacks are practical and realistic.

Key words: cache-timing attacks, side channel attacks, elliptic curve
cryptography.

1 Introduction

Traditional cryptanalysis views cryptographic systems as mathematical abstrac-
tions, which can be attacked using only the input and output data of the system.
As opposed to attacks on the formal description of the system, side channel at-
tacks [1, 2] are based on information that is gained from the physical implemen-
tation of the system. Side channel leakages might reveal information about the
internal state of the system and can be used in conjunction with other crypt-
analytic techniques to break the system. Side channel attacks can be based on
information obtained from, for example, power consumption, timings, electro-
magnetic radiation or even sound. Active attacks in which the attacker manip-
ulates the operation of the system by physical means are also considered side
channel attacks.

Our focus is on cache-timing attacks in which side channel information is
gained by measuring cache access times; these are trace-driven attacks [3]. We
place importance on automated analysis for processing large volumes of cache-
timing data over many executions of a given algorithm. Hidden Markov models
(HMMs) provide a framework, where the relationship between side channel ob-
servations and the internal states of the system can be naturally modeled. HMMs
for side channel analysis was previously studied by Oswald [4], and models for

⋆ Supported in part by the European Commission’s Seventh Framework Programme
(FP7) under contract number ICT-2007-216499 (CACE).



2 Billy Bob Brumley and Risto M. Hakala

key inference given by Karlof and Wagner [5] and Green et al. [6]. While their
proposed models make use of an abstract side channel, we are concerned with
concrete cache-timing data here.

The analysis additionally makes use of Vector Quantization (VQ) for classi-
fication. Cache-timing data is viewed as vectors that are matched to predefined
templates, obtained by inducing the algorithm to perform in an unnatural man-
ner. This can often easily be accomplished in software.

Abstractly, it is reasonable to consider the analysis shown here as a form of
template attack [7] used in power analysis of symmetric cryptographic primitive
implementations, and more recently for asymmetric primitives [8]. Chari et al. [7]
formalize exactly what a template is: A precise model for the noise and expected
signal for all possible values for part of the key. Their attack is then carried out
iteratively to recover successive parts of the key.

It is difficult and not particularly prudent to model cache-timing attacks
accordingly. In lieu of such explicit formalization, we borrow from them in name
and in spirit: The attacker has some device or code in their possession that they
can give input to, program, or modify in some way that forces it to perform in
a certain manner, while at the same time obtaining measurements from the side
channel.

Using the described analysis method, we carry out an attack on the elliptic
curve portion of OpenSSL (0.9.8k). Within hours, we are able to recover the
long-term private key in ECDSA by observing cache-timing data, signatures, and
messages. Our attack exploits a weakness that stems from the use of a low-weight
signed representation for scalars during point multiplication. The algorithm uses
a precomputation table of points that are accessed during point addition steps.
The lookups are reflected in the cache-timings, leaking critical algorithm state.
A significant fraction of ECDSA nonce portions can be determined this way.
Given enough such information, we are able to recover the private key using a
lattice attack.

The paper is structured as follows. In Sect. 2, we give background on cache
architectures and various published cache attacks. In Sect. 3, we review elliptic
curve cryptography and the implementation in OpenSSL. Section 4 covers VQ
and how to apply it effectively to cache-timing data analysis. In Sect. 5, we
discuss HMMs and describe how they are used in our attack, but also how they
can be used to facilitate side channel attacks in general. We present our results
in Sect. 6, and countermeasures briefly in Sect. 7. We conclude in Sect. 8.

2 Cache Attacks

We begin with a brief review of modern CPU cache architectures. This is followed
by a selective literature review of cache attacks on cryptosystem implementa-
tions.



Cache-Timing Template Attacks 3

2.1 Data Caches

A CPU has a limited number of working registers to store data. Modern proces-
sors are equipped with a data cache to offset the high latency of loading data
from main memory into these registers. When the CPU needs to access data,
it first looks in the data cache, which is faster but with smaller capacity than
main memory. If it finds the data in the cache, it is loaded with minimal latency
and this is known as a cache hit; otherwise, a cache miss occurs and the latency
is higher as the data is fetched from successive layers of caches or even main
memory. Thus access to frequently used data has lower latency. Cache layers L1,
L2, and L3 are commonplace, increasing with capacity and latency. We focus on
data caches here, but processors often have an instruction cache as well.

The cache replacement policy determines where data from main memory is
stored in the cache. At opposite ends of the spectrum are a fully-associative cache
and a direct mapped cache. Respectively, these allow data from a given memory
location to be stored in any location or one location in the cache. The trade-off
is between complexity and latency. A compromise is an N -way associative cache,
where each location in memory can be stored in one of N different locations in
the cache. The cache locations, or lines, then form a number of associative sets
or congruency classes.

We give the L1 data cache details for the two example processors under
consideration here.

Intel Atom. The L1 data cache consists of 384 lines of 64B each for a total of
24KB. It is 6-way associative, thus the lines are divided into 64 associative
sets.

Intel Pentium 4. The L1 data cache consists of 128 lines of 64B each for a total
of 8KB. It is 4-way associative, thus the lines are divided into 32 associative
sets.

We focus on these because they implement Intel’s HyperThreading, a form
of Simultaneous Multithreading (SMT) that allows active execution of multiple
threads concurrently. In a cache-timing attack scenario, this relaxes the need to
force context switches since the threads naturally compete for shared resources
during execution, such as the data caches. The newly-released (Nov. 2008) Intel
i7 also features HyperThreading; it has the same number of associative sets as
the Intel Atom.

2.2 Published Attacks

Percival [9] demonstrated a cache-timing attack on OpenSSL 0.9.7c (30 Sep.
2003) where a classical sliding window was used twice for exponentiation for two
512-bit exponents in combination with the CRT to carry out a 1024-bit RSA
encryption operation. Sliding window exponentiation computes βe by sliding
a width-w window across e with placement such that the value falling in the
window is odd. It then uses a precomputation table βi for all odd 1 ≤ i < 2w,



4 Billy Bob Brumley and Risto M. Hakala

accessed during multiplication steps; this lookup is reflected in the cache-timings,
demonstrated on a Pentium 4 with HyperThreading. The sequence of squarings
and multiplications yields significant key data: recovery of 200 bits out of each
512-bit exponent, and [9] claimed an additional 110 bits from each exponent due
to fixed memory access patterns revealing information about the index to the
precomputation table and thus key data. Assuming the absence of errors, [9]
reasoned how this allows the RSA modulus to be factored in reasonable time.
OpenSSL responded to the vulnerability in 0.9.7h (11 Oct. 2005) by modifying
the exponentiation routine.

Hlavác and Rosa [10] used a similar approach to demonstrate a lattice attack
on DSA signatures with known nonce portions. They estimated that after ob-
serving 6 authentications to an OpenSSH server, which uses OpenSSL (< 0.9.7h)
for DSA signatures, an attacker will have a high success probability when run-
ning a lattice attack to recover the private key. They state that the side channel
was emulated for the experiments.

The numerous published attacks against secret key implementations are note-
worthy. Among others, these include attacks on AES by Bernstein [11] and Osvik
et al. [12]. Both papers present key recovery attacks on various implementations.

3 Elliptic Curve Cryptography

To demonstrate the effectiveness of the analysis method, we will look at one
particular implementation of ECC. We stress that the scope of the analysis is
much larger; this is merely one example of how it can be used.

Given a point P on an elliptic curve and scalar k, scalar multiplication com-
putes kP . This operation is the performance benchmark for an elliptic curve
cryptosystem. It is normally carried out using a double-and-add approach, of
which there are many varieties. We outline a common one later in this section.

Our attack is demonstrated on an implementation of scalar multiplication
used by ECDSA signature generation. A signature (r, s) on a message m is
produced using

r = x(kG) mod n (1)

s = k−1(h(m) + rd) mod n (2)

with point G of order n, nonce k chosen uniformly from [1, n), x(P ) the projection
of P to its x-coordinate, h a collision-resistant hash function, and d the long-term
private key corresponding to the public key D = dG.

3.1 ECC in OpenSSL

OpenSSL treats two cases of elliptic curves over binary and prime fields sepa-
rately and implements scalar multiplication in two ways accordingly. We consider
only the latter case, where a general multi-exponentiation algorithm is used [13,



Cache-Timing Template Attacks 5

14]. The algorithm works left-to-right and uses interleaving, where one accumu-
lator is used for the result and point doublings are shared; low-weight signed
representations are used for individual scalars.

When only one scalar is passed, as in (1) or when creating a signature using
the OpenSSL command line tool, it reduces to a rather textbook version of scalar
multiplication, in this case using the modified Non-Adjacent Form mNAFw (see,
for example, [15]). This is reflected in the pseudocode below. OpenSSL has the
ability to store the precomputed points in memory, so with a fixed P such as a
generator they need not necessarily be recomputed for each invocation.

The representation mNAFw is very similar to the regular windowed NAFw .
Each non-zero coefficient is followed by at least w − 1 zero coefficients, except
for the most significant digit which is allowed to violate this condition in some
cases to reduce the length of the representation by one while still retaining the
same weight. Considering the MSBs of NAFw , one applies 10w−1δ 7→ 010w−2ǫ
where δ < 0 and ǫ = 2w−1 + δ when possible to obtain mNAFw .

Algorithm: Scalar Multiplication

Input: k ∈ Z, P ∈ E(Fp), width w
Output: kP
(kℓ−1 . . . k0)←mNAFw(k)
Precompute iP for all odd 0 < i < 2w−1

Q← kℓ−1P
for i← ℓ− 2 to 0 do

Q← 2Q
if ki 6= 0 then Q← Q + kiP

end

return Q

Algorithm: Modified NAFw

Input: window width w, k ∈ Z

Output: mNAFw(k)
i← 0
while k ≥ 1 do

if k is odd then ki ← k mods 2w,
k← k − ki

else ki ← 0
k← k/2, i← i + 1

end

if ki−1 = 1 and ki−1−w < 0 then

ki−1−w ← ki−1−w + 2w−1

ki−1 ← 0, ki−2 ← 1, i← i− 1
end

return (ki−1, . . . , k0)

3.2 Cache Attack Vulnerability

Following the description of the mNAFw representation, knowledge of the curve
operation sequence corresponds directly to the algorithm state, yielding quite a
lot of key data. Point additions take place when a coefficient ki 6= 0 and these
are necessarily followed by w point doublings due to the scalar representation.
From the side channel perspective, consecutive doublings allow inference of zero
coefficients, and more than w point doublings reveals non-trivial zero coefficients.

Without any countermeasures, the above scalar multiplication routine is vul-
nerable to cache-timing attacks. The points in the precomputation phase are
stored in memory; when a point addition takes place, the point to be added is
loaded into the cache. An attacker can detect this by concurrently running a spy
process [9] that does nothing more than continually load its own data into the
cache and measure the time require to read from all cache lines in a cache set,



6 Billy Bob Brumley and Risto M. Hakala

iterating the process for all cache sets. Fast cache access times indicate cache hits
and the scalar multiplication routine has not aggressively accessed those cache
locations since the last iteration, which would evict the spy process data from
those cache locations, cause a cache miss, and thus slower cache access times for
the spy process.

In Fig. 1, we illustrate typical cache timing data obtained from a spy pro-
cess running on a Pentium 4 (Top) and Atom (Bottom) with OpenSSL 0.9.8k
performing an ECDSA signature operation concurrently. The top eight rows of
each graph are metadata; the lower half represents the VQ label and the upper
half the algorithm state. We show how we obtained the metadata in Sect. 4 and
Sect. 5, respectively. The remaining cells are the actual cache-timing data. Each
cell in these figures indicates a cache set access time. Technically, time moves
within each individual cell, then from bottom to top through all cache sets, then
from left to right repeating the measurements. To visualize the data, it is ben-
eficial to consider the data as vectors with length equal to the number of cache
sets, and time simply moves left to right.

To manually analyze such traces and determine what operations are be-
ing performed we look for (dis)similarities between neighboring vectors. These
graphs show seven (Top) and eight (Bottom) point additions, with repeated point
doublings occurring between each addition. As an attacker, we hope to find cor-
relation between these point additions and the cache access times—which we
easily find here. Additions in the top graph are visible at rows 13 and 24, among
others; the bottom graph, rows 6, 7, 55, 56. The reader is encouraged to use the
vector quantization label to help locate the point additions (black label).

4 Vector Quantization

Automated analysis of cache-timing data like that shown in Fig. 1 is not a trivial
task. When given just one trace, for simplistic algorithms it is sometimes possible
to interpret the data manually. For many traces or complex algorithms this is
not feasible. We aim to automate the process; the analysis begins with VQ.

A vector quantizer is a map V : Rn → C with C ⊂ Rn where the set C =
{c1, . . . , cα} is called the codebook. A typical definition is V : v 7→ argminc∈C D(v, c)
where D measures the n-dimensional Euclidean distance between v and c. One
also associates a labelling L : C → L with the codebook vectors; this can be as
trivial as L = {1, . . . , α} depending on the application.

Here, we are particularly interested in VQ classification; input vectors are
mapped to the closest vector in the codebook, then applied the correspond-
ing label for that codebook entry. In this manner, input vectors with the same
labelling share some user-defined quality and are grouped accordingly. The clas-
sification quality depends on how well the codebook vectors approximate input
data for their label. We elaborate on building the codebook C below.



Cache-Timing Template Attacks 7

Time

 0

 16

 32
C

ac
he

 S
et

 130

 140

 150

 160

 170

 180

 190

 200

Time

 0

 16

 32

 48

 64

C
ac

he
 S

et

 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

Fig. 1. Cache-timing data from a spy process running concurrently with an OpenSSL
0.9.8k ECDSA signature operation; 160-bit curve, mNAF4. Top: Pentium 4 timing data,
seven point additions. Bottom: Atom timing data, eight point additions. Repeated point
doublings occur between the additions. The top eight rows are metadata; the bottom
half the VQ label (Sect. 4) and top half the HMM state (Sect. 5). All other cells are
the raw timing data, viewed as column vectors from left to right with time.

4.1 Learning Vector Quantization

To learn the codebook vectors, we employ LVQ [16]. This process begins with a
set T = {(t1, l1), . . . , (tj , lj)} of training vectors and predetermined correspond-
ing labels, as well as an approximation to C. This is commonly derived by taking
the k centroids resulting from k-means clustering [17] on all ti sharing the same
label. LVQ in its simplest form then proceeds as follows. For each ti, li ∈ T if
L(V (ti)) = li the classification is correct and the matching codebook vector is
pulled closer to ti; otherwise, incorrect and it is pushed away. This process is
iterated until an acceptable error rate is achieved.

4.2 Cache-Timing Data Templates

We apply the above techniques to analyze cache-timing data. Taking the working
example in Fig. 1, for the Pentium 4 we have n = 32 and Atom n = 64 the
dimension of the cache-timing data vectors; this is the number of cache sets.
For simplicity we define L = {D, A, E} to label vectors belonging to respective
operations double, addition, or beginning/end.

Next, we build the training data T . This is somewhat simplified for an at-
tacker as they can create their own private key and generate signatures to pro-
duce training data. Nevertheless, extracting individual vectors by hand proves



8 Billy Bob Brumley and Risto M. Hakala

quite tedious and error-prone. Also, if the spy process executes multiple times,
there is no guarantee where the memory buffer for the timing data will be allo-
cated. From execution to execution, the vectors will likely look quite different.

Inspired by template attacks [7], we instead modify the software in such a way
that it performs only a single task we would like to distinguish. For the scalar
multiplication routine shown in Sect. 3, we force the algorithm to perform only
point doubling (addition) and collect templates to be used as training vectors
by running the modified algorithm concurrently with the cache spy process,
obtaining the needed cache-timing data. This provides large amounts of training
vectors and corresponding labels to define T with minimal effort.

One might be tempted to use these vectors in their entirety for C. There are
a few disadvantages in doing so:

– This would cause VQ to run slower because #C would be sizable and contain
many vectors such that L(ci) = L(cj) where D(ci, cj) is needlessly small;
codebook redundancy in a sense. In practice we may need to analyze copious
volumes of trace data.

– We cannot assume the obtained cache-timing data templates are completely
error-free; we strive to curtail the effect of such erroneous vectors.

To circumvent these issues, we partition T =
⋃

l∈L
{(ti, li) : li = l} as subsets

of all training vectors corresponding to a single label and subsequently perform
k-means clustering on the vectors in each subset. The resulting centroids are
then added to C. Finally, with C and T realized we employ LVQ to refine C.
This allows experimentation with different values for k in k-means to arrive at
a suitably compact C with small vector classification error rate.

While we expect quality results from VQ classification, errors will neverthe-
less occur. Furthermore, we are still left with the task of inferring algorithm
state. To solve this problem, we turn to hidden Markov models.

5 Hidden Markov Models

HMMs (see, e.g., [18]) are a common method for modeling discrete-time stochas-
tic processes. An HMM is a statistical model in which the system being modeled
is assumed to behave like a probabilistic finite state machine with directly unob-
servable state. The only way of gaining information about the process is through
the observations that are emitted from each state.

HMMs have been successfully used in many real life applications; for exam-
ple, many modern speech recognition methods are based on HMMs [18]. Their
usability is based on the ability to model physical systems and gain information
about the hidden causes of emitted observations. Thus, it is not very surprising
that HMMs can be employed in side channel cryptanalysis as well: the target sys-
tem can be viewed as the hidden part of the HMM and the emitted observations
as information leaked through the side channel. In the following sections, we give
a formal definition of an HMM, discuss the three basic problems for HMMs and
describe how HMMs are used in our attack. The methodology should give an
idea of how to use HMMs in side channel attacks in general.



Cache-Timing Template Attacks 9

5.1 Elements of an HMM

An HMM models a discrete-time stochastic process with a finite number of pos-
sible states. The state of the process is assumed to be directly unobservable, but
information about it can be gained from symbols that are emitted from each
state. The process changes its state based on a set of transition probabilities
that indicate the probability of moving from one state to another. An observ-
able symbol is emitted from each process state according to a set of emission
probabilities. An example of an HMM is illustrated in Fig. 2. This HMM models
a system with three internal states, which are denoted by circles in the figure.
Denoted by squares are the two symbols, which can be emitted from the inter-
nal states. The state transition probabilities and the emission probabilities are
denoted by labeled arrows. For example, the probability of moving from state
s2 to s3 is a23; the probability of emitting symbol v2 from state s3 is b3(2). In
this HMM, the process always starts from s1. Generally, however, there may be
several possible first states. The initial state distribution defines the probability
distribution for the first state over the states of the HMM.

s1 s2 s3

v1 v2

a11

a12

a22

a23

a21

a33

a32

b1(1)

b2(1)

b3(1)b1(2)

b2(2)

b3(2)

Fig. 2. An example of an HMM.

Formally, an HMM is defined by the set of internal states, the set of observa-
tion symbols, the transition probabilities between internal states, the emission
probabilities for each observable, and the initial state distribution. We denote
the set of internal states by S = {s1, s2, . . . , sN} and the state at time t by wt.
Correspondingly, the set of observables is denoted by V = {v1, v2, . . . , vM} and
the observation emitted at time t by ot. The set of transition probabilities is
denoted by A = {aij}, where

aij = Pr(wt+1 = sj|wt = si), 1 ≤ i, j ≤ N,

such that
∑N

j=1 aij = 1 for all 1 ≤ i ≤ N . Whenever aij > 0, there is a direct
transition from state si to state sj ; otherwise, it is not possible to reach sj from si

in a single step. An arrow in Fig. 3 denotes a positive transition probability. Thus,



10 Billy Bob Brumley and Risto M. Hakala

s3 cannot be reached from s1 in a single step. The set of emission probabilities
is denoted by B = {bj(k)}, where

bj(k) = Pr(ot = vk|wt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

The initial state distribution indicates the probability distribution for the first
state w1. It is denoted by π = {πi}, where

πi = Pr(w1 = si), 1 ≤ i ≤ N.

The first state of the HMM in Fig. 2 is always s1, so the initial state distribution
for this HMM is defined as π1 = 1 and πi = 0 for all i 6= 1. The three probability
measures A, B and π are called the model parameters. For convenience, we will
simply write λ = (A, B, π) to indicate the complete parameter set of an HMM.

5.2 The Three Basic Problems for HMMs

The usefulness of HMMs is based on the ability to model relationships between
internal states and observations. Related to this are the following three problems,
which are commonly called the three basic problems for HMMs in literature (e.g.,
[18]):

Problem 1 Given an observation sequence O = o1o2 · · · oT and a model λ =
(A, B, π), how do we efficiently compute Pr(O|λ), the probability of the
observation sequence given the model?

Problem 2 Given an observation sequence O = o1o2 · · · oT and a model λ,
what is the most likely state sequence W = w1w2 · · ·wT that produced the
observations?

Problem 3 Given an observation sequence O = o1o2 · · · oT and a model λ, how
do we adjust the model parameters λ = (A, B, π) to maximize Pr(O|λ)?

We briefly review the methods used to solve these problems; the reader can
refer to [18] for a detailed overview. Problem 1 is sometimes called the evaluation
problem since it is concerned with finding the probability of a given sequence O.
This problem is solved by the forward-backward algorithm (see, e.g., [18]), which
is able to efficiently compute the probability Pr(O|λ). Problem 2 poses a problem
that is very relevant to our work. It is the problem of finding the most likely
explanation for the given observation sequence. The aim is to infer the most likely
state sequence W that has produced the given observation sequence O. There
are other possible optimality criteria [18], but we are interested in finding W that
maximizes Pr(W |O, λ). The problem is known as the decoding problem and it is
efficiently solved by the Viterbi algorithm [19]. Another relevant question is posed
by Problem 3, which asks how to adjust the model parameters λ = (A, B, π)
to maximize the probability of the observation sequence O. Altough there is
no known analytical method to adjust λ such that Pr(O|λ) is maximized, the
Baum-Welch algorithm [20] provides one method to locally maximize Pr(O|λ).
The process is often called training the HMM and it typically involves collecting
a set of observation sequences from a real physical phenomenon, which are used
in training. This problem is known as the learning problem.



Cache-Timing Template Attacks 11

5.3 Use of HMMs in Side-Channel Attacks

HMMs are also useful tools for side channel analysis [4]. Karlof and Wagner [5]
and Green et al. [6] use HMMs for modeling side channel attacks. Their research
is concerned with slightly different problems than ours. We outline the differences
below.

– They only consider Problem 1 and simulate the side channel. As a result,
Problem 3 is not relevant to their work since the artificial side channel ac-
tually defines the model that produces the observations. Thus their model
parameters are known a priori. This is not the case for our work; Problem 3
is essential.

– They assume one state transition per key digit, in which case the key can
be inferred directly from the operation of the algorithm. In our case, the
operation sequence does not reveal the entire key, but a significant fraction
of the key nevertheless. We use an HMM in which the states correspond only
to possible algorithm states.

– They are additionally interested in derivation of the (secret) scalar k in
scalar multiplication when the same scalar is used during several runs using
a process called belief propagation. This is not helpful in our case, since
(EC)DSA uses nonces.

A practical drawback of the HMM presented by Karlof and Wagner was that
a single observable needs to correspond to a single key digit (and internal state).
Green et al. presented a model, where this is not required: multiple observables
can be emitted from each state. This is a more realistic model as one system
state may emit variable length data through the side channel. Our model allows
this also, but it is based on a different approach.

In the following sections, we describe the HMM used for modeling the OpenSSL
scalar multiplication algorithm. We use this model in conjunction with VQ to
describe the relationship between the states of the algorithm and the side chan-
nel observations. We also describe how to perform side channel data analysis
using VQ and the HMM. The aim is to find the most likely state sequence for
each trace that is obtained from the side channel. The analysis process can be
divided into two steps:

1. The VQ codebook is created and the HMM parameters are adjusted accord-
ing to obtained training sequences.

2. The actual data analysis is performed. When a sequence of observations
is obtained from the side channel, we infer the most likely (hidden) state
sequence that has emitted these observations using VQ and the HMM.

Since these states correspond to the internal states of the system, we are
able to determine a good estimate of what operations have been done. This
information allows us to recover the key.

The following sections give a framework for performing side channel attacks
on any system. The main requirements are that we know the specification of
the system and have access to do experiments with it or are able to accurately
model it.



12 Billy Bob Brumley and Risto M. Hakala

The HMM for Scalar Multiplication We construct an HMM where the
hidden part models the operation of the algorithm—in this case, scalar multipli-
cation using the modified NAFw representation, which leaks information about
the algorithm state through the side channel. An illustration of this part (with-
out the transition probabilities) is presented in Fig. 3. The state set is defined
as S = {s1, . . . , s8}. Each label denotes the operation that is performed in the
corresponding state. In addition, there are separate states to denote the system
state preceding and following the execution of the algorithm. These states are
denoted by s1 and s8, respectively. OpenSSL uses mNAF4 for scalars in the case
of the 160-bit curve order we are experimenting with, so each point addition is
followed by at least 4 point doublings, except in the beginning or end of the pro-
cess. The states s3, . . . , s6 represent these doublings. The most significant digit
is handled by the first addition state s2.

s1 s2

Q←kℓ−1P

s3

Q←2Q

s4

Q←2Q

s5

Q←2Q

s6

Q←2Q

s7

Q←Q+kiP

s8

ki=0

ki 6=0

Fig. 3. An HMM transition model for modified NAF4 scalar multiplication.

As can be seen from Fig. 1, the execution of one point doubling or point addi-
tion spans several column vectors in the trace. Hence, we should let the internal
states emit multiple observations instead of just one. Green et al. [6] solved this
problem by introducing an additional variable that counts the cumulative num-
ber of emitted observables. This has the drawback of considerably expanding
the state space. To avoid this, we solve the problem by introducing substates in
each HMM state. One main state consists of a sequence of substates, which are
just ordinary HMM states that always emit one observation. Thus, all previously
introduced techniques can be used for our HMM.

The set of observables for this HMM is V = {D, A, E}, which is the same
set used for labeling cache-timing data vectors in Sect. 4. We assume that the
additions emit mainly As and the doublings mainly Ds. The s1 and s8 states
are assumed to emit mainly Es. These symbols are connected with side channel
observations using VQ as described in Sect. 4. Each vector observation is labeled
according to which state—A, D or E—they correspond to. When a new side
channel observation is obtained, it can be classified as A, D or E by taking the



Cache-Timing Template Attacks 13

label of the closest codebook vector. An example of this is shown in Fig. 1, where
the rows directly above the observations represent the quantized values. Symbols
A and D are indicated using darker and lighter shades, respectively.

Training of the HMM Training starts by setting the initial model param-
eters. These parameters can be rough estimates, since they will be improved
during training. To train the model, we obtain a set of sequences in the HMM
observation domain. These sequences can be created from the side channel obser-
vations as we know how the algorithm operates. The obtained sequences are used
for model parameter re-estimation, which is performed using the Baum-Welch
algorithm [20]. Next, we create the codebook for VQ as shown in Sect. 4.

Inference of the State Sequence Given a set of side channel observation
sequences from the real target system, we can infer the most likely hidden state
sequence for each of them. The first step is to perform VQ, this is, to tag the
observations with the label of the closest codebook vector. Thus, we get a set
of sequences in the HMM observation domain. By applying the Viterbi algo-
rithm [19], we finally obtain the most likely state sequence for each observation
sequence. These state sequences are actually sequences of substates; the actual
operation sequence can be recovered based on the transitions that are taken in
each state sequence. An example of this is shown in Fig. 1, where the upper rows
represent the main states of the algorithm. Additions are indicated using black;
doublings are indicated using lighter shades. For example, the first addition on
the top trace in Fig. 1 is followed by five doublings.

The state sequences obtained in this step can be used in conjunction with
some other method to mount a key recovery attack. In the simplest case, the
state sequence reveals the secret key directly and no other methods are needed.
However, with mNAF4 this is not the case; we discuss a few practical applications
in the next section, as well as give our empirical results.

6 Results

Depending on the attack scenario and the number of traces available, there are
at least two interesting ways to apply the analysis to the case of mNAF4 and
OpenSSL. The first assumes access to only a single or similarly small number of
traces, while the second assumes access to a signature oracle and corresponding
side channel information.

Solving Discrete Logs We consider special versions of the baby-step giant-
step algorithm for searching restricted exponent spaces; see [21, Sect. 3.6] for a
good overview.

The length-ℓ mNAFw representation has maximum weight ℓ/w and average
weight ℓ/(w+1); we denote this weight as t. We assume that the analysis provides
us with the position of non-zero coefficients, but not their explicit value or sign;



14 Billy Bob Brumley and Risto M. Hakala

thus each coefficient gives w − 1 bits of uncertainty. One can then construct a
baby-step giant-step algorithm to solve the ECDLP in this restricted keyspace.
The time and space complexity is O(2(w−1)t/2); note that this does not directly
depend on ℓ (or further, the group order n). For the curve under consideration,
this gives a worst case of O(260) and on average O(248), whereas the complexity
without any such side channel information is O(280).

Lattice Attacks Despite this reduced complexity, an attacker cannot trivially
carry out the attack outlined above on a normal desktop PC. Known results on
attacking signature schemes with partial knowledge of nonces include [22, 23]; the

approach is a lattice attack. Formally, the attacker obtains tuples (ri, si, mi, k̂i)
consisting of a signature (2), message, and partial knowledge of the nonce k
obtained through the timing data analysis. For our experiments, not all such
tuples are useful in the lattice attack. Using the formalization of [22], we assume

k̂i tells us
ki = z′i + 2αizi + 2βiz′′i

with zi the only unknown on the right. Our empirical timing data analysis results
show that the majority of errors occur when too many or few doubles are placed
between an addition; a synchronization error in a sense. So the farther we move
towards the MSB, the more likely it is that we have erroneous indexing αi, βi

and the lattice attack will likely fail.
To mitigate this issue, we instead focus only on the LSBs. We disregard the

upper term by setting z′′i = 0 and consider only tuples where k̂i indicates that
z′i = 0 and αi ≥ 6; that is, the LSBs of ki are 000000. For k chosen uniformly,
this should happen with the reasonable probability of 2−6. Our empirical results
are in line with those of [22]: For a 160-bit group order, 41 such tuples is usually
enough for the lattice attack to succeed in this case.

Lattice attacks have no recourse to compensate for errors. If our analysis
determines z′i = 0 but indeed z′i 6= 0 for some i, that instance of the lattice
attack will fail. We thus adopt the näıve strategy of taking random samples of
size 41 from the set of tuples until the attack succeeds; an attacker can always
check the correctness of a guess by calculating the corresponding public key and
comparing it to the actual public key. This strategy is only feasible if the ratio
of error-free tuples to erroneous tuples is high.

Finally, we present the automated lattice attack results; 8K signatures with
messages and traces were obtained in both cases.

Pentium 4 results. The analysis yielded 122 tuples indicating z′i = 0. The
long-term private key d (2) was recovered after 1007 lattice attack iterations
(107 correct, 15 incorrect). The analysis ran in less than an hour on a Core
2 Duo.

Atom results. The analysis yielded 147 tuples indicating z′i = 0. We recovered
d after a total of 37196 lattice attack iterations (115 correct, 32 incorrect).
Our analysis is less accurate in this case, but still accurate enough to recover
the key in only a few hours on a Core 2 Duo.



Cache-Timing Template Attacks 15

Summary We omit strategies for finding correlation between the traces and
specific key digits. This can be tremendously helpful in further reducing the
search space when trying to solve the ECDLP. As such, given only one or a few
traces, this analysis method should be used as a tool in conjunction with other
heuristics to trim the search space. The lattice attack given here is proof-of-
concept. The results suggest that significantly fewer signatures are needed. In
practice one can perform a much more intelligent lattice attack, perhaps even
considering lattice attacks that account for key digit reuse [24].

7 Countermeasures

An implementation should not rely on any one countermeasure for side channel
security, but rather a combination. We briefly discuss countermeasures, with an
emphasis on preventing the specific weakness we exploited in OpenSSL.

Scalar Blinding. One often-proposed strategy [1, 25–27] is to blind the scalar k
from the point multiplication routine using randomization. One form is (k +
mn+ m̃)P − m̃P with m, m̃ small (e.g. 32-bit) and random. The calculation
is then carried out using multi-exponentiation with interleaving. With such
a strategy, it suffices that m̃ is low weight—not necessarily short.

Randomized Algorithms. Use random addition-subtraction chains instead of
highly regular double-and-add routines. Oswald [28] gave an example and
a subsequent attack [4]. Published algorithms tend to be geared towards
hardware or resource restricted devices; see [29] for a good review. In a
software package like OpenSSL that normally runs on systems with abundant
memory, one does not have to rely on simple randomized recoding and can
build more flexible addition-subtraction chains.

Shared Context. In OpenSSL’s ECC implementation, the results and illustra-
tion in Fig. 1 suggest what is most visible in the traces is not the lookup from
the precomputation table, but the dynamic memory for variables in the point
addition and doubling functions. OpenSSL is equipped with a shared con-
text [30, pp. 106–107] responsible for allocating memory for curve and finite
field arithmetic. Memory from this context should be served up randomly to
prevent a clear fixed memory access pattern.

Operation Balancing. In addition to the above shared context, coordinate
systems and point addition formulae that are balanced in the number and
order of operations are also useful; [31] gives an example.

The above countermeasures restrict to the software engineering view. Clearly
operating system-level and hardware-level countermeasures are additionally pos-
sible. We leave general countermeasures to this type of attack as an open ques-
tion.

8 Conclusion

We summarize our contributions as follows:



16 Billy Bob Brumley and Risto M. Hakala

– We introduced a method for automated cache-timing data analysis, facilitat-
ing discovery of critical algorithm state. This is the first work we are aware of
that provides this at a framework level, e.g. not specific to one cryptosystem.
Consequentially, it bridges the gap between cache attack vulnerabilities [9]
and attacks requiring partial key material [22, 23].

– We showed how to apply HMM cryptanalysis to cache-timing data; to the
best of our knowledge, its first published application to real traces. This
builds on existing work in the area of abstract side channel analysis using
HMMs [4–6], yet departs by tackling practical issues inherent to concrete
side channels.

– We demonstrated the method is indeed practical by carrying out an attack
on the elliptic curve portion of OpenSSL using live cache-timing data. The
attack resulted in complete key recovery, with the analysis running in a
matter of hours on a normal desktop PC.

The method works by:

1. Creating cache-timing data vector templates that reflect the algorithm’s
cache access behavior.

2. Using VQ to match incoming cache-timing data to these existing templates.
3. Using the output as observation input to an HMM that accurately models

the control flow of the algorithm.

The setup phase, including acquiring the templates used to build the VQ
codebook vectors and learning the HMM parameters, is the only part by def-
inition requiring any manual work, and the majority of that can in fact be
automated by simple modifications to the software under attack. This attack
scenario is described for hardware power analysis in [7], but is perhaps even a
greater practical threat in this case due to the inherent malleability of software.
After the setup phase, cache-timing data analysis is fully automated and requires
negligible time.

The analysis given here is not strictly meant for attacking implementations,
but for defending them as well. We encourage software developers to analyze
their implementations using these methods to discover memory access patterns
and apply appropriate countermeasures.

Future Work

One might think to forego the VQ step and use the cache-timing data directly as
the sole input to the HMM. In our experience, this only complicates the model
and hampers quality results.

The example we gave was tailored to data caches, in particular the L1 data
cache. Other data caches could prove equally fruitful. We also plan to apply the
analysis method to instruction caches.

While the attack results we gave were for one particular cryptosystem im-
plementation, the analysis method has a much wider range of applications. We



Cache-Timing Template Attacks 17

in fact found a similar vulnerability in the NSS library’s implementation of el-
liptic curves. Departing from elliptic curves and public key cryptography, we
plan to apply the analysis to an assortment of implementations, asymmetric and
symmetric primitives alike.

One of the more interesting planned applications is to algorithms with good
side channel resistance properties, such as “Montgomery’s ladder”. While this
might be an overwhelming challenge for traditional power analysis, the work
here emphasizes the fact that cache-timing attacks are about memory access
patterns; a fixed sequence of binary operations cannot be assumed sufficient to
thwart cache-timing attacks.

Acknowledgments We thank the following people for comments and discus-
sions: Dan Bernstein, Kimmo Järvinen, Kaisa Nyberg, and Dan Page.

References

1. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Koblitz, N., ed.: CRYPTO 1996. Volume 1109 of LNCS.
Springer (1996) 104–113

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In Wiener, M.J., ed.:
CRYPTO 1999. Volume 1666 of LNCS. Springer (1999) 388–397

3. Page, D.: Defending against cache based side-channel attacks. Information Security
Technical Report 8(1) (2003) 30–44

4. Oswald, E.: Enhancing simple power-analysis attacks on elliptic curve cryptosys-
tems. In Kaliski, Jr, B.S., Koç, Ç.K., Paar, C., eds.: CHES 2002. Volume 2523 of
LNCS. Springer (2003) 82–97

5. Karlof, C., Wagner, D.: Hidden Markov model cryptanalysis. In Walter, C.D.,
Koç, Ç.K., Paar, C., eds.: CHES 2003. Volume 2779 of LNCS. Springer (2003)
17–34

6. Green, P.J., Noad, R., Smart, N.P.: Further hidden Markov model cryptanalysis.
In Rao, J.R., Sunar, B., eds.: CHES 2005. Volume 3659 of LNCS. Springer (2005)
61–74

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In Kaliski, Jr, B.S., Koç, Ç.K.,
Paar, C., eds.: CHES 2002. Volume 2523 of LNCS. Springer (2003) 13–28

8. Medwed, M., Oswald, E.: Template attacks on ECDSA. In Chung, K.I., Sohn, K.,
Yung, M., eds.: WISA 2008. Volume 5379 of LNCS. Springer (2008) 14–27

9. Percival, C.: Cache missing for fun and profit. http://www.daemonology.net/

papers/cachemissing.pdf (2005)
10. Hlavác, M., Rosa, T.: Extended hidden number problem and its cryptanalytic

applications. In Biham, E., Youssef, A.M., eds.: SAC 2006. Volume 4356 of LNCS.
Springer (2006) 114–133

11. Bernstein, D.J.: Cache-timing attacks on AES. http://cr.yp.to/papers.html#

cachetiming (2004)
12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case

of AES. In Pointcheval, D., ed.: CT-RSA 2006. Volume 3860 of LNCS. Springer
(2006) 1–20

13. Möller, B.: Algorithms for multi-exponentiation. In Vaudenay, S., Youssef, A.,
eds.: SAC 2001. Volume 2259 of LNCS. Springer (2001) 165–180



18 Billy Bob Brumley and Risto M. Hakala

14. Möller, B.: Improved techniques for fast exponentiation. In Lee, P.J., Lim, C.H.,
eds.: ICISC 2002. Volume 2587 of LNCS. Springer (2003) 298–312

15. Bosma, W.: Signed bits and fast exponentiation. Journal de Théorie des Nombres
de Bordeaux 13(1) (2001) 27–41

16. Kohonen, T.: Self-Organizing Maps. Springer (1995)
17. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information

Theory 28(2) (1982) 129–137
18. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE 77(2) (1989) 257–286
19. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13(2) (1967) 260–
269

20. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. The Annals
of Mathematical Statistics 41(1) (1970) 164–171

21. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
5 edn. CRC Press (2001)

22. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography 23(3) (2001) 283–290

23. Nguyen, P.Q., Shparlinski, I.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Designs, Codes and Cryptography 30(2)
(2003) 201–217

24. Leadbitter, P.J., Page, D., Smart, N.P.: Attacking DSA under a repeated bits
assumption. In Joye, M., Quisquater, J.J., eds.: CHES 2004. Volume 3156 of
LNCS. Springer (2004) 428–440

25. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Koç, Ç.K., Paar, C., eds.: CHES 1999. Volume 1717 of LNCS.
Springer (1999) 292–302

26. Clavier, C., Joye, M.: Universal exponentiation algorithm: a first step towards
provable SPA-resistance. In Koç, Ç.K., Naccache, D., Paar, C., eds.: CHES 2001.
Volume 2162 of LNCS. Springer (2001) 300–308

27. Möller, B.: Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks. In Chan, A.H., Gligor, V.D., eds.: ISC 2002. Volume
2433 of LNCS. Springer (2002) 402–413

28. Oswald, E., Aigner, M.: Randomized addition-subtraction chains as a counter-
measure against power attacks. In Koç, Ç.K., Naccache, D., Paar, C., eds.: CHES
2001. Volume 2162 of LNCS. Springer (2001) 39–50

29. Walter, C.D.: Randomized exponentiation algorithms. In Koç, Ç.K., ed.: Crypto-
graphic Engineering. Springer (2009)

30. Viega, J., Messier, M., Chandra, P.: Network Security with OpenSSL. O’Reilly
Media, Inc. (2002)

31. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers
53(6) (2004) 760–768


