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Abstract. We demonstrate how the framework that is used for creating
efficient number-theoretic ID and signature schemes can be transferred
into the setting of lattices. This results in constructions of the most ef-
ficient to-date identification and signature schemes with security based
on the worst-case hardness of problems in ideal lattices. In particular,
our ID scheme has communication complexity of around 65, 000 bits and
the length of the signatures produced by our signature scheme is about
50, 000 bits. All prior lattice-based identification schemes required on the
order of millions of bits to be transferred, while all previous lattice-based
signature schemes were either stateful, too inefficient, or produced sig-
natures whose lengths were also on the order of millions of bits. The
security of our identification scheme is based on the hardness of finding
the approximate shortest vector to within a factor of Õ(n2) in the stan-
dard model, while the security of the signature scheme is based on the
same assumption in the random oracle model. Our protocols are very
efficient, with all operations requiring Õ(n) time.

We also show that the technique for constructing our lattice-based schemes
can be used to improve certain number-theoretic schemes. In particular,
we are able to shorten the length of the signatures that are produced by
Girault’s factoring-based digital signature scheme ([10, 11, 31]).

1 Introduction

The appeal of building cryptographic primitives based on the hardness of lattice
problems began with the seminal work of Ajtai who showed that one-way func-
tions could be built with security based on the worst-case hardness of certain
lattice problems [2]. Unfortunately, cryptographic primitives that were built with
this very strong security property were extremely inefficient for practical appli-
cations. For example, evaluating one-way and collision-resistant hash functions
required Õ(n2) time and space [2, 24], and in public-key cryptosystems, the keys
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were on the order of megabytes [3, 33, 34, 28] (also see [25] for concrete parame-
ter proposals for the scheme in [34]). Therefore some new ideas were required in
order to make provably-secure lattice-based primitives a realistic alternative to
ones based on number-theory.

A promising approach for improving efficiency is to use lattices that possess
extra algebraic structure, and it is precisely this extra structure that makes the
NTRU cryptosystem [14] (which unfortunately does not have a proof of secu-
rity) very efficient in practice. A step in the direction of building provably-secure
lattice-based primitives was taken by Micciancio [23], who showed that one could
build efficient (Õ(n) evaluation time) one-way functions with security based on
the worst-case instances of problems pertaining to cyclic lattices (cyclic lattices
are lattices that correspond to ideals in the ring Z[x]/〈xn − 1〉). This result was
later extended to give constructions of collision-resistant hash functions by ei-
ther restricting the domain [29] or changing the ring [18] in Micciancio’s scheme.
These works then led to constructions and implementations of collision-resistant
hash functions [20] with security based on worst-case problems in lattices corre-
sponding to ideals in Z[x]/〈xn + 1〉 whose performance was comparable to the
performance of ad-hoc hash functions that are currently in use today. And be-
cause there is a very close connection between collision-resistant hash functions
and more sophisticated primitives such as ID schemes and digital signatures, it
was very natural to ask whether these primitives also had efficient lattice-based
constructions. There has been some recent work in this direction, which we will
now describe.

Lyubashevsky and Micciancio constructed a one-time signature in which
signing and verification can be performed in time Õ(n) [19]. Using standard
techniques, the one-time signature can be transformed into a full-fledged signa-
ture scheme using a signature-tree [21, 22] with only an additional work factor of
O(log n). While this combination results in a very theoretically-appealing scheme
where all the operations take time Õ(n), it does require the use of a tree, which
is a somewhat unwanted feature in practice. Another signature scheme was pro-
posed by Gentry et al. in [9]. Their signature scheme follows the hash-and-sign
paradigm, and when instantiated with algebraic lattices [37], verification takes
time Õ(n), but Õ(n4) time is needed to do the signing (it is plausible that the
signing time could be reduced to Õ(n2) with a more careful analysis).

A different way of constructing digital signature schemes is to first construct
an identification scheme of a certain form and then convert it to a signature
scheme using the Fiat-Shamir transform [7, 32, 1]. The identification schemes of
Micciancio and Vadhan [26], Lyubashevsky [17], and Kawachi et al. [15] can
all be instantiated such that the secret and public keys are of size Õ(n), and
the entire interaction takes Õ(n) time as well. While these constructions seem
essentially optimal, they contain a common inefficiency. The ID schemes all
have the form of standard commit-challenge-response protocols (see Figure 1,
for an example of one where Y is the commitment, c is the challenge, and z is
the response), and the inefficiency lies in the fact that for each challenge bit,
the response consists of Õ(n) bits. Since the security of the protocol is directly



connected to the number of challenge bits sent by the verifier, it means that for
every bit of security, Õ(n) bits need to be transmitted. Theoretically, this does
not cause a problem because one only needs ω(log n) bits of security in order for
the protocol to be considered secure against polynomial-time adversaries, and
then the total running time of the above protocols is still Õ(n). But in practice,
this is a rather unsatisfactory solution because one wants some concrete security
guarantee, say 80 bits, and then the communication complexity of the ID scheme
will be about 80 times larger (the size of the signature in the derived signature
scheme would be 160 times larger) than possibly necessary. This is in sharp
contrast to number-theoretic ID schemes where the response of the prover is
longer than the challenge by only a small factor.

What allows number-theoretic ID schemes like Schnorr [35], GQ [13], Girault
[10], Okamoto [27], etc. to be so “compact” is that the challenge string in these
protocols is not treated as a sequence of independent 0’s and 1’s, but instead
the entire string is interpreted as an integer from a certain domain. This can be
done because there is a lot of underlying algebraic structure upon which these
schemes are built. On the other hand, lattices do not seem to have as much
algebraic underpinning, and so the schemes based on them are very combinatorial
in nature which is why the challenge strings are treated simply as a sequence of
independent challenges much like in generic zero-knowledge proofs for NP. The
main accomplishment of the current work is to show how to exploit the limited
algebraic structure of ideal lattices in order to use the challenge bits collectively
rather than individually, which ends up greatly improving the practical efficiency
of lattice-based identification and signature schemes.

1.1 Contributions and Comparisons

Lattice-based constructions. We construct a lattice-based ID scheme in
which the challenge string is treated as a polynomial in a certain ring, and one
correct response to it from the prover is enough for authentication. The caveat is
that some constant fraction of the time, the prover cannot respond to the chal-
lenge from the verifier and must abort the protocol. The result of this is that the
“commit” and “challenge” steps of the ID scheme now must be repeated several
times to ensure that a valid prover is accepted with some decent probability.
But using standard techniques, one can significantly shorten the length of the
“commit” part of the protocol, and because of the structure of our scheme, the
challenge can always be the same. Therefore the number of transmitted bits is
dominated by the length of the single “response”.

Even more optimizations are possible when converting the ID scheme into
a signature scheme using the Fiat-Shamir transform. In the resulting signature
scheme, there is of course no longer any interaction until the signer outputs the
signature. And therefore there is no need for the signer to output the attempts
in which he failed to sign (which correspond to the times he couldn’t answer the
challenge in the ID scheme). So while the failures do cost time, the length of
the final signature is as short as it would have been if the signer only attempted
to sign once and succeeded. And because the probability of failure is a small



constant (≈ 2/3), we only expect to repeat the signature protocol 3 times before
succeeding.

All operations in our scheme take time Õ(n) and we prove that the ID and
signature schemes are secure based on the worst-case hardness of approximating
the shortest vector to within a factor of Õ(n2) in lattices corresponding to ideals
in the ring Z[x]/〈xn + 1〉 (the security of the signature scheme is in the random
oracle model). Compared to previous works, our asymptotic hardness assumption
is the same as that in [19, 17] (although the scheme of [19] is secure in the
standard model), but is worse than that in [26, 9, 37] (where the factor is Õ(n1.5))
and in [15] (where the factor is Õ(n)).

Based on the work of Gama and Nguyen [8] who worked out the effectiveness
of current state-of-the-art lattice reduction algorithms, we present some con-
crete parameters with which our schemes can be instantiated. On the low end,
the outputted signatures are about 50000 bits in length (the ID scheme requires
about 65000 bits to be transmitted). While the scheme of [15] has better asymp-
totic security, the response to each challenge bit seems to require at least 10000
bits. So if we would like the challenge to be 160 bits for security purposes, the
response (and therefore the signature size) will be over a million bits. The signa-
ture schemes of [26] and [17] look like they would have their signatures be about
160 times longer than ours (the ID schemes would require communications that
are about 80 times longer), again because the responses are done separately to
every challenge bit. So even though our ID and signature schemes have worse
asymptotic security, their structure makes them much more practically efficient.

At this point it is not possible to give an accurate comparison of our signa-
ture scheme to the hash-and-sign signature schemes [9, 37] because no concrete
parameters were given for those schemes. But independent of the signature sizes,
our scheme will still have the advantage in that signing can be done in time Õ(n)
rather than Õ(n4).

The signature length of the one-time signature in [19] may actually be a
little shorter than in our scheme, but this advantage is lost when the one-time
signature gets converted to a general stateless signature scheme. If a signature
tree is used in the conversion, then the signature length may go up by a factor
of the tree depth, which would make it much less efficient. On the other hand,
one could build a hash tree using any collision-resistant hash function, and then
the signatures would only increase by the product of the tree depth and the
hash function output. If the scheme is to be completely stateless and support
about 260 signatures, and we use SHA-256 as the hash function, then the length
of the one-time signature in [19] would increase by about 15, 000 bits, which
would make it somewhat longer than our signature. The similarity between the
signature sizes of our scheme and the scheme in [19] is no coincidence, and we
further discuss the relationship between the two schemes in Section 1.2.

Factoring-based signatures. We show that the ideas used to construct our
lattice-based digital signature can also be used for shortening the length of some
number-theoretic schemes. The signature scheme originally proposed by Girault



[10], and analyzed in [11, 31] is a scheme whose security, in the random oracle
model, is based on the hardness of factorization. What is particularly attrac-
tive about it is that if the signer can do some pre-computing before receiving
the message, then signing can be done with just one random oracle query, one
multiplication, and one addition over the integers (no modular reduction is re-
quired). We show how to reduce the length of the signature in an instantiation
of the scheme due to Pointcheval [31] from 488 bits to 425.

1.2 Techniques

There is a pattern that emerges when looking at constructions of certain ID
and signature schemes based on the hardness of factoring and discrete log. The
informal chain of reductions from the hard problem to the signature scheme
looks as follows:

Hard Problem ≤ CRHF ≤ One-time signature ≤ ID scheme ≤ Signature

For example, finding collisions in the hash function h(x) = gx mod N implies
being able to factor N . This can be converted into a one-time signature with
the secret key being some pair of integers (x, y), public keys being h(x), h(y),
and the signature of a message c being xc+ y. The one-time signature can then
be converted into an ID scheme by simply picking a new y every time (Figure
1) and c now being a challenge chosen by the verifier. The ID scheme can then
be converted to a signature scheme by using the Fiat-Shamir transform which
replaces the verifier with a random oracle (Figure 5) [10, 11, 31]. The same idea
can be used with the hash function h(x1, x2) = (gx1

1 gx2
2 mod p), in which finding

collisions implies solving the discrete log problem. The ID and signature schemes
resulting from that hash function are due to Okamoto [27].

It turns out that a somewhat similar approach can be used to build lattice-
based primitives as well. The works of [29, 18], showed a reduction from the worst-
case problem of finding short vectors in algebraic lattices to finding collisions in
hash functions. The work of [19] can be viewed as a transformation of the hash
function to a one-time signature, and this current work can then be seen as the
continuation of this chain of reductions where the one-time signature of [19] is
converted into an ID scheme and then into a signature scheme.

But what prevents the techniques used in number-theoretic schemes to be
directly extended to lattice-based ones, is that lattices allow for much less alge-
braic structure. For example, the domains in number-theoretic hash functions are
rings, while in lattice-based ones, the domain is just a subset of a ring (in partic-
ular, those elements in the ring that have small Euclidean norm) that is neither
closed under addition nor multiplication. This is very related to the fact that
the factoring and discrete log problems can be reduced to finding an element in
the kernel of some homomorphic function, while finding short vectors in lattices
reduces to the problem of finding small elements in the kernel of a homomor-
phism. This difference is what seems to give lattice problems resistance against
polynomial-time quantum algorithms that solve factoring and discrete log [36],
but at the same time it also hinders constructions of lattice-based primitives.



Secret key: s
$← Ds

Public key: N , g, and S ← gs mod N

Prover Verifier

y
$← Dy, Y ← gy mod N Y -

c� c
$← Dc

z ← sc+ y
[if z /∈ G then z ←⊥ ] z -

Accept iff gz ≡ Y Sc(modN)

Fig. 1. Factoring-Based Identification Schemes.
The parameters for this scheme are in Figure 6. The line in [ ] is only performed in the
aborting version of the scheme.

In overcoming this limitation, the one-time signature of [19] had to leak parts
of its secret key. While it wasn’t a problem in that setting because the secret key
is only used once, in ID schemes the same secret key is used over and over, and
so leaking a part of the secret key every time would result in complete insecurity.
In this paper, we solve this difficulty by using an aborting technique that was
introduced in [17]. The idea behind aborting is that the prover can elect to abort
the protocol in order to protect some information about his secret key (mainly,
the protocol needs to remain witness-indistinguishable). In this work, we are
able to relax the conditions that were needed for witness-indistinguishability in
[17], and this allows us to construct much more efficient lattice-based protocols
as well as extend the technique to other contexts, such as the factoring-based
scheme described in Section 1.1. We essentially show that all that is needed for
the aborting technique to be applicable is a collision-resistant homomorphic hash
function that has small elements in its kernel. We believe that this technique can
find further applications.

1.3 Intuition for Aborting

Understanding where aborting might be useful is best accomplished with an
example. Consider the protocol in Figure 1 (for this discussion, it is not necessary
to understand why the protocol works), which has the form of a typical 3-round
commit-challenge-response ID scheme. The secret key is some s and the public
key is h(s) where h is a function that happens to be h(s) = gs mod N in our
example. In the first step of the protocol, the prover picks a parameter y, and
sends h(y), to the verifier. The verifier picks a random “challenge” c, and sends
it to the prover. The third step of the protocol consists of a response of the
prover to the challenge. This response must somehow use the secret key, and in
our example, the secret key s is multiplied by c and then added to y. Notice that
sending sc without adding it to y would completely reveal s, and so the job of
y is to somehow mask the exact value of sc. If the operation sc takes place in
some finite group, then a natural idea for masking would be to pick y uniformly
at random from that group. The intuition is that if nothing about y is known,
then the value y + sc is also completely random (of course, something is known



about y when the prover sends h(y) to the verifier, but we gloss over that here).
And this is exactly what is done in well-known ID schemes such as Schnorr [35],
GQ [13], Okamoto [27], etc..

But sometimes it is infeasible to pick y uniformly at random from the group.
In Girault’s ID-scheme [10, 11, 31] (Figure 1), the multiplication sc is performed
over the integers, which is an infinite group. A way to do masking in this scheme
is to pick a y in a range that is much larger than the range of sc. So for example,
if 0 ≤ sc ≤ R, then one could pick a random y from the range [0, ..., 264R]. Then,
with very high probability, the value of sc + y will be in [R, ..., 264R], in which
case it will be impossible to determine anything about sc if nothing is known
about y.

In constructing our lattice-based ID scheme, the same difficulty is encoun-
tered as in Girault’s scheme, except we do not have the luxury of picking y
(or something analogous to y in the lattice-based scheme) from such a large
range because doing so would require us to make a much stronger complexity
assumption which would significantly decrease the efficiency of the protocol (we
would have to assume that it is hard to find a super-polynomial approximation
of the shortest vector instead of just an Õ(n2) approximation). Our solution is
to instead pick y from a much smaller set, something analogous to [0, . . . , 2R],
but only reveal sc+ y if it falls into the range [R, . . . , 2R]. If the range is picked
carefully and the function h is a homomorphism that has “small” elements in
its kernel, then one can show that if the prover only reveals values in this range
and aborts otherwise, the protocol will be perfectly witness-indistinguishable.
The witness-indistinguishability is then used to prove security of the protocol by
showing that a forger can be used for extracting collisions in h.

The same technique can also be applied to Girault’s scheme. Notice that
if we pick y uniformly at random from the range [0, ..., 2R] instead of from
[0, ..., 264R], the length of sc + y will be 63 bits shorter. We point out that our
aborting factoring-based ID scheme in Figure 1 which uses this idea is actually
worse than the corresponding non-aborting one because the savings gained by
shortening sc + y are lost in case the prover has to abort and the ID protocol
has to be repeated. But the advantage of aborting does show itself when the ID
protocol is converted into a signature scheme using the Fiat-Shamir paradigm
(Figure 5). In a signature scheme, there is no interaction, and therefore there
is no need for the signer to ever include the aborted signing attempts into the
final signature. So if the signer needs to abort, he simply reruns the protocol
until he gets a signature in the correct range. The end result is that the eventual
signature is shorter than it would have been in schemes such as [10, 11, 31] where
the signer does not have the option to abort.

2 Preliminaries

2.1 Notation

We will denote vectors by bold letters. For convenience, vectors of vectors will
be denoted by a bold letter with a hat. For example, if a1,a2 are elements of



Zn, then we can write â = (a1,a2). The `∞ norm of a is written as ‖a‖∞, and
‖â‖∞ for â = (a1, . . . ,am) is defined as maxi(‖ai‖∞). If S is a set, then a

$← S
means that a is chosen uniformly at random from S. All logarithms are assumed
to be base 2.

2.2 Lattices and Algebra

An integer lattice Λ is a subgroup of Zn. The approximate Shortest Vector
Problem (SVPγ(Λ)) asks to find a vector v in Λ such that ‖v‖∞ is no more than
γ times larger than the vector in Λ with the smallest `∞ norm. In this work, we
will be interested in lattices that exhibit an additional algebraic property – in
particular, they correspond to ideals in the ring Z[x]/〈xn + 1〉. We will say that
a lattice Λ is an (xn + 1)-cyclic lattice if for every vector (v0, . . . , vn−2, vn−1) ∈
Λ, the vector (−vn−1, v0, . . . , vn−2) is also in Λ. If we look at the vectors as
polynomials (i.e. (v0, . . . , vn−2, vn−1) as v0 + . . .+ vn−2xn−2 + vn−1xn−1), then
an (xn + 1)-cyclic lattice is an ideal in Z[x]/〈xn + 1〉 because in this ring,

(v0 + . . .+ vn−2xn−2 + vn−1xn−1) · x = −vn−1 + v0x + . . .+ vn−2xn−1.

The ring that will be most important to us throughout the paper is the
ring Zp[x]/〈xn + 1〉 where p is some odd positive integer. The elements in
Zp[x]/〈xn + 1〉 will be represented by polynomials of degree n− 1 having coeffi-
cients in the range

[
−p−1

2 , p−1
2

]
. Throughout the paper, we will treat polynomials

in Zp[x]/〈xn+1〉 and vectors in Zn as the same data type. So when, for example,
we talk of multiplying two vectors, we actually mean converting the vectors to
polynomials and then multiplying the polynomials in Zp[x]/〈xn + 1〉. Similarly,
the norm1 of a polynomial is just the norm of the corresponding vector. It’s not
hard to see that for polynomials v,w ∈ Zp[x]/〈xn + 1〉, the following relation
holds:

‖vw‖∞ ≤ ‖v‖∞‖w‖1 ≤ n‖v‖∞‖w‖∞
(xn+1)-cyclic lattices are a particular class of lattices that received attention

because one can construct efficient and provably secure cryptographic primitives
based on the hardness of finding approximate short vectors in these lattices
[18, 29, 19, 20]. The main reason for this efficiency is that the multiplication of
two polynomials in Zp[x]/〈xn + 1〉 can be done in time Õ(n) using the Fast
Fourier Transform. While the results in this paper can be applied to lattices
that correspond to ideals in other rings, it would only unnecessarily complicate
matters because the ring Z[x]/〈xn+1〉 seems to be the most useful theoretically
and in practice.

While a lot is known about the complexity of SVP in general lattices, very
little is known about this problem when restricted to ideal lattices. Nevertheless,
the problem is related to some problems in algebraic number theory (see [18,

1 This is a slight abuse of the word norm. Because of the reduction modulo p, it’s not
true that for any integer α we have ‖αa‖∞ = |α|‖a‖∞, but it still holds true that
‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and ‖αa‖∞ ≤ |α|‖a‖∞



30]) that do not have any efficient solution. And it seems that the currently best
lattice algorithms are unable to take advantage of the extra structure provided
by ideal lattices. Therefore, it still seems that solving SVPγ takes time 2O(n)

when γ = nO(1) [16, 4].

2.3 Lattice-Based Collision-Resistant Hash Function

Let R be the ring Zp[x]/〈xn+1〉. We define the following family of hash functions:

Definition 1. For any integer m and D ⊆ R, the function family
H(R,D,m) mapping Dm to R is defined as

H(R,D,m) = {hâ : â ∈ Rm},where for any ẑ ∈ Dm, hâ(ẑ) = â · ẑ

That is, if â = (a1, . . . ,am) and ẑ = (z1, . . . , zm), then hâ(ẑ) = a1z1+. . .+amzm
where all the operations are performed in the ring Zp[x]/〈xn + 1〉. It’s not hard
to see that the hash functions in H(R,D,m) satisfy the following two properties
for any ŷ, ẑ ∈ Rm and c ∈ R:

h(ŷ + ẑ) = h(ŷ) + h(ẑ) (1)

h(ŷc) = h(ŷ)c (2)

The collision problem Col(h,D) is defined as follows:

Definition 2. Given an element h ∈ H(R,D,m), the collision problem Col(h,D),
where D ⊆ R, asks to find two distinct elements ẑ, ẑ′ ∈ D such that h(ẑ) = h(ẑ′).

In [18], it was shown that whenD is some restricted domain, solving the Col(h,D)
problem for random h ∈ H(R,D,m) is as hard as solving SVPγ for any (xn+1)-
cyclic lattice.

Theorem 1. Let R = Zp[x]/〈xn + 1〉 be a ring where n is any power of 2, and
define D = {y ∈ R : ‖y‖∞ ≤ d} for some integer d. Let H(R,D,m) be a hash
function family as in Definition 1 such that m > log p

log 2d and p ≥ 4dmn1.5 log n.
If there is a polynomial-time algorithm that solves the Col(h,D) problem for
a random h ∈ H(R,D,m) with some non-negligible probability, then there is
a polynomial-time algorithm that can solve SVPγ(Λ) for every (xn + 1)-cyclic
lattice Λ, where γ = 16dmn log2 n.

2.4 Cryptographic Definitions

Digital Signatures. We recall the definitions of signature schemes and what
it means for a signature scheme to be secure.

Definition 3. A signature scheme consists of a triplet of polynomial-time (pos-
sibly probabilistic) algorithms (G,S, V ) such that for every pair of outputs (s, v)
of G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .



In the above definition, G is called the key-generation algorithm, S is the signing
algorithm, V is the verification algorithm, and s and v are, respectively, the
signing and verification keys.

A signature scheme is said to be secure if there is only a negligible probability
that any forger, after seeing signatures of messages of his choosing, can sign a
message whose signature he has not already seen [12].

Definition 4. A signature scheme (G,S, V ) is said to be secure if for every
polynomial-time (possibly randomized) forger F , the probability that after seeing
the public key and {(µ1, S(s, µ1)), . . . , (µq, S(s, µq))} for any q messages µi of
its choosing (where q is polynomial in n), F can produce (µ 6= µi, σ) such that
V (v, µ, σ) = 1, is negligibly small. The probability is taken over the randomness
of G, S, V , and F .

In the standard security definition of a signature scheme, the forger should
not be able to produce a signature of a new message. A stronger notion of
security, called strong unforgeability requires that in addition to the above, a
forger shouldn’t even be able to come up with a different signature for a message
whose signature he has already seen. The schemes presented in this paper satisfy
this stronger notion of unforgeability.

Identification Schemes. An identification scheme consists of a key-generation
algorithm and a description of an interactive protocol between a prover, pos-
sessing the secret key, and verifier possessing the corresponding public key. In
general, it is required that the verifier accepts the interaction with a prover who
behaves honestly with probability one, but this definition can be relaxed so that
sometimes an honest prover is not accepted with some small probability.

The standard active attack model against identification schemes proceeds in
two phases [5]. In the first phase, the adversary interacts with the prover in an
effort to obtain some information. In the second stage, the adversary plays the
role of the prover and tries to make a verifier accept the interaction. We remark
that in the second stage, the adversary no longer has access to the honest prover.
The adversary succeeds if he is able to make an honest verifier accept with some
non-negligible probability.

Witness-Indistinguishability. We will only define the concept of witness-
indistinguishability in a way that pertains to our application and we refer the
reader to [6] for the more general definition. For convenience, we will use the
notation from the identification protocol in Figure 1. An identification scheme
is said to be perfectly witness-indistinguishable if for any public key S, and any
two valid secret keys s, s′ (i.e. s, s′ ∈ Ds and gs mod N = gs

′
mod N = S), the

view of any (possibly malicious) verifier in the interaction where the prover uses
s has the exact same distribution as the view where the prover uses s′. In other
words, it is impossible for the verifier to figure out which of the valid secret keys
the prover is using to authenticate himself.



Parameter Definition Sample Instantiations

n integer that is a power of 2 512 512 512 1024

m any integer 4 5 8 8

σ any integer 127 2047 2047 2047

κ integer s.t. 2κ
(
n
κ

)
≥ 2160 24 24 24 21

p integer ≈ (2σ + 1)m · 2−
128
n 231.7 259.8 295.8 295.9

R ring Zp[x]/〈xn + 1〉
D {g ∈ R : ‖g‖∞ ≤ mnσκ}
Ds {g ∈ R : ‖g‖∞ ≤ σ}
Dc {g ∈ R : ‖g‖1 ≤ κ}
Dy {g ∈ R : ‖g‖∞ ≤ mnσκ}
G {g ∈ R : ‖g‖∞ ≤ mnσκ− σκ}

Signature Size ≈ mn log (2mnσκ) bits 49000 72000 119000 246000

Public Key Size ≈ n log p bits 16000 31000 49000 98000

Secret Key Size ≈ mn log (2σ + 1) bits 16000 31000 49000 98000

Hash Function Size ≈ mn log p bits 65000 153000 392000 786000

Length of vector needed to break signature 223.5 227.9 228.6 229.4

Length of shortest vector that can be found 225.5 236.7 247.6 269.4

Fig. 2. Lattice-Based Schemes’ Parameter Definitions and Sample Instanti-
ations

3 Lattice-Based Constructions

In this section, we present our lattice-based identification (Figure 3) and sig-
nature (Figure 4) schemes. In Figure 2 we define all the parameters that will
appear in this section as well as give some concrete instantiations. The parame-
ter κ controls the size of the domain from which the challenges/signatures come
from. In order to have soundness error of at most 2−80, this parameter must be
set such that the size of this domain is 2160. The parameter p is chosen such that
every public key has a very high probability of having multiple corresponding
secret keys associated with it. The free parameters n,m, and σ need to be set
in a way so that it is computationally infeasible find collisions in the underlying
hash function family H(R,D,m).

The last two lines of the above table deal with the practical cryptanalysis
of our signature scheme. The last line of the table specifies the length of the
shortest vector in a certain lattice defined by our signature scheme that can be
found in practice, while the line above that specifies the length of the vector that
needs to be found in order to forge a signature. See Section 3.3 for more details.

3.1 Identification Scheme

The secret key of the prover, denoted ŝ, consists of a set of m polynomials
from the set Ds which are picked uniformly at random. The public key of the
prover consists of a hash function h which is picked randomly from the family
H(R,D,m), and the polynomial S = h(ŝ). We point out that it is not necessary



for every prover to have a distinct h. If trusted randomness is available, then
everyone can share the same random h which considerably lowers the public
key size because the hash function h can be hard-coded into the signing and
verification algorithms.

In the first step of the protocol, the prover picks a random ŷ ∈ Dm
y , and

“commits” to it by sending Y = h(ŷ) to the verifier. The verifier then picks
a random challenge c from Dc and sends it to the prover. The prover then
computes ẑ = ŝc + ŷ. If this result falls into the range Gm, the prover sends it
to the verifier. Otherwise, he aborts the protocol. Upon receiving ẑ, the verifier
accepts the interaction if ẑ ∈ Gm and h(ẑ) = Sc + Y. Using the homomorphic
properties of h (see (1) and (2)), we see that h(ŝc + ŷ) = Sc + Y, and so an
honest prover who does not abort will always be accepted.

Proving the soundness and completeness of the protocol is done using the
following series of steps:

1. Show that an honest prover is accepted with probability 1/e.
2. Show that the ID scheme is perfectly witness-indistinguishable.
3. Show that with probability 1− 2−128, for a randomly-picked ŝ ∈ Dm

s , there
is another ŝ′ ∈ Dm

s such that h(ŝ) = h(ŝ′).
4. Show how to extract a collision in h from an adversary who succeeds in

breaking the protocol

Step 1 shows that the completeness of the protocol is 1/e. We will explain
how to increase this number later. Step 2 is essentially the main part of the
proof, which shows that for every pair of possible secret keys ŝ, ŝ′ such that
S = h(ŝ) = h(ŝ′), no adversarial verifier can determine which secret key is being
used by the prover. The reason for this is that we have set up the parameters
so that for every secret key ŝ ∈ Dm

s , every challenge c ∈ Dc, and every response
ẑ ∈ Gm, the value of ẑ− ŝc is in Dy. This implies that having seen the history
(Y, c, ẑ), it is impossible to tell whether the secret key was ŝ and we picked
a masking parameter ŷ, or the secret key was ŝ′ and we picked the masking
parameter ŷ′ = ẑ− ŝ′c = ŷ + ŝc− ŝ′c = ŷ + (ŝ− ŝ′)c because h(ŝ) = h(ŝ′) = S
and h(ŷ) = h(ŷ′) = Y.

To make the claim in step 2 non-vacuous, we need to show that for a randomly
picked secret key, there is indeed a high probability that another secret key exists
which produces the same public key. This is done in step 3.

In step 4, we show how to use a successful adversary to solve the Col(h,D)
problem for a random h ∈ H(R,D,m). Given a random h ∈ H(R,D,m), we pick
a random secret key ŝ and publish the public keys h and S = h(ŝ). In the first
stage of the attack, the adversary plays the role of the verifier, and we are able
to perfectly play the part of the prover because we know the secret key. In the
second stage when the adversary attempts to impersonate the prover, we receive
his commitment, and send a random challenge c ∈ Dc. After he responds with ẑ,
we rewind and pick another random challenge c′ ∈ Dc, to which the adversary
will respond with ẑ′. The responses of the adversary and our knowledge of the
secret key allow us to obtain the equation h(ẑ− ŝc) = h(ẑ′− ŝc′). By our choice



Private key: ŝ
$← Dm

s

Public key: h
$← H(R,D,m),S← h(ŝ)

Prover Verifier

ŷ
$← Dm

y , Y ← h(ŷ) Y -
c� c

$← Dc
ẑ← ŝc + ŷ

if ẑ /∈ Gm then ẑ←⊥ ẑ -
Accept iff ẑ ∈ Gm and h(ẑ) = Sc + Y

Fig. 3. Lattice-Based Identification Scheme.

of parameters, both ẑ − ŝc and ẑ′ − ŝc′ are in D, and because of the witness-
indistinguishability of the protocol, the adversary cannot know our exact secret
key. Therefore with probability at least 1/2, ẑ− ŝc and ẑ′ − ŝc′ will be distinct
and we have a collision for h. Thus an adversary who can break the ID scheme
can be used to solve Col(h,D) for random h ∈ H(R,D,m), and by Theorem 1,
this implies finding the approximate short vector in all (xn + 1)-cyclic lattices.

Theorem 2. If the identification scheme in Figure 3 is insecure against active
attacks for the parameters in Table 2, then there is polynomial-time algorithm
that can solve SVPγ(Λ) for γ = Õ(n2) for every lattice Λ corresponding to an
ideal in the ring Z[x]/〈xn + 1〉.

Notice that the ID scheme is not quite satisfactory because a valid prover is
only accepted with probability 1/e. This means that the scheme may have to
be repeated several times until the prover succeeds. Because we showed that the
scheme is witness-indistinguishable, the repetitions can be performed in parallel,
and the witness-indistinguishability property will still be preserved [6]. So the
straight-forward way to modify the ID scheme would be, for example, to pick 30
different ŷi’s and send the Yi = h(ŷi) to the verifier. Then the verifier will send
30 challenges, and the prover replies to the first one of these challenges that he
can. This would result in a protocol where the honest prover is accepted with
probability about 1− 2−20.

But there are some significant improvements that can be made. First of all,
the verifier needs to send only one challenge, rather than one challenge for every
commitment (this is because we show that for every challenge c, the probability
of aborting is equal over the random choice of ŷ). And secondly, we can use a
standard trick to shorten the length of every Yi, which will result in large savings
in our protocol because the length of each Y is approximately n log p bits, which
could be as large as 100,000 bits! Instead of sending Y, we can send H(Y) where
H is any collision resistant hash function. Unlike with h, we will not need H to
have any algebraic properties like (1) and (2), so H could be a cryptographic
hash function such as SHA or an efficient lattice-based hash function from [20]
whose output is about 512 bits. So sending 30 H(Y)’s will only require about
15, 000 bits in total. In this modified protocol, the verifier’s challenge and the
prover’s reply remain the same as in the old protocol. But to authenticate the



Signing Key: ŝ
$← Dm

s

Verification Key: h
$← H(R,D,m),S← h(ŝ)

Random Oracle: H : {0, 1}∗ → Dc

Sign(µ, h, ŝ)
1: ŷ

$← Dm
y

2: e← H(h(ŷ), µ)
3: ẑ← ŝe + ŷ
4: if ẑ /∈ Gm, then goto step 1
5: output (ẑ, e)

Verify(µ, ẑ, e, h,S)
1: Accept iff

ẑ ∈ Gm and e = H(h(ẑ)− Se, µ)

Fig. 4. Lattice-Based Signature Scheme

prover, the verifier checks whether ẑ ∈ Gm and that H(h(ẑ) − Sc) is equal
to some H(Y) sent by the prover in the first step 2. It can be shown that an
adversary who breaks this protocol can be used to find a collision either in H or
in h. We will give more details in the full version of the paper.

3.2 Signature Scheme

Our signature scheme is presented in Figure 4. The public and secret keys
are just like in the ID scheme. To sign a message µ, we pick a random ŷ and
compute e = H(h(ŷ), µ) and send (ẑ, e) as the signature only if ẑ is in the set
Gm. Otherwise we repeat the procedure until ẑ ends up in Gm. The probability
that we succeed in getting ẑ to be in Gm on any particular try is the same as
the probability that the ID scheme in Figure 3 doesn’t send ⊥, which is 1/e. So
we expect to repeat the signing procedure less than 3 times to get a signature.

The witness-indistinguishability of the signature scheme follows directly from
the witness indistinguishability of the ID scheme because the challenge is now
simply generated by a random oracle rather than by the verifier. The proof
of security of the signature scheme uses the forking lemma [32] to obtain two
signatures from a forger that use the same random oracle query. Then using the
same ideas as in the security proof of the ID scheme, it can be shown how to
use these signatures to obtain a solution to the Col(h,D) problem for a random
h ∈ H(R,D,m).

Theorem 3. If the signature scheme in Figure 4 for the parameters in Table 2
is not strongly unforgeable, then there is a polynomial-time algorithm that can
solve SVPγ(Λ) for γ = Õ(n2) for every lattice Λ corresponding to an ideal in
the ring Z[x]/〈xn + 1〉.

3.3 Concrete Parameters

The security of our ID (and signature) scheme depends on its soundness and
the hardness of finding collisions in hash functions from a certain family. As
2 One could lower the communication complexity even further by combining the 30

hashes into a hash tree.



mentioned earlier, we set the parameters κ and p such that the soundness error
is at most 2−80. We now discuss how to set the remaining parameters so that
finding collisions in the resulting hash function is infeasible with the techniques
known today. For this, we will use the work of [8], who showed that, given
a reasonable amount of time, algorithms for finding short vectors in random
lattices produce a vector that is no smaller than 1.01n times the shortest vector
of the lattice.

We showed that an adversary who succeeds in forging a signature can be
used to find a collision in a hash function chosen randomly from H(R,D,m).
This is equivalent to finding “short” vectors a certain lattice which we will now
define. For a polynomial a ∈ Zp[x]/〈xn + 1〉, let Rot(a) be the n × n matrix
whose ith column is the polynomial axi, and let A be the n× nm matrix A =
[Rot(a1)||Rot(a2)|| . . . ||Rot(am)] where ai are the polynomials which define the
hash function h. If we define the lattice Λ⊥p (A) = {u ∈ Zmn : Au = 0(mod p)},
then finding a vector u ∈ Λ⊥p (A) whose `∞ norm is at most 2mnσκ is equivalent
to finding a collision in h ∈ H(R,D,m).

The random lattices on which the experiments of [8] were run differ from
Λ⊥p (A), but in [25], experiments were run on lattices that are very similar 3

to Λ⊥p (A) which obtained the same results as [8]. Furthermore, it was shown
in [25] that it is inefficient to try to find a short vector in Λ⊥p (A) by using
all its mn dimensions. Rather, one should only use the first

√
n log p/ log 1.01

dimensions and zero out the others. This results in a vector whose `2 length is
min{p, 22

√
n log p log 1.01}, and whose `∞ norm is at least

min{p, 22
√
n log p log 1.01 · (n log p/ log 1.01)−1/4} (3)

Since solving the Col(h,D) problem is equivalent to finding an element ŷ
such that h(ŷ) = 0 and ‖ŷ‖∞ ≤ 2mnσκ, we want to make sure that when we
set our parameters, the value of 2mnσκ is smaller than the value in (3). In the
instantiation of the scheme that produces a signature of length approximately
49000 bits, the value of 2mnσκ is around 223.5, while the value of the shortest
vector (in the `∞ norm) that can be found according to (3) is around 225.5 (see
the last two lines of the table in Figure 2).

We hope that our work provides further motivation for studying lattice-
reduction algorithms for lattices of the form Λ⊥p (A), which also happen to be
central to the cryptanalysis of other lattice-based schemes such as [20, 19, 15].

3 The lattices in [25] were just like Λ⊥p (A), except each entry of A was chosen uniformly
at random modulo p. Since the currently best lattice-reduction algorithms don’t
“see” the algebraic structure of the lattice, it is very reasonable to assume that their
performance will be the same on our lattices and the lattices in [25]. Of course it’s
possible that a different algorithm that has yet to be discovered will be able to use
the algebraic structure of A to achieve better results.



Secret Key: s
$← Ds

Public Key: N , g, and S ← gs mod N
Random Oracle: H : {0, 1}∗ → Dc

Sign(µ,N, g, s)
1: y

$← Dy
2: e← H(gy mod N,µ)
3: z ← se+ y
4: [if z /∈ G, then goto step 1]
5: output (z,e)

Verify(µ, z, e,N, g, S)
1: Accept iff e = H(gzS−e mod N,µ)

Fig. 5. Factoring-Based Signature Schemes. Line 4 is only executed in the abort-
ing scheme.

Without Aborting With Aborting

k 128

N 1024-bit product of two 2k-strong primes

g asymmetric basis in Z∗N such that ord(g) has 160 bits

σ 2168

Dc {0, . . . , 2k}
Ds {0, . . . , σ}
k′ 64 -

Dy {0, . . . , 2k+k
′
· σ} {0, . . . , 2k+1 · σ}

G - {2k · σ, . . . , 2k+1 · σ}
Signature Size (bits) 488 425

Fig. 6. Factoring-Based Scheme’s Variable Definitions.

4 Factoring-Based Constructions

We now present a modification of a signature scheme presented in [31] whose
security is based on the hardness of factoring . We will need the following two
definitions from [31].

Definition 5. A prime p is said to be α-strong if p = 2r + 1 where r is an
integer whose prime factors are all greater than α.

Definition 6. Let N = pq, where p and q are primes. Then an element g ∈ Z∗N
is said to be an asymmetric basis if the parity of ord(g) in Z∗p differs from the
parity of ord(g) in Z∗q .

Both schemes are presented in Figure 5 (our scheme only differs from that in
[31] by the addition of line 4), and the parameters in [31] as well as our modified
parameters are presented in Figure 6. We point out that the scheme of [31] is a
variant of Girault’s scheme [10], and our technique of shortening the signature
length would apply equally well to all its variants [10, 31, 11] as well as to the
blind signature constructed in [31].

The signature of a message µ consists of the pair (z, e). The length of z in
the non-aborting version of the protocol has length k + k′ + log σ = 360, while



in our protocol the length is k+ 1 + log σ = 297. The savings are essentially due
to the fact that we can pick y in a much smaller range, and the fact that we are
allowed to abort keeps the scheme secure.

If in step 4, z is not in G, then the signing procedure has to be repeated.
It can be shown that this happens with probability 1/2. So we expect to run
the signing protocol twice for every signature. But if we assume that off-line
computations (i.e. computations before receiving the message) are free, then we
can change the protocol so that we expect to compute just one extra random
oracle query over the non-aborting signature scheme. The way to do this is to
always keep several yi and gyi mod N stored along with the ranges that e would
have to fall into so that se+yi ∈ G (the range is just (G−yi)/s). Then when we
are asked to sign a message µ, we compute e = H(gy1 mod N,µ) and then check
whether it’s in the valid range of y1. If it is, then we compute sc+y1 and output
it. If it’s not, then we recompute e using y2, and so on. The important thing to
note is that we only compute sc + yi once, and we still expect to succeed after
two tries. As an added bonus, we only use up one yi per message, since the yi
that “didn’t work” can be safely tried for the next message.

Theorem 4. An adversary who breaks the aborting signature scheme in T steps
can be used to factor N in poly(T ) steps.
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