
Linearization Framework for Collision Attacks:
Application to CubeHash and MD6?

Eric Brier1, Shahram Khazaei2, Willi Meier3 and Thomas Peyrin1

1Ingenico, France 2EPFL, Switzerland 3FHNW, Switzerland

Abstract. In this paper, an improved differential cryptanalysis framework for
finding collisions in hash functions is provided. Its principle is based on lineariza-
tion of compression functions in order to find low weight differential characteris-
tics as initiated by Chabaud and Joux. This is formalized and refined however in
several ways: for the problem of finding a conforming message pair whose differ-
ential trail follows a linear trail, a condition function is introduced so that finding
a collision is equivalent to finding a preimage of the zero vector under the con-
dition function. Then, the dependency table concept shows how much influence
every input bit of the condition function has on each output bit. Careful analysis
of the dependency table reveals degrees of freedom that can be exploited in ac-
celerated preimage reconstruction under the condition function. These concepts
are applied to an in-depth collision analysis of reduced-round versions of the two
SHA-3 candidates CubeHash and MD6, and are demonstrated to give by far the
best currently known collision attacks on these SHA-3 candidates.
Key words: Hash functions, collisions, differential attack, SHA-3, CubeHash and
MD6.

1 Introduction

Hash functions are important cryptographic primitives that find applications in many
areas including digital signatures and commitment schemes. A hash function is a trans-
formation which maps a variable-length input to a fixed-size output, called message
digest. One expects a hash function to possess several security properties, one of which
is collision resistance. Being collision resistant, informally means that it is hard to find
two distinct inputs which map to the same output value. In practice, the hash functions
are mostly built from a fixed input size compression function, e.g. the renowned Merkle-
Damgård construction. To any hash function, no matter how it has been designed, we
can always attribute fixed input size compression functions, such that a collision for
a derived compression function results in a direct collision for the hash function itself.
This way, firstly we are working with fixed input size compression functions rather than
varying input size ones, secondly we can attribute compression functions to those hash
functions which are not explicitly based on a fixed input size compression function, and
thirdly we can derive different compression functions from a hash function. For exam-
ple multi-block collision attack [27] benefits from the third point. Our task is to find two
messages for an attributed compression function such that their digests are preferably
equal (a collision) or differ in only a few bits (a near-collision).
? An extended version is available at http://eprint.iacr.org/2009/382

The goal of this work is to revisit collision-finding methods using linearization of
the compression function in order to find differential characteristics for the compres-
sion function. This method was initiated by Chabaud and Joux on SHA–0 [11] and was
later extended and applied to SHA–1 by Rijmen and Oswald [26]. The recent attack on
EnRUPT by Indesteege and Preneel [15] is another application of the method. In par-
ticular, in [26] it was observed that the codewords of a linear code, which are defined
through a linearized version of the compression function, can be used to identify differ-
ential paths leading to a collision for the compression function itself. This method was
later extended by Pramstaller et al. [25] with the general conclusion that finding high
probability differential paths is related to low weight codewords of the attributed linear
code. In this paper we further investigate this issue.

The first contribution of our work is to present a more concrete and tangible relation
between the linearization and differential paths. In the case that modular addition is the
only involved nonlinear operation, our results can be stated as follows. Given the parity
check matrixH of a linear code, and two matricesA and B, find a codeword∆ such that
A∆ ∨ B∆ is of low weight. This is clearly different from the problem of finding a low
weight codeword ∆. We then consider the problem of finding a conforming message
pair for a given differential trail for a certain linear approximation of the compression
function. We show that the problem of finding conforming pairs can be reformulated as
finding preimages of zero under a function which we call the condition function. We
then define the concept of dependency table which shows how much influence every
input bit of the condition function has on each output bit. By carefully analyzing the
dependency table, we are able to profit not only from neutral bits [7] but also from
probabilistic neutral bits [2] in a backtracking search algorithm, similar to [6, 14, 24].
This contributes to a better understanding of freedom degrees uses.

We consider compression functions working with n-bit words. In particular, we fo-
cus on those using modular addition of n-bit words as the only nonlinear operation. The
incorporated linear operations are XOR, shift and rotation of n-bit words in practice.
We present our framework in detail for these constructions by approximating modular
addition with XOR. We demonstrate its validity by applying it on reduced-round vari-
ants of CubeHash [4] (one of the NIST SHA-3 [22] competitors) which uses addition,
XOR and rotation. CubeHash instances are parametrized by two parameters r and b
and are denoted by CubeHash-r/b which process b message bytes per iteration; each
iteration is composed of r rounds. Although we can not break the original submission
CubeHash-8/1, we provide real collisions for the much weaker variants CubeHash-
3/64 and CubeHash-4/48. Interestingly, we show that neither the more secure variants
CubeHash-6/16 and CubeHash-7/64 do provide the desired collision security for
512-bit digests by providing theoretical attacks with complexities 2222.6 and 2203.0 re-
spectively; nor that CubeHash-6/4 with 512-bit digests is second-preimage resistant,
as with probability 2−478 a second preimage can be produced by only one hash evalua-
tion. Our theory can be easily generalized to arbitrary nonlinear operations. We discuss
this issue and as an application we provide collision attacks on 16 rounds of MD6 [23].
MD6 is another SHA-3 candidate whose original number of rounds varies from 80 to
168 when the digest size ranges from 160 to 512 bits.

2 Linear differential cryptanalysis

Let’s consider a compression function H = Compress(M,V) which works with n-bit
words and maps anm-bit messageM and a v-bit initial value V into an h-bit outputH .
Our aim is to find a collision for such compression functions with a randomly given ini-
tial value V . In this section we consider modular-addition-based Compress functions,
that is, they use only modular additions in addition to linear transformations. This in-
cludes the family of AXR (Addition-XOR-Rotation) hash functions which are based
on these three operations. In Section 5 we generalize our framework to other family of
compression functions. For these Compress functions, we are looking for two messages
with a difference ∆ that result in a collision. In particular we are interested in a ∆ for
which two randomly chosen messages with this difference lead to a collision with a high
probability for a randomly chosen initial value. For modular-addition-based Compress
functions, we consider a linearized version for which all additions are replaced by XOR.
This is a common linear approximation of addition. Other possible linear approxima-
tions of modular addition, which are less addressed in literature, can be considered ac-
cording to our generalization of Section 5. As addition was the only nonlinear operation,
we now have a linear function which we call Compresslin. Since Compresslin(M,V)⊕
Compresslin(M ⊕ ∆,V) = Compresslin(∆, 0) is independent of the value of V , we
adopt the notation Compresslin(M) = Compresslin(M, 0) instead. Let ∆ be an el-
ement of the kernel of the linearized compression function, i.e. Compresslin(∆) = 0.
We are interested in the probability Pr{Compress(M,V)⊕Compress(M⊕∆,V) = 0}
for a random M and V . In the following we present an algorithm which computes this
probability, called the raw (or bulk) probability.

2.1 Computing the raw probability

We consider a general n-bit vector x = (x0, . . . , xn−1) as an n-bit integer denoted by
the same variable, i.e. x =

∑n−1
i=0 xi2

i. The Hamming weight of a binary vector or an
integer x, wt(x), is the number of its nonzero elements, i.e. wt(x) =

∑n−1
i=0 xi. We

use + for modular addition of words and ⊕,∨ and ∧ for bit-wise XOR, OR and AND
logical operations between words as well as vectors. We use the following lemma which
is a special case of the problem of computing Pr{

(
(A⊕α)+(B⊕β)

)
⊕(A+B) = γ}

where α, β and γ are constants and A and B are independent and uniform random
variables, all of them being n-bit words. Lipmaa and Moriai have presented an efficient
algorithm for computing this probability [19]. We are interested in the case γ = α⊕ β
for which the desired probability has a simple closed form.

Lemma 1. Pr{
(
(A⊕α) + (B⊕ β)

)
⊕ (A+B) = α⊕ β} = 2−wt

(
(α∨β)∧(2n−1−1)

)
.

Lemma 1 gives us the probability that modular addition behaves like the XOR op-
eration. As Compresslin approximates Compress by replacing modular addition with
XOR, we can then devise a simple algorithm to compute (estimate) the raw probability
Pr{Compress(M,V)⊕Compress(M⊕∆,V) = Compresslin(∆)}. Let’s first introduce
some notation.

Notation. Let nadd denote the number of additions which Compress uses in total. In
the course of evaluation of Compress(M,V), let the two addends of the i-th addition
(1 ≤ i ≤ nadd) be denoted by Ai(M,V) and Bi(M,V), for which the ordering is not
important. The value Ci(M,V) =

(
Ai(M,V)+Bi(M,V)

)
⊕Ai(M,V)⊕Bi(M,V)

is then called the carry word of the i-th addition. Similarly, in the course of evaluation
of Compresslin(∆), denote the two inputs of the i-th linearized addition by αi(∆) and
βi(∆) in which the ordering is the same as that for Ai and Bi. We define five more
functions A(M,V), B(M,V), C(M,V), α(∆) and β(∆) with (n − 1)nadd-bit out-
puts. These functions are defined as the concatenation of all the nadd relevant words
excluding their MSBs. For example A(M,V) and α(∆) are respectively the concate-
nation of the nadd words

(
A1(M,V), . . . , Anadd(M,V)

)
and

(
α1(∆), . . . , αnadd(∆)

)
excluding the MSBs.
Using this notation, the raw probability can be simply estimated as follows.

Lemma 2. Let Compress be a modular-addition-based compression function. Then for

any message difference∆ and for random values M and V , p∆ = 2−wt
(
α(∆)∨β(∆)

)
is

a lower bound for Pr{Compress(M,V)⊕Compress(M ⊕∆,V) = Compresslin(∆)}.

Proof. We start with the following definition.

Definition 1. We say that a message M (for a given V) conforms to (or follows) the
trail of ∆ iff 1(

(Ai ⊕ αi) + (Bi ⊕ βi)
)
⊕ (Ai +Bi) = αi ⊕ βi, for 1 ≤ i ≤ nadd, (1)

where Ai, Bi, αi and βi are shortened forms for Ai(M,V), Bi(M,V), αi(∆) and
βi(∆), respectively.

It is not difficult to prove that under some reasonable independence assumptions p∆,
which we call conforming probability, is the probability that a random message M
follows the trail of∆. This is a direct corollary of Lemma 1 and Definition 1 . The exact
proof can be done by induction on nadd, the number of additions in the compression
function. Due to other possible non-conforming pairs that start from message difference
∆ and lead to output difference Compresslin(∆), p∆ is a lower bound for the desired
probability in the lemma. ut

If Compresslin(∆) is of low Hamming weight, we get a near collision in the output. The
interesting∆’s for collision search are those which belong to the kernel of Compresslin,
i.e. those that satisfy Compresslin(∆) = 0. From now on, we assume that ∆ 6= 0
is in the kernel of Compresslin, hence looking for collisions. According to Lemma 2,
one needs to try around 1/p∆ random message pairs in order to find a collision which
conforms to the trail of∆. However in a random search it is better not to restrict oneself
to the conforming messages as a collision at the end is all we want. Since p∆ is a lower
bound for the probability of getting a collision for a message pair with difference ∆,
we might get a collision sooner. In Section 3 we explain a method which might find a
conforming message by avoiding random search.

1 if and only if.

2.2 Link with coding theory

We would like to conclude this section with a note on the relation between the fol-
lowing two problems: (I) finding low-weight codewords of a linear code, (II) finding a
high probability linear differential path. Since the functions Compresslin(∆), α(∆)
and β(∆) are linear, we consider ∆ as a column vector and attribute three matri-
ces H, A and B to these three transformations, respectively. In other words we have
Compresslin(∆) = H∆, α(∆) = A∆ and β(∆) = B∆. We then call H the parity
check matrix of the compression function.

Based on an initial work by Chabaud and Joux [11], the link between these two
problems has been discussed by Rijmen and Oswald in [26] and by Pramstaller et al.
in [25] with the general conclusion that finding highly probable differential paths is re-
lated to low weight codewords of the attributed linear code. In fact the relation between
these two problems is more delicate. For problem (I), we are provided with the parity
check matrixH of a linear code for which a codeword ∆ satisfies the relationH∆ = 0.
Then, we are supposed to find a low-weight nonzero codeword ∆. This problem is be-
lieved to be hard and there are some heuristic approaches for it, see [10] for example.
For problem (II), however, we are given three matrices H, A and B and need to find a
nonzero ∆ such that H∆ = 0 and A∆ ∨ B∆ is of low-weight, see Lemma 2. Never-
theless, low-weight codewords ∆’s matrix H might be good candidates for providing
low-weightA∆∨B∆, i.e. differential paths with high probability p∆. In particular, this
approach is promising if these three matrices are sparse.

3 Finding a conforming message pair efficiently

The methods that are used to accelerate the finding of a message which satisfies some
requirements are referred to as freedom degrees use in the literature. This includes mes-
sage modifications [27], neutral bits [7], boomerang attacks [16, 20], tunnels [18] and
submarine modifications [21]. In this section we show that the problem of finding con-
forming message pairs can be reformulated as finding preimages of zero under a func-
tion which we call the condition function. One can carefully analyze the condition func-
tion to see how freedom degrees might be used in efficient preimage reconstruction. Our
method is based on measuring the amount of influence which every input bit has on each
output bit of the condition function. We introduce the dependency tables to distinguish
the influential bits, from those which have no influence or are less influential. In other
words, in case the condition function does not mix its input bits well, we profit not only
from neutral bits [7] but also from probabilistic neutral bits [2]. This is achieved by de-
vising a backtracking search algorithm, similar to [6, 14, 24], based on the dependency
table.

3.1 Condition function

Let’s assume that we have a differential path for the message difference ∆ which holds
with probability p∆ = 2−y . According to Lemma 2 we have y = wt

(
α(∆) ∨ β(∆)

)
.

In this section we show that, given an initial value V , the problem of finding a con-
forming message pair such that Compress(M,V) ⊕ Compress(M ⊕ ∆,V) = 0 can

be translated into finding a message M such that Condition∆(M,V) = 0. Here Y =
Condition∆(M,V) is a function which maps m-bit message M and v-bit initial value
V into y-bit output Y . In other words, the problem is reduced to finding a preimage of
zero under the Condition∆ function. As we will see it is quite probable that not every
output bit of the Condition function depends on all the message input bits. By taking a
good strategy, this property enables us to find the preimages under this function more
efficiently than random search. But of course, we are only interested in preimages of
zero. In order to explain how we derive the function Condition from Compress we first
present a quite easy-to-prove lemma. We recall that the carry word of two words A and
B is defined as C = (A+B)⊕A⊕B.

Lemma 3. Let A and B be two n-bit words and C represent their carry word. Let
δ = 2i for 0 ≤ i ≤ n− 2. Then,(

(A⊕ δ) + (B ⊕ δ)
)

= (A+B)⇔ Ai ⊕Bi ⊕ 1 = 0 , (2)(
A+ (B ⊕ δ)) = (A+B)⊕ δ ⇔ Ai ⊕ Ci = 0 , (3)

and similarly (
(A⊕ δ) +B) = (A+B)⊕ δ ⇔ Bi ⊕ Ci = 0 . (4)

For a given difference ∆, a message M and an initial value V , let Ak, Bk, Ck,
αk and βk, 0 ≤ k < (n − 1)nadd, respectively denote the k-th bit of the output
vectors of the functions A(M,V), B(M,V), C(M,V), α(∆) and β(∆), as defined
in Section 2.1. Let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < (n − 1)nadd be the
positions of 1’s in the vector α ∨ β. We define the function Y = Condition∆(M,V)
as:

Yj =

Aij ⊕Bij ⊕ 1 if (αij ,βij) = (1, 1),

Aij ⊕Cij if (αij ,βij) = (0, 1),
Bij ⊕Cij if (αij ,βij) = (1, 0),

(5)

for j = 0, 1, . . . , y − 1. This equation can be equivalently written as equation (7).

Proposition 1. For a given V and ∆, a message M conforms to the trail of ∆ iff
Condition∆(M,V) = 0.

3.2 Dependency table for freedom degrees use

For simplicity and generality, let’s adopt the notation F (M,V) = Condition∆(M,V)
in this section. Assume that we are given a general function Y = F (M,V) which maps
m message bits and v initial value bits into y output bits. Our goal is to reconstruct
preimages of a particular output, for example the zero vector, efficiently. More precisely,
we want to find V and M such that F (M,V) = 0. If F mixes its input bits very well,
one needs to try about 2y random inputs in order to find one mapping to zero. However,
in some special cases, not every input bit of F affects every output bit. Consider an ideal
situation where message bits and output bits can be divided into ` and ` + 1 disjoint
subsets respectively as

⋃`
i=1Mi and

⋃`
i=0 Yi such that the output bits Yj (0 ≤ j ≤ `)

only depend on the input bits
⋃j
i=1Mi and the initial value V . In other words, once

we know the initial value V , we can determine the output part Y0. If we know the
initial value V and the input portion M1, the output part Y1 is then known and so
on. Refer to Section 6 to see the partitioning of a condition function related to MD6.
This property of F suggests Algorithm 1 for finding a preimage of zero. Algorithm 1
is a backtracking search algorithm in essence, similar to [6, 14, 24], and in practice
is implemented recursively with a tree-based search to avoid memory requirements.
The values q0, q1, . . . , q` are the parameters of the algorithm to be determined later. To
discuss the complexity of the algorithm, let |Mi| and |Yi| denote the cardinality ofMi

and Yi respectively, where |Y0| ≥ 0 and |Yi| ≥ 1 for 1 ≤ i ≤ `. We consider an ideal
behavior of F for which each output part depends in a complex way on all the variables
that it depends on. Thus, the output segment changes independently and uniformly at
random if we change any part of the relevant input bits.

Algorithm 1 : Preimage finding
Require: q0, q1, . . . , q`

Ensure: some preimage of zero under F

0: Choose 2q0 initial values at random and keep those 2q′1 candidates which make Y0 part null.
1: For each candidate, choose 2q1−q′1 values forM1 and keep those 2q′2 ones making Y1 null.
2: For each candidate, choose 2q2−q′2 values forM2 and keep those 2q′3 ones making Y2 null.
...
i: For each candidate, choose 2qi−q′i values forMi and keep those 2q′i+1 ones making Yi null.
...
`: For each candidate, choose 2q`−q′` values for M` and keep those 2q′`+1 final candidates
making Y` null.

To analyze the algorithm, we need to compute the optimal values for q0, . . . , q`. The
time complexity of the algorithm is

∑`
i=0 2qi as at each step 2qi values are examined.

The algorithm is successful if we have at least one candidate left at the end, i.e. q′`+1 ≥
0. We have q′i+1 ≈ qi − |Yi|, coming from the fact that at the i-th step 2qi values are
examined each of which makes the portion Yi of the output null with probability 2−|Yi|.
Note that we have the restrictions qi − q′i ≤ |Mi| and 0 ≤ q′i since we have |Mi| bits
of freedom degree at the i-th step and we require at least one surviving candidate after
each step. Hence, the optimal values for qi’s can be recursively computed as qi−1 =
|Yi−1|+ max(0, qi − |Mi|) for i = `, `− 1, . . . , 1 with q` = |Y`|.

How can we determine the partitionsMi andYi for a given function F ? We propose
the following heuristic method for determining the message and output partitions in
practice. We first construct a y×m binary valued table T called dependency table. The
entry Ti,j , 0 ≤ i ≤ m−1 and 0 ≤ j ≤ y−1, is set to one iff the j-th output bit is highly
affected by the i-th message bit. To this end we empirically measure the probability that
changing the i-th message bit changes the j-th output bit. The probability is computed
over random initial values and messages. We then set Ti,j to one iff this probability is
greater than a threshold 0 ≤ th < 0.5, for example th = 0.3. We then call Algorithm 2.

Algorithm 2 : Message and output partitioning
Require: Dependency table T
Ensure: `, message partitionsM1, . . . ,M` and output partitions Y0, . . . ,Y`.
1: Put all the output bits j in Y0 for which the row j of T is all-zero.
2: Delete all the all-zero rows from T .
3: ` := 0;
4: while T is not empty do
5: ` := ` + 1;
6: repeat
7: Determine the column i in T which has the highest number of 1’s and delete it from T .
8: Put the message bit which corresponds to the deleted column i into the setM`.
9: until There is at least one all-zero row in T OR T becomes empty

10: If T is empty set Y` to those output bits which are not in
S`−1

i=0 Yi and stop.
11: Put all the output bits j in Y` for which the corresponding row of T is all-zero.
12: Delete all the all-zero rows from T .
13: end while

In practice, once we make a partitioning for a given function using the above method,
there are two issues which may cause the ideal behavior assumption to be violated:

1. The message segmentsM1, . . . ,Mi do not have full influence on Yi,
2. The message segmentsMi+1, . . . ,M` have influence on Y0, . . . ,Yi.

With regard to the first issue, we ideally would like that all the message segments
M1,M2, . . . ,Mi as well as the initial value V have full influence on the output part
Yi. In practice the effect of the last few message segmentsMi−di

, . . . ,Mi (for some
small integer di) is more important, though. Theoretical analysis of deviation from this
requirement may not be easy. However, with some tweaks on the tree-based (back-
tracking) search algorithm, we may overcome this effect in practice. For example if the
message segmentMi−1 does not have a great influence on the output segment Yi, we
may decide to backtrack two steps at depth i, instead of one (the default value). The
reason is as follows. Imagine that you are at depth i of the tree and you are trying to
adjust the i-th message segmentMi, to make the output segment Yi null. If after trying
about 2min(|Mi|,|Yi|) choices for the i-th message block, you do not find an appropriate
one, you will go one step backward and choose another choice for the (i−1)-st message
segmentMi−1; you will then go one step forward once you have successfully adjusted
the (i− 1)-st message segment. IfMi−1 has no effect on Yi, this would be useless and
increase our search cost at this node. Hence it would be appropriate if we backtrack
two steps at this depth. In general, we may tweak our tree-based search by setting the
number of steps which we want to backtrack at each depth.

In contrast, the theoretical analysis of the second issue is easy. Ideally, we would
like that the message segments Mi, . . . ,M` have no influence on the output seg-
ments Y0, . . . ,Yi−1. The smaller the threshold value th is chosen, the less the influ-
ence would be. Let 2−pi , 1 ≤ i ≤ `, denote the probability that changing the mes-
sage segment Mi does not change any bit from the output segments Y0, . . . ,Yi−1.
The probability is computed over random initial values and messages, and a random

non-zero difference in the message segment Mi. Algorithm 1 must be reanalyzed in
order to recompute the optimal values for q0, . . . , q`. Algorithm 1 also needs to be
slightly changed by reassuring that at step i, all the output segments Y0, . . . ,Yi−1 re-
main null. The time complexity of the algorithm is still

∑`
i=0 2qi and it is successful

if at least one surviving candidate is left at the end, i.e. q`+1 ≥ 0. However, here we
set q′i+1 ≈ qi − |Yi| − pi. This comes from the fact that at the i-th step 2qi values are
examined each of which makes the portion Yi of the output null with probability 2−|Yi|

and keeping the previously set output segments Y0, . . . ,Yi−1 null with probability 2−pi

(we assume these two events are independent). Here, our restrictions are again 0 ≤ q′i
and qi − q′i ≤ |Mi|. Hence, the optimal values for qi’s can be recursively computed as
qi−1 = pi−1 + |Yi−1|+ max(0, qi − |Mi|) for i = `, `− 1, . . . , 1 with q` = |Y`|.

Remark 1. When working with functions with a huge number of input bits, it might be
appropriate to consider the m-bit message M as a string of u-bit units instead of bits.
For example one can take u = 8 and work with bytes. We then use the notation M =
(M [0], . . . ,M [m/u−1]) (assuming u dividesm) whereM [i] = (Miu, . . . ,Miu+u−1).
In this case the dependency table must be constructed according to the probability that
changing every message unit changes each output bit.

4 Application to CubeHash

CubeHash [4] is Bernstein’s proposal for the NIST SHA-3 competition [22]. CubeHash
variants, denoted by CubeHash-r/b, are parametrized by r and b which at each iter-
ation process b bytes in r rounds. Although CubeHash-8/1 was the original official
submission, later the designer proposed the tweak CubeHash-16/32 which is almost
16 times faster than the initial proposal [5]. Nevertheless, the author has encouraged
cryptanalysis of CubeHash-r/b variants for smaller r’s and bigger b’s.

4.1 CubeHash description

CubeHash works with 32-bit words (n = 32) and uses three simple operations: XOR,
rotation and modular addition. It has an internal state S = (S0, S1, . . . , S31) of 32
words and its variants, denoted by CubeHash-r/b, are identified by two parameters
r ∈ {1, 2, . . . } and b ∈ {1, 2, . . . , 128}. The internal state S is set to a specified value
which depends on the digest length (limited to 512 bits) and parameters r and b. The
message to be hashed is appropriately padded and divided into b-byte message blocks.
At each iteration one message block is processed as follows. The 32-word internal state
S is considered as a 128-byte value and the message block is XORed into the first b
bytes of the internal state. Then, the following fixed permutation is applied r times to
the internal state to prepare it for the next iteration.

1. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
2. Rotate Si to the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Si and Si⊕8, for 0 ≤ i ≤ 7.
4. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.

5. Swap Si and Si⊕2, for i ∈ {16, 17, 20, 21, 24, 25, 28, 29}.
6. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
7. Rotate Si to the left by eleven bits, for 0 ≤ i ≤ 15.
8. Swap Si and Si⊕4, for i ∈ {0, 1, 2, 3, 8, 9, 10, 11}.
9. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.

10. Swap Si and Si⊕1, for i ∈ {16, 18, 20, 22, 24, 26, 28, 30}.

Having processed all message blocks, a fixed transformation is applied to the final in-
ternal state to extract the hash value as follows. First, the last state word S31 is ORed
with integer 1 and then the above permutation is applied 10 × r times to the resulting
internal state. Finally, the internal state is truncated to produce the message digest of
desired hash length. Refer to [4] for the full specification.

4.2 Definition of the compression function Compress

To be in the line of our general method, we need to deal with fixed-size input com-
pression functions. To this end, we consider t (t ≥ 1) consecutive iterations of Cube-
Hash. We define the function H = Compress(M,V) with an 8bt-bit message M =
M0|| . . . ||M t−1, a 1024-bit initial value V and a (1024− 8b)-bit output H . The initial
value V is used to initialize the 32-word internal state of CubeHash. EachM i is a b-byte
message block. We start from the initialized internal state and update it in t iterations.
That is, in t iterations the t message blocks M0, . . . ,M t−1 are sequentially processed
in order to transform the internal state into a final value. The output H is then the last
128 − b bytes of the final internal state value which is ready to absorb the (t + 1)-st
message block (the 32-word internal state is interpreted as a 128-byte vector).

Our goal is to find collisions for this Compress function. In the next section we
explain how collisions can be constructed for CubeHash itself.

4.3 Collision construction

We are planning to construct collision pairs (M ′,M ′′) for CubeHash-r/b which are of
the formM ′ = Mpre||M ||M t||M suf andM ′′ = Mpre||M⊕∆||M t⊕∆t||M suf . Here,
Mpre is the common prefix of the colliding pairs whose length in bytes is a multiple of
b, M t is one message block of b bytes and M suf is the common suffix of the colliding
pairs whose length is arbitrary. The message prefix Mpre is chosen for randomizing the
initial value V . More precisely, V is the content of the internal state after processing
the message prefix Mpre. For this value of V , (M,M ⊕ ∆) is a collision pair for the
compression function, i.e. Compress(M,V) = Compress(M ⊕∆,V). Remember that
a collision for the Compress indicates collision over the last 128−b bytes of the internal
state. The message blocks M t and M t ⊕∆t are used to get rid of the difference in the
first b bytes of the internal state. The difference∆t is called the erasing block difference
and is computed as follows. When we evaluate the Compress with inputs (M,V) and
(M ⊕∆,V), ∆t is the difference in the first b bytes of the final internal state values.

Once we find message prefix Mpre, message M and difference ∆, any message
pairs (M ′,M ′′) of the above-mentioned form is a collision for CubeHash for any mes-
sage block M t and any message suffix M suf . We find the difference ∆ using the lin-
earization method of Section 2 to applied to CubeHash in the next section. Then, Mpre

and M are found by finding a preimage of zero under the Condition function as ex-
plained in Section 3. Algorithm 4 in the extended version of this article [9] shows how
CubeHash Condition function can be implemented in practice for a given differential
path.

4.4 Linear differentials for CubeHash-r/b

As we explained in Section 2, the linear transformation Compresslin can be identi-
fied by a matrix Hh×m. We are interested in ∆’s such that H∆ = 0 and such that
the differential trails have high probability. For CubeHash-r/b with t iterations, ∆ =
∆0|| . . . ||∆t−1 and H has size (1024− 8b)× 8bt, see Section 4.2. This matrix suffers
from having low rank. This enables us to find low weight vectors of the kernel. We
then hope that they are also good candidates for providing highly probable trails, see
Section 2.2. Assume that this matrix has rank (8bt − τ), τ ≥ 0, signifying existence
of 2τ − 1 nonzero solutions to H∆ = 0. To find a low weight nonzero ∆, we use the
following method.

The rank of H being (8bt − τ) shows that the solutions can be expressed by iden-
tifying τ variables as free and expressing the rest in terms of them. Any choice for the
free variables uniquely determines the remaining 8bt − τ variables, hence providing a
unique member of the kernel. We choose a set of τ free variables at random. Then, we
set one, two, or three of the τ free variables to bit value 1, and the other τ−1, or τ−2 or
τ − 3 variables to bit value 0 with the hope to get a ∆ providing a high probability dif-
ferential path. We have made exhaustive search over all τ +

(
τ
2

)
+
(
τ
3

)
possible choices

for all b ∈ {1, 2, 3, 4, 8, 16, 32, 48, 64} and r ∈ {1, 2, 3, 4, 5, 6, 7, 8} in order to find
the best characteristics. Table 1 includes the ordered pair (t, y), i.e. the corresponding
number of iterations and the − log2 probability (number of bit conditions) of the best
raw probability path we found. For most of the cases, the best characteristic belongs to
the minimum value of t for which τ > 0. There are a few exceptions to consider which
are starred in Table 1. For example in the CubeHash-3/4 case, while for t = 2 we have
τ = 4 and y = 675, by increasing the number of iterations to t = 4, we get τ = 40
and a better characteristic with y = 478. This may hold for other cases as well since we
only increased t until our program terminated in a reasonable time. We would like to
emphasize that since we are using linear differentials, the erasing block difference ∆t

only depends on the difference ∆, see Section 4.3.

Table 1. The values of (t, y) for the differential path with the best found raw probability.

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221)? (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221)? (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238)? (6, 1881) (4, 798) (4, 478)? (4, 478)? (4, 400)? (4, 400)? (4, 400)? (3, 364)? (2, 65)
4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 130) (2, 130)
5 (18, 10221)? (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1244) (4, 1244) (4, 1244) (4, 1244)? (2, 205)
6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)
7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748)? (2, 447)
8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 637) (2, 637)

Second preimage attacks on CubeHash. Any differential path with raw probabil-
ity greater than 2−512 can be considered as a (theoretical) second preimage attack on
CubeHash with 512-bit digest size. In Table 1 the entries which do not correspond to a
successful second preimage attack, i.e. y > 512, are shown in gray, whereas the others
have been highlighted. For example, our differential path for CubeHash-6/4 with raw
probability 2−478 indicates that by only one hash evaluation we can produce a second
preimage with probability 2−478. Alternatively, it can be stated that for a fraction of
2−478 messages we can easily provide a second preimage. The list of differential trails
for highlighted entries can be found in the extended version [9].

4.5 Collision attacks on CubeHash variants

Although Table 1 includes our best found differential paths with respect to raw proba-
bility or equivalently second preimage attack, when it comes to freedom degrees use for
collision attack, these trails might not be the optimal ones. In other words, for a specific
r and b, there might be another differential path which is worse in terms of raw prob-
ability but is better regarding the collision attack complexity if we use some freedom
degrees speedup. As an example, for CubeHash-3/48 with the path which has raw
probability 2−364, using our method of Section 3 the time complexity can be reduced
to about 258.9 (partial) evaluation of its condition function. However, there is another
path with raw probability 2−368 which has time complexity of about 253.3 (partial) eval-
uation of its condition function. Table 2 shows the best paths we found regarding the
reduced complexity of the collision attack using our method of Section 3. While most
of the paths are still the optimal ones with respect to the raw probability, the starred en-
tries indicate the ones which invalidate this property. Some of the interesting differential
paths for starred entries in Table 2 are given in the extended version [9].

Table 3 shows the reduced time complexities of collision attack using our method
of Section 3 for the differential paths of Table 2. To construct the dependency table, we
have analyzed the Condition function at byte level, see Remark 1. The time complexities
are in logarithm 2 basis and might be improved if the dependency table is analyzed at a
bit level instead. The complexity unit is (partial) evaluation of their respective Condition
function. We remind that the full evaluation of a Condition function corresponding to a
t-iteration differential path is almost the same as application of t iterations (rt rounds)
of CubeHash. We emphasize that the complexities are independent of digest size. All
the complexities which are less than 2c/2 can be considered as a successful collision
attack if the hash size is bigger than c bits. The complexities bigger than 2256 have been
shown in gray as they are worse than birthday attack, considering 512-bit digest size.
The successfully attacked instances have been highlighted.

The astute reader should realize that the complexities of Table 3 correspond to the
optimal threshold value, see Section 3.2. Refer to the extended version [9] to see the
effect of the threshold value on the complexity.

Practice versus theory. We provided a framework which is handy in order to analyze
many hash functions in a generic way. In practice, the optimal threshold value may
be a little different from the theoretical one. Moreover, by slightly playing with the

Table 2. The values of (t, y) for the differential path with the best found total complexity (Table 3
includes the reduced complexities using our method of Section 3).

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221) (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221) (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238) (6, 1881) (4, 798) (4, 478) (4, 478) (4, 400) (4, 400) (4, 400) (3, 368)? (2, 65)
4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 134)? (2, 134)?

5 (18, 10221) (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1250)? (4, 1250)? (4, 1250)? (4, 1250)? (2, 205)
6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)
7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748) (2, 455)?

8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 655)? (2, 655)?

Table 3. Theoretical log2 complexities of improved collision attacks with freedom degrees use at
byte level for the differential paths of Table 2.

r \ b 1 2 3 4 8 12 16 32 48 64

1 1121.0 135.1 24.0 15.0 7.6 – – – – –
2 1177.0 179.1 27.0 17.0 7.9 – – – – –
3 4214.0 1793.0 720.0 380.1 292.6 153.5 102.0 55.6 53.3 9.4
4 2598.0 924.0 163.0 138.4 105.3 67.5 60.7 54.7 30.7 28.8
5 10085.0 4460.0 2345.0 1397.0 1286.0 946.0 868.0 588.2 425.0 71.7
6 4230.0 1841.0 760.6 422.1 374.4 260.4 222.6 182.1 147.7 144.0
7 13261.0 5709.0 2940.0 2004.0 1892.0 1423.0 1323.0 978.0 706.0 203.0
8 2606.0 2590.0 982.0 953.0 889.0 699.0 662.0 524.3 313.0 304.4

neighboring bits in the suggested partitioning corresponding to a given threshold value
(Algorithm 2), we may achieve a partitioning which is more suitable for applying the
attacks. In particular, Table 3 contains the theoretical complexities for different Cube-
Hash instances under the assumption that the Condition function behaves ideally with
respect to the first issue discussed in Section 3.2. In practice, deviation from this as-
sumption increases the effective complexity. For particular instances, more simulations
need to be done to analyze the potential non-randomness effects in order to give a more
exact estimation of the practical complexity.

According to Section 4.3, for a given linear difference ∆, we need to find mes-
sage prefix Mpre and conforming message M for collision construction. Our back-
tracking (tree-based) search implementation of Algorithm 1 for CubeHash-3/64 finds
Mpre and M in 221 (median complexity) instead of the 29.4 of Table 3. The median
decreases to 217 by backtracking three steps at each depth instead of one, see Sec-
tion 3.2. For CubeHash-4/48 we achieve the median complexity 230.4 which is very
close to the theoretical value 230.7 of Table 3. Collision examples for CubeHash-3/64
and CubeHash-4/48 can be found in the extended paper [9]. Our detailed analysis of
CubeHash variants shows that the practical complexities for all of them except 3-round
CubeHash are very close to the theoretical values of Table 3. We expect the practical
complexities for CubeHash instances with three rounds to be slightly bigger than the
given theoretical numbers. For detailed comments we refer to the extended paper [9].

Comparison with the previous results. The first analysis of CubeHash was proposed
by Aumasson et al. [3] in which the authors showed some non-random properties for
several versions of CubeHash. A series of collision attacks on CubeHash-1/b and
CubeHash-2/b for large values of b were announced by Aumasson [1] and Dai [12].
Collision attacks were later investigated deeply by Brier and Peyrin [8]. Our results
improve on all existing ones as well as attacking some untouched variants.

5 Generalization

In sections 2 and 3 we considered modular-addition-based compression functions which
use only modular additions and linear transformations. Moreover, we concentrated on
XOR approximation of modular additions in order to linearize the compression func-
tion. This method is however quite general and can be applied to a broad class of hash
constructions, covering many of the existing hash functions. Additionally, it lets us
consider other linear approximations as well. We view a compression function H =
Compress(M,V) : {0, 1}m×{0, 1}v → {0, 1}h as a binary finite state machine (FSM).
The FSM has an internal state which is consecutively updated using message M and
initial value V . We assume that FSM operates as follows, and we refer to such Compress
functions as binary-FSM-based. The concept can also cover non-binary fields.

The internal state is initially set to zero. Afterwards, the internal state is sequentially
updated in a limited number of steps. The output value H is then derived by truncating
the final value of the internal state to the specified output size. At each step, the internal
state is updated according to one of these two possibilities: either the whole internal state
is updated as an affine transformation of the current internal state,M and V , or only one
bit of the internal state is updated as a nonlinear Boolean function of the current internal
state, M and V . Without loss of generality, we assume that all of the nonlinear updat-
ing Boolean functions (NUBF) have zero constant term (i.e. the output of zero vector is
zero) and none of the involved variables appear as a pure linear term (i.e. changing any
input variable does not change the output bit with certainty). This assumption, coming
from the simple observation that we can integrate constants and linear terms in an affine
updating transformation (AUT), is essential for our analysis. Linear approximations of
the FSM can be achieved by replacing AUTs with linear transformations by ignoring
the constant terms and NUBFs with linear functions of their arguments. Similar to Sec-
tion 2 this gives us a linearized version of the compression function which we denote
by Compresslin(M,V). As we are dealing with differential cryptanalysis, we take the
notation Compresslin(M) = Compresslin(M, 0). The argument given in Section 2 is
still valid: elements of the kernel of the linearized compression function (i.e. ∆’s s.t.
Compresslin(∆) = 0) can be used to construct differential trails.

Let nnl denote the total number of NUBFs in the FSM. We count the NUBFs by
starting from zero. We introduce four functions Λ(M,V), Φ(∆), Λ∆(M,V) and Γ (∆)
all of output size nnl bits. To define these functions, consider the two procedures which
implement the FSMs of Compress(M,V) and Compresslin(∆). Let the Boolean func-
tion gk, 0 ≤ k < nnl, stand for the k-th NUBF and denote its linear approximation as
in Compresslin by gklin. Moreover, denote the input arguments of the Boolean functions
gk and gklin in the FSMs which compute Compress(M,V) and Compresslin(∆) by the

vectors xk and δk, respectively. Note that δk is a function of ∆ whereas xk depends
on M and V . The k-th bit of Γ (∆), Γk(∆), is set to one iff the argument of the k-th
linearized NUBF is not the all-zero vector, i.e. Γk(∆) = 1 iff δk 6= 0. We then define
Λk(M,V) = gk(xk), Φk(∆) = gklin(δ

k) and Λ∆k (M,V) = gk(xk ⊕ δk). We can then
present the following proposition. The proof is given in the full version paper [9].

Proposition 2. Let Compress be a binary-FSM-based compression function. For any
message difference ∆, let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < nnl be the
positions of 1’s in the vector Γ (∆) where y = wt

(
Γ (∆)

)
. We define the condition

function Y = Condition∆(M,V) where the j-th bit of Y is computed as

Yj = Λij (M,V)⊕ Λ∆ij (M,V)⊕ Φij (∆). (6)

Then, if ∆ is in the kernel of Compresslin, Condition∆(M,V) = 0 implies that the pair
(M,M ⊕∆) is a collision for Compress with the initial value V .

Remark 2. The modular-addition-based compression functions can be implemented as
binary-FSM-based compression by considering one bit memory for the carry bit. All the
NUBFs for this FSM are of the form g(x, y, z) = xy⊕xz⊕yz. The XOR approximation
of modular addition in Section 2 corresponds to approximating all the NUBFs g by the
zero function, i.e. glin(x, y, z) = 0. It is straightforward to show that Λk(M,V) =
g(Ak,Bk,Ck) and Φk(∆) = glin(αk,βk, 0). We then deduce that Γk(∆) = αk ∨
βk ∨ 0 and Λ∆k (M,V) = g(Ak ⊕αk,Bk ⊕ βk,Ck ⊕ 0). As a result we get

Yj = Λij (M,V)⊕ Λ∆ij (M,V)⊕ Φij (∆)
= (αij ⊕ βij)Cij ⊕αijBij ⊕ βijAij ⊕αijβij

(7)

wheneverαij ∨βij = 1; this agrees with equation (5). Refer to the extended version [9]
for more details and to see how other linear approximations could be used.

6 Application to MD6

MD6 [23], designed by Rivest et al., is a SHA-3 candidate that provides security proofs
regarding some differential attacks. The core part of MD6 is the function f which
works with 64-bit words and maps 89 input words (A0, . . . , A88) into 16 output words
(A16r+73, . . . , A16r+88) for some integer r representing the number of rounds. Each
round is composed of 16 steps. The function f is computed based on the following
recursion

Ai+89 = Lri,li

(
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

)
, (8)

where Si’s are some publicly known constants and Lri,li ’s are some known simple lin-
ear transformations. The 89-word input of f is of the form Q||U ||W ||K||B where Q is
a known 15-word constant value, U is a one-word node ID, W is a one-word control
word, K is an 8-word key and B is a 64-word data block. For more details about func-
tion f and the mode of operation of MD6, we refer to the submission document [23]2.

2 In the MD6 document [23], C and Lri,li are respectively denoted by V and gri,li .

We consider the compression function H = Compress(M,V) = f(Q||U ||W ||K||B)
where V = U ||W ||K, M = B and H is the 16-word compressed value. Our goal
is to find a collision Compress(M,V) = Compress(M ′, V) for arbitrary value of V .
We later explain how such collisions can be translated into collisions for the MD6 hash
function.

According to our model (Section 5), MD6 can be implemented as an FSM which
has 64 × 16r NUBFs of the form g(x, y, z, w) = x · y ⊕ z · w. Remember that
the NUBFs must not include any linear part or constant term. We focus on the case
where we approximate all NUBFs with the zero function. This corresponds to ignor-
ing the AND operations in equation (8). This essentially says that in order to compute
Compresslin(∆) = Compresslin(∆, 0) for a 64-word ∆ = (∆0, . . . ,∆63), we map
(A′0, . . . , A

′
24, A

′
25, . . . , A

′
88) = 0||∆ = (0, . . . , 0, ∆0, . . . ,∆63) into the 16 output

words (A′16r+73, . . . , A
′
16r+88) according to the linear recursion

A′i+89 = Lri,li

(
A′i ⊕A′i+72

)
. (9)

For a given ∆, the function Γ is the concatenation of 16r words A′i+71 ∨ A′i+68 ∨
A′i+58 ∨A′i+22, 0 ≤ i ≤ 16r − 1. Therefore, the number of bit conditions equals

y =
16r−1∑
i=0

wt(A′i+71 ∨A′i+68 ∨A′i+58 ∨A′i+22). (10)

Note that this equation compactly integrates cases 1 and 2 given in section 6.9.3.2
of [23] for counting the number of active AND gates. Algorithm 3 in the extended ver-
sion of this article [9] shows how the Condition function is implemented using equa-
tions (6), (8) and(9).

Using a similar linear algebraic method to the one used in Section 4.4 for CubeHash,
we have found the collision difference of equation (11) for r = 16 rounds with a raw
probability p∆ = 2−90. In other words, ∆ is in the kernel of Compresslin and the
condition function has y = 90 output bits. Note that this does not contradict the proven
bound in [23]: one gets at least 26 active AND gates.

∆i =

F6D164597089C40E i = 2
2000000000000000 i = 36

0 0 ≤ i ≤ 63, i 6= 2, 36
(11)

In order to efficiently find a conforming message pair for this differential path we need
to analyze the dependency table of its condition function. Referring to our notations
in Section 3.2, our analysis of the dependency table of function Condition∆(M, 0) at
word level (units of u = 64 bits) shows that the partitioning of the condition function
is as in Table 4 for threshold value th = 0. For this threshold value clearly pi = 0.
The optimal values for qi’s (computed according to the complexity analysis of the same
section) are also given in Table 4, showing a total attack complexity of 230.6 (partial)
condition function evaluation3. By analyzing the dependency table with smaller units
the complexity may be subject to reduction.

3 By masking M38 and M55 respectively with 092E9BA68F763BF1 and
DFFBFF7FEFFDFFBF after random setting, the 35 condition bits of the first three
steps are satisfied for free, reducing the complexity to 230.0 instead.

Table 4. Input and output partitionings of the Condition function of MD6 with r = 16 rounds.

i Mi Yi qi q
′
i

0 – ∅ 0 0
1 {M38} {Y1, . . . , Y29} 29 0
2 {M55} {Y43, . . . , Y48} 6 0
3 {M0,M5,M46,M52,M54} {Y0} 1 0
4 {Mj |j = 3, 4, 6, 9, 21, 36, 39, 40, 42, 45, 49, 50, 53, 56, 57} {Y31, . . . , Y36} 6 0
5 {M41,M51,M58,M59,M60} {Y30, Y51} 2 0
6 {Mj |j = 1, 2, 7, 8, 10, 11, 12, 17, 18, 20, 22, 24, 25, 26, 29, {Y52, . . . , Y57} 6 0

33, 34, 37, 43, 44, 47, 48, 61, 62, 63}
7 {M27} {Y37, . . . , Y42} 6 0
8 {M13,M16,M23} {Y50} 1 0
9 {M35} {Y49} 1 0
10 {M14,M15,M19,M28} {Y58, Y61} 2 0
11 {M30,M31,M32} {Y59, Y60, Y62 . . . , Y89} 30 0

A collision example for r = 16 rounds of f can be found in the full version [9].
Our 16-round colliding pair provides near collisions for r = 17, 18 and 19 rounds,
respectively, with 63, 144 and 270 bit differences over the 1024-bit long output of f .
Refer to [9] to see how collisions for reduced-round f can be turned into collisions for
reduced-round MD6 hash function. The original MD6 submission [23] mentions inver-
sion of the function f up to a dozen rounds using SAT solvers. Some slight nonrandom
behavior of the function f up to 33 rounds has also been reported [17].

7 Conclusion

We presented a framework for an in-depth study of linear differential attacks on hash
functions. We applied our method to reduced round variants of CubeHash and MD6,
giving by far the best known collision attacks on these SHA-3 candidates. Our results
may be improved by considering start-in-the middle attacks if the attacker is allowed to
choose the initial value of the internal state.

Acknowledgment. The second author has been supported in part by European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT II, and
the third author by GEBERT RÜF STIFTUNG, project no. GRS-069/07. The authors
would like to thank the reviewers of Asiacrypt 2009, Deian Stefan, Martijn Stam, Jean-
Philippe Aumasson and Dag Arne Osvik for their helpful comments.

References

1. J-P. Aumasson. Collision for CubeHash-2/120− 512. NIST mailing list, 4 Dec 2008, 2008.
http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt.

2. J-P. Aumasson, S. Fischer, S. Khazaei, W. Meier and C. Rechberger. New Features of Latin
Dances: Analysis of Salsa, ChaCha, and Rumba. FSE 2008, LNCS 5086, pp. 470–488, 2008.

3. J-P. Aumasson, W. Meier, M. Naya-Plasencia and T. Peyrin. Inside the hypercube.
ACISP 2009, LNCS 5594, pages 202–213. Springer-Verlag, 2009.

4. D.J. Bernstein. CubeHash specification (2.b.1). Submission to NIST SHA-3 competition.

5. D.J. Bernstein. CubeHash parameter tweak: 16 times faster. Available at: http://
cubehash.cr.yp.to/submission/.

6. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. Radiogatun, a belt-and-mill hash
function. Presented at Second Cryptographic Hash Workshop, Santa Barbara, August 2006.

7. E. Biham and R. Chen. Near-Collisions of SHA-0. CRYPTO 2004, LNCS 3152, pages 290–
305. Springer-Verlag, 2004.

8. E. Brier and T. Peyrin. Cryptanalysis of CubeHash. Applied Cryptography and Network
Security – ACNS 2009, LNCS 5536, pages 354–368. Springer-Verlag, 2009.

9. E. Brier, S. Khazaei, W. Meier and T. Peyrin. Linearization Framework for Collision Attacks:
Application to CubeHash and MD6 (Extended Version). In Cryptology ePrint Archive, Re-
port 2009/382. Available at http://eprint.iacr.org/2009/382.

10. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear
code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511.
IEEE Transactions on Information Theory, 44(1):367–378, January 1998.

11. F. Chabaud and A. Joux. Differential Collisions in SHA-0. CRYPTO 1998, LNCS 1462,
pages 56–71. Springer-Verlag, 1998.

12. W. Dai. Collisions for CubeHash-1/45 and CubeHash-2/89. Available online, 2008. http:
//www.cryptopp.com/sha3/cubehash.pdf.

13. eBASH: ECRYPT Benchmarking of All Submitted Hashes. http://bench.cr.yp.
to/ebash.html

14. T. Fuhr and T. Peyrin. Cryptanalysis of Radiogatun. FSE 2009, LNCS 5665, pages 122–138.
Springer-Verlag, 2009.

15. S. Indesteege and B. Preneel. Practical collisions for EnRUPT. FSE 2009, LNCS 5665, pages
246–259. Springer-Verlag, 2009.

16. A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang Attack.
CRYPTO 2007, LNCS 4622, pages 244–263. Springer-Verlag, 2004.

17. D. Khovratovich. Nonrandomness of the 33-round MD6. Presented at the rump session of
FSE’09, 2009. Slides are available online at http://fse2009rump.cr.yp.to/.

18. V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. ePrint archive, 2006
http://eprint.iacr.org/2006/105.pdf.

19. H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential Properties of
Addition. FSE 2001, LNCS 2355, pages 336–350. Springer-Verlag, 2001.

20. S. Manuel and T. Peyrin. Collisions on SHA-0 in One Hour. FSE 2008, LNCS 5086, pages
16–35. Springer-Verlag, 2008.

21. Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro and K. Ohta. Improved Collision
Search for SHA-0. ASIACRYPT 2006, LNCS 4284, pages 21–36. Springer-Verlag, 2006.

22. National Institute of Science and Technology. Announcing request for candidate algorithm
nominations for a new cryptographic hash algorithm (SHA-3) family. Federal Register,
72(112), November 2007.

23. R.L. Rivest, B. Agre, D.V. Bailey, C. Crutchfield, Y. Dodis, K.E. Fleming, A. Khan, J. Kr-
ishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer and Y.L. Yin.
The MD6 hash function — a proposal to NIST for SHA–3. Submission to NIST SHA-3
competition, 2008.

24. T. Peyrin. Cryptanalysis of Grindahl. ASIACRYPT 2007, LNCS 4833, pages 551–567.
Springer-Verlag, 2007.

25. N. Pramstaller, C. Rechberger and V. Rijmen. Exploiting Coding Theory for Collision At-
tacks on SHA–1. Cryptography and Coding, LNCS 3796, pages 78–95. Springer, 2005.

26. V. Rijmen and E. Oswald. Update on SHA–1. Topics in Cryptology – CT-RSA 2005, LNCS
3376, pages 58–71. Springer-Verlag, 2005.

27. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. EUROCRYPT 2005,
LNCS 3494, pages 19–35. Springer-Verlag, 2005.

