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Abstract. Non-malleability is an interesting and useful property which
ensures that a cryptographic protocol preserves the independence of the
underlying values: given for example an encryption E(m) of some un-
known message m, it should be hard to transform this ciphertext into
some encryption E(m∗) of a related message m∗. This notion has been
studied extensively for primitives like encryption, commitments and zero-
knowledge. Non-malleability of one-way functions and hash functions has
surfaced as a crucial property in several recent results, but it has not un-
dergone a comprehensive treatment so far. In this paper we initiate the
study of such non-malleable functions. We start with the design of an
appropriate security definition. We then show that non-malleability for
hash and one-way functions can be achieved, via a theoretical construc-
tion that uses perfectly one-way hash functions and simulation-sound
non-interactive zero-knowledge proofs of knowledge (NIZKPoK). We also
discuss the complexity of non-malleable hash and one-way functions.
Specifically, we show that such functions imply perfect one-wayness and
we give a black-box based separation of non-malleable functions from
one-way permutations (which our construction bypasses due to the “non-
black-box” NIZKPoK based on trapdoor permutations). We exemplify
the usefulness of our definition in cryptographic applications by show-
ing that (some variant of) non-malleability is necessary and sufficient
to securely replace one of the two random oracles in the IND-CCA en-
cryption scheme by Bellare and Rogaway, and to improve the security of
client-server puzzles.

1 Introduction

Motivation. Informally, non-malleability of some function f is a cryptographic
property that asks that learning f(x) for some x does not facilitate the task of
generating some f(x∗) so that x∗ is related to x in some non-trivial way. This
notion is especially useful when f is used to build higher-level multi-user pro-
tocols where non-malleability of the protocol itself is crucial (e.g., for voting or



auctioning). Non-malleability has been rather extensively studied for some cryp-
tographic primitives. For example, both definitions as well as constructions from
standard cryptographic assumptions are known for encryption, commitments
and zero-knowledge [17, 5, 29, 16, 20, 14, 1, 15, 27, 28, 2]. Non-malleability in the
case of other primitives, notably for one-way functions and for hash functions,4

has only recently surfaced as a crucial property in several works [7, 8, 11, 19],
which we discuss below.

For instance, plenty of cryptographic schemes are only proved secure in the
random oracle (RO) model [4], where one assumes that a hash function behaves
as a truly random function to which every party has access to. It is well-known
that such proofs do not strictly guarantee security for instantiations with hash
functions whose only design principles are based on one-wayness and/or collision-
resistance, because random functions posses multiple properties the proofs may
rely on. Hiding all partial information about pre-images, i.e. perfect one-wayness,
is one of these properties, and has been studied in [9, 12]. Non-malleability is
another example of such a property.

An illustrative example is the encryption scheme of Bellare and Rogaway [4],
where a ciphertext of message M has the form (f(r), G(r)⊕M,H(r,M)) for
a trapdoor permutation f , hash functions G,H and random r. The scheme is
known to be IND-CCA secure in the random oracle model. However, an instan-
tiation of H with a malleable function for which given H(r,M) it is possible to
compute H(r,M ⊕M ′), for some fixed M ′ known to the attacker, renders the
scheme insecure: the attacker can recover M by submitting to the decryption
oracle the valid ciphertext (f(r), G(r)⊕M ⊕M ′, H(r,M ⊕M ′)).

It was shown in [7] that a similar attack can be carried out against the
popular OAEP encryption scheme whenever the instantiation of the underlying
hash function is malleable. A subsequent work [8] showed that some form of
non-malleability permits positive results about security of an alleviated version
of the OAEP scheme in the standard model. However, it remains unclear if the
approach to non-malleability in [8] expands beyond the OAEP example, and the
work left open the construction of non-malleable primitives.

Another motivating example is the abstraction used to model hash func-
tions in symbolic (Dolev-Yao) security analysis. In this setting it is axiomatized
that an adversary can compute some hash only when it knows the underlying
value. Clearly, malleable hash functions do not satisfy this axiom. Therefore,
non-malleability for hash functions is necessary in order to ensure that symbolic
analysis is (in general) sound with respect to the standard cryptographic model.
Otherwise, real attacks that use malleability can not be captured/discovered in
the more abstract symbolic model.

In a different vein, and from a more conceptual perspective, higher-level pro-
tocols could potentially benefit from non-malleable hash functions as a building
block. A recent concrete example is the recommended use of such non-malleable
hash functions in a human-computer interaction protocol for protecting local

4 In the sequel we aggregate both one-way functions and hash functions under the
term hash functions for simplicity.



storage [11]. There, access should be linked to the ability to answer human-
solvable puzzles (similar to CAPTCHAs), but it should be infeasible for a ma-
chine to maul puzzles and redirect them under a different domain to other human
beings.

We will also discuss a construction of a cryptographic puzzle from [25] de-
signed to prevent DoS attacks, and show that malleability of the underlying hash
function leads to insecure constructions.

Hence, non-malleability is a useful design principle that designers of new
hash functions should keep in mind. At this point, however, it is not even clear
what the exact requirements from a theoretical viewpoint are. Therefore, a first
necessary step is to find a suitable definition which is (a) achievable, and (b)
applicable. The next step would be to design practical hash functions and com-
pression functions which are non-malleable, or which at least satisfy some weaker
variant of non-malleability.

Contributions. In this paper we initiate the study of non-malleable hash func-
tions. We start with the design of an appropriate security definition. Our def-
inition uses the standard simulation paradigm, also employed in defining non-
malleability for encryption and commitment schemes. It turns out however that
a careless adjustment of definitions for other primitives yield definitions for non-
malleable hash functions that cannot be realized. We therefore motivate and
provide a meaningful variation of the definition which ensure that the notion is
achievable and may be useful in applications.

Testifying to the difference to other cryptographic primitives, we note that
for non-malleable encryption the original simulation-based definition of [17] was
later shown to be equivalent to an indistinguishability-based definition [5]. For
our case here, finding an equivalent indistinguishability-based definition for non-
malleable hash functions appears to be far from trivial, and we leave the question
as an interesting open problem.

We then show that our definition can be met. Our construction of a non-
malleable hash function employs a perfectly one-way hash function (POWHF)
[9, 12], i.e., a probabilistic hash function which hides all information about its pre-
image. Notice that this form of secrecy in itself does not ensure non-malleability,
so we make the function non-malleable by appending a simulation-sound non-
interactive zero-knowledge proof of knowledge (NIZKPoK) [29, 14] of the hashed
value.5 Both primitives exist, for example, if trapdoor permutations exist.6

The construction we provide is probabilistic and does not achieve the desired
level of efficiency for practical applications. We emphasize that our construction
should be regarded as a feasibility result that shows that, in principle, non-

5 Analogously to Canetti’s terminology of perfectly one-way hash functions [9] we refer
to our construction as a hash function since we require collision resistance, although
it does not compress.

6 We remark that the intuitively appealing approach of using non-malleable encryption
or commitment schemes to directly construct non-malleable hashes does not work.
One of the reasons is that the former primitives rely on secret randomness, whereas
hash values need to be publicly verifiable given the pre-image.



malleable hash functions can be built from standard assumptions. We leave open
the problem of finding a practical, deterministic solution. We note that our
definition is general enough to allow such constructions.

Next, we investigate necessary cryptographic assumptions for building non-
malleable functions. We provide two results. First we show that a non-malleable
hash function needs to hide any information about the pre-image. This result
justifies the use of POWHFs in our construction. Then we show (in the style of
Impagliazzo-Rudich [24]) that black-box constructions of non-malleable one-way
functions from one-way permutations are in fact impossible even if the collision-
resistance requirement is dropped. To be more precise, we follow the approach of
Hsiao and Reyzin [23] and show that no black-box security reduction is possible.
Notice that our construction circumvents the impossibility result due to the use
of a “non-black-box” NIZKPoK.

Finally, we study the applicability of our definition. We show that non-
malleability is in fact sufficient for secure partial instantiation of the aforemen-
tioned encryption scheme of Bellare and Rogaway [4], i.e., that the scheme re-
mains IND-CCA secure when H is replaced with a non-malleable hash function.
Although G is still a random oracle, this partial instantiation helps to better
understand the necessary properties of the primitives and also provides a better
security heuristic.

We also sketch an application to the framework of cryptographic puzzles [25]
as a defense against DoS attacks, where non-malleability surfaces as an important
property. The usefulness of the definition has also been shown in [19], using a
special case of a preliminary version of our definition to prove that HMAC [3] is
a secure message authentication code, assuming that the compression function
of the hash function is non-malleable. We expect further applications of non-
malleable hash functions in other areas, and some of the techniques used in our
proof here may be helpful for these scenarios.

Related Work. Independently of our work, Canetti and Dakdouk [10] and
Pandey et al. [26] recently also suggested one-way functions with special prop-
erties related to, yet different from non-malleability, and Canetti and Varia [13]
investigated non-malleable obfuscation. The work of Canetti and Dakdouk [10]
introduces the notion of extractable perfect one-way functions where generating
an image also guarantees that one knows a preimage. This should even hold if
an adversary sees related images, a setting which somewhat resembles the one
that we give for non-malleability. Yet, extractability in [10] is defined by requir-
ing the existence of a knowledge extractor which generates a preimage from the
adversary’s view, including the other images. In contrast, the common approach
to non-malleability (which we also adopt) is to deny the simulator access to the
other images, in order to capture the idea that these images should not help.
Hence the security definition from [10] is incomparable to ours. Moreover using
the notion of [10] to show insecurity of candidate practical hashes seems diffi-
cult: arguing about the success of an attacker under their definition involves, in
particular, showing that it is impossible to extract a pre-image when someone
produces an image. In contrast, security as defined by our notion is easier to



refute. For example, the hash functions from [7] for which flipping a bit in the
pre-image results in flipping a bit in the image are clearly insecure under our
definition.

The work by Pandey et al. [26] defines adaptive one-way function families
where inversion for an image under some key is still infeasible, even if one is
allowed to obtain preimages under different keys. This notion is also related to
non-malleability and turns out to be useful to design non-malleable protocols
like commitments and zero-knowledge proofs. Unfortunately, this strong notion
is not known to be realizable.

It is noteworthy that, analogously to our work here, both papers choose the
Bellare-Rogaway encryption function as an important test case, and succeed
in instantiating the second random oracle of the scheme. Together with the
notion that we develop in this paper, these give three different alternatives for
the requirements needed for this instantiation. Those works also show that the
first random oracle could be instantiated in the standard model with a function
which in addition to the notions they define is also pseudorandom. Unfortunately,
no construction from standard assumptions that meets either one of the two
resulting notions is known. In contrast, our single-oracle instantiation through a
non-malleable hash function is possible under standard assumptions.

The work by Canetti and Varia [13] independently considers the notion of
verifiable non-malleable obfuscation where an adversary, given an obfuscated
circuit, tries to produce an (obfuscated) circuit which is functionally related.
The adversary’s success is measured against the success of a simulator given
only an oracle implementing the original circuit functionality. Their notion of
verifiable non-malleable obfuscators comes closest to our notion of non-malleable
hash functions, and their construction for achieving a weaker notion of verifiable
non-malleable obfuscation resembles our feasibility construction closely.

The two notions are, nonetheless, different in spirit. For obfuscators the
adversary’s task is to find something functionally related, whereas for non-
malleable hash functions the adversary’s task is to find a hash of a related pre-
image, thus capturing relations about specific values like relations among the
bits. There are further technical differences like the fact that the (achievable)
notion of weakly verifiable non-malleable obfuscators does not support auxiliary
information —as required for our encryption case, for example— making the two
notions incomparable. More details are given in Section 3.

2 Preliminaries

Definition 1 (Hash Functions). A hash function H = (HK,H,HVf) consists
of PPTAs for key generation, evaluation and verification, where

– PPTA HK for security parameter 1k outputs a key K (which contains 1k and
implicitly defines a domain DK),

– PPTA H for inputs K and x ∈ DK returns a value y ∈ {0, 1}∗,
– PTA HVf on inputs K,x, y returns a decision bit.



It is required that for any K
$← HK(1k), any x ∈ DK , any y

$← H(K,x), algo-
rithm HVf(K,x, y) outputs 1.

Note that we consider a very general syntax, comprising the “classical” notions
of one-way functions (with a public key) and of collision-resistant hash functions
which compress the input to a shorter digest (see [22] for definitions). In our
case the evaluation algorithm H may be probabilistic, as long the correctness
of hash values is verifiable given the pre-image only (via HVf). Also, we do not
demand the length of the output of the hash function to be smaller than that of
the input. However, while we capture a large class of primitives, the generalized
syntax may not preserve all properties of the special cases, e.g., if the evaluation
algorithm is probabilistic, two independent parties hashing the same input will
not necessarily get the same value.

We now recall the definitions of one-wayness and collision resistance. For one-
wayness the definition that we give is more general than the standard one in that
it considers specific input distributions X for the function, and also accounts for
the possibility that the adversary may have some partial information about the
pre-image (modeled through a probabilistic function hint):

Definition 2 (One-wayness and Collision-resistance). A hash function
H = (HK,H, HVf) is called

– one-way (wrt X and hint) if for any PPTA A the probability that for K $←
HK(1k), x $← X (1k), hx

$← hint(K,x), y $← H(K,x) and x∗
$← A(K, y, hx)

we have HVf(K,x∗, y) = 1, is negligible.
– collision-resistant if for any PPTA A the probability for K

$← HK(1k),
(x, x′, y) $← A(K) that x 6= x′ but HVf(K,x, y) = 1 and HVf(K,x′, y) = 1,
is negligible.

3 Non-Malleability of Hash and One-Way Functions

Our definition for hash functions follows the classical (simulation-based) ap-
proach for defining non-malleability [17]. Informally, our definition requires that
for any adversary which, on input a hash value y, finds another value y∗ such
that the pre-images are related, there exists a simulator which does just as well
without ever seeing y.

In the adversary’s attack we consider a three-stage process. The adversary
first selects a distribution X from which a secret input x is then sampled (and
passes on some state information). In the second stage the algorithm sees a
hash value y of this input x, and the adversary’s goal is to create another hash
value y∗ (usually different from y). In the third stage the adversary is given x
and now has to output a pre-image x∗ to y∗ which is “related” to x (we make
the definition stronger by giving the challenge pre-image to the adversary). The
simulator may also pick a distribution X according to which x is sampled, but
then it needs to specify x∗ directly from the key of the hash function only.



In the second stage the adversary (and consequently the simulator) also gets
as input a “hint” hx about the original pre-image x, to represent some a-priori
information potentially gathered from other executions of other protocols in
which x is used. In fact, such side information is often crucial for the deployment
in applications, e.g., for the encryption example in Section 6. As in the case of
non-malleable commitments and encryption, related pre-images are defined via
a relation R(x, x∗). This relation may also depend on the distribution X to catch
significantly diverging choices of the adversary and the simulator and to possibly
restrict the choices for X , say, to require a certain min-entropy. However, unlike
for other primitives, we do not measure the success of the adversary and the
simulator for arbitrary relations R between x and x∗, but instead restrict the
relations to a class R of admissible relations. We discuss this and other subtleties
after the definition:

Definition 3 (NM-Hash). A hash function H = (HK,H,HVf) is called non-
malleable (with respect to probabilistic function hint and relation class R)7 if for
any PPTA A = (Ad,Ay,Ax) there exists a PPTA S = (Sd,Sx) such that for
every relation R ∈ R the difference

Pr
[

Expnmh-1
H,A (k) = 1

]
− Pr

[
Expnmh-0

H,S (k) = 1
]

is negligible, where :

Experiment Expnmh-1
H,A (k)

K
$← HK(1k)

(X , std) $← Ad(K) // for state std

x
$← X (1k), hx

$← hint(K,x)
y

$← H(K,x)
(y∗, sty) $← Ay(y, hx, std)
x∗

$← Ax(x, sty)
Return 1 iff

R(X , x, x∗)
∧ (x, y) 6= (x∗, y∗)
∧HVf(K,x∗, y∗) = 1

Experiment Expnmh-0
H,S (k)

K
$← HK(1k)

(X , std) $← Sd(K)
x

$← X (1k), hx
$← hint(K,x)

x∗
$← Sx(hx, std)

Return 1 iff
R(X , x, x∗)

Remark 1. Our definition is parameterized by a class of relations R. This is
because for some relations the definition is simply not achievable, as in the case
when the relation involves the hash of x instead of x itself. More specifically,
consider the relation R(x, x∗) which parses x∗ as K, y and outputs HVf(K,x, y).
Then, an adversary on input y, hx, std may output y∗ $← H(K, (K, y)) and then,
given x, returns x∗ = (K, y). This adversary succeeds in experiment Expnmh-1

H,A (k)
with probability 1. In contrast, any simulator is likely to fail, as long as the
hash function does not have “weak” keys, i.e., keys for which the distribution of

7 Throughout the paper all hint functions and relations are assumed to be efficient. We
furthermore assume that the security parameter is given in unary to all algorithms
as additional input (if not mentioned explicitly).



generated images is ttrivial (such that the simulator can guess y with sufficiently
high probability).

We resolve this problem by requiring the definition to hold for a subset R of
all relations. It is of course desirable to seek secure constructions with respect
to very broad classes of relations (cf. our construction in Section 4) which are
more handy for general deployment. At the same time, certain scenarios may
only require non-malleability with respect to a small set of relations (cf. the
application example discussed in Section 6). Our definition is general and permits
easy tuning for the needs of a particular application or a class of applications.

Remark 2. For virtually all “interesting” functions H and relation classes R the
definition is achievable only for adversaries and simulators that output descrip-
tions of well-spread distributions X (i.e., with super-logarithmic min-entropy).
For the construction in next section we also require hint to be a so-called unin-
vertible function [9] (for which finding the exact pre-image is infeasible). Note
that uninvertibility is a weaker requirement than one-wayness, as it holds for
example for constant functions. We prefer to keep the definition as general as
possible, so we do not explicitly impose such restrictions on the adversary, sim-
ulator, and hint.

Remark 3. In our definition we demand that the simulator outputs x∗ given
K and hx only. A weaker condition would be to have a simulator Sy(hx, std)
first output y∗, like the adversary Ay, and then x∗ ← Sx(x, sty), before checking
that R(X , x, x∗) and that HVf(K,x∗, y∗) = 1. Since in this case the simulator
in the second stage is also given x we call this a weak simulator and hash func-
tions achieving this notion weakly non-malleable. This distinction resembles the
notions of non-malleable commitments with respect to commitment and with re-
spect to opening [16, 20]. Depending on the application scenario of non-malleable
hash functions the stronger or weaker version might be required. As an exam-
ple, the result about the Bellare-Rogaway encryption scheme uses the stronger
definition above, and our construction in the next section achieves this stronger
notion, which obviously implies the weaker one.

Remark 4. Similarly to the previous variation one can let the adversary only
output a hash value y∗, and omit the step where it later also has to give x∗.
The simulator’s task, too, is then to only output a hash value. Then one defines
meaningful relations through existential quantifications (“. . . if there exists a pre-
image x∗ such that R(x, x∗) holds”). This is essentially the approach taken by
Canetti and Varia [13] for (weakly) verifiable non-malleable obfuscators.

On the one hand the “hash-only” approach above facilitates the adversary’s
task if it does not need to know a specific pre-image. On the other hand, it also
simplifies the simulator’s task. As an example the adversary in our definition may
decide upon a specific x∗ satisfying the relation, after seeing x. Security against
such an attack cannot be captured by the above notion of relaxed simulators,
whereas the simulator in our defintion also needs to find an appropriate x∗.
This particular example demonstrates that our approach and the definition for
(weakly) verifiable non-malleable obfuscators in [13] are incomparable. Further



differences between the notions are the lack of auxiliary information and the
dependency of the simulator on the relation in the definition of Canetti and
Varia [13]. In addition, the feasilibility results presented later in our paper and
the solutions in [13] are for incomparable classes of relations.

Remark 5. Note that we only demand that (x, y) 6= (x∗, y∗) for the adversary’s
choice (instead of demanding x 6= x∗ or y 6= y∗ instead), yielding a stronger
definition, especially when the randomized hash function has multiple images
for some input. Again, the particular need depends on the application and our
solution meets this stronger requirement.

Remark 6. In the case of non-malleable encryption the original simulation-based
definition of [17] was later shown to be equivalent to an indistinguishability-based
definition [5]. The superficial similarity between our definition of non-malleable
hash functions and the one of non-malleable encryption suggests that this may
be possible here as well. Surprisingly, straightforward attempts to define non-
malleability of hash functions through indistinguishability do not seem to yield
an equivalent definition. We discuss this issue in the full version [6] in more detail
(because of lack of space), and leave it as an interesting open problem to find a
suitable indistinguishability-based definition for non-malleable hash functions.

Remark 7. The usual security notions for hash functions include one-wayness
and collision-resistance. However, neither property is known to follow from Def-
inition 3. Consider a constant function H which is clearly not one-way nor
collision-resistant. But the function is weakly non-malleable as a simulator can
simulate A in a black-box way by handing the adversary the constant value. We
keep these rather orthogonal security properties separate, as some applications
may require one but not the others.

Remark 8. Some applications (like the HMAC example in [19]) require a multi-
valued version of the definition in which the adversary can adaptively generate
several distributions and receive the images (with side information) before de-
ciding upon y∗. One can easily extend our definition accordingly, letting Ad loop
several times, in each round i generating a distribution Xi and receiving yi and
hxi at the beginning of the next round and before outputting an image y∗. In
general, it is possible to extend our construction to this case using stronger,
adaptive versions of POWHFs and NIZKPoKs. See Remark 1 after Theorem 1.

4 Constructing Non-Malleable Hash Functions

In this section we give feasibility results via constructions for non-malleable hash
functions. The main ingredient of our constructions is a perfectly one-way hash
function (POWHF) [9, 12], which hides all information about the pre-image but
which may still be malleable [7]. To ensure non-malleability we tag the hash value
with a simulation-sound non-interactive zero-knowledge proof of knowledge of
the pre-image. We first recall the definitions of these two primitives.

For POWHFs we slightly adapt the definition from [9, 12] to our setting.
Originally, POWHFs have been defined to have a specific input distribution X



(like the uniform distribution in [12, 18]). Here we let the adversary choose the in-
put distribution adaptively, and merely demand that this distribution X satisfies
a certain efficient predicate Ppow(X ); this is analogous to the non-malleability
experiment in which the adversary chooses X and the relation R takes X as
additional input. We call the side information here aux (as opposed to hint for
non-malleability) in order to distinguish between the two primitives. In fact, in
our construction aux uses hint as a subroutine but generates additional output.

Definition 4 (POWHF). A hash function P = (POWK,POW,POWVf) is
called a perfectly one-way hash function (with respect to predicate Ppow and proba-
bilistic function aux) if it is collision resistant, and if for any PPTA B = (Bd,Bb),
where Bb has binary output, the following random variables are computationally
indistinguishable:

K
$← POWK(1k) ; x $← X (1k)

ax
$← aux(K,x) ; y $← POW(K,x)

b
$← Bb(y, ax, std)

return (K,x, b) if Ppow(X ) = 1
else ⊥

K
$← POWK(1k)

(X , std) $← Bd(K)
x

$← X (1k), x′ $← X (1k)
ax

$← aux(K,x) ; y′ $← POW(K,x′)
b

$← Bb(y′, ax, std)
return (K,x, b) if Ppow(X ) = 1
else ⊥

Remark 1. As pointed out in [9, 12] the definition only makes sense if aux is an
uninvertible function of the input (such that finding the pre-image x from ax is
infeasible) and Bx only outputs descriptions of well-spread distributions (with
super-logarithmic min-entropy). Otherwise the notion is impossible to achieve.
For generality, we do not restrict X and aux explicitly here.

Remark 2. Perfectly one-way hash functions (in the sense above) can be con-
structed from any one-way permutation [12, 18] (for the uniform input distribu-
tion), any regular collision-resistant hash function [12] (for any distribution with
fixed, super-logarithmic min-entropy), or under the decisional Diffie-Hellman
assumption [9] (for the uniform distribution). Usually these general construc-
tions are not known to be secure assuming arbirtrary functions aux, yet for the
particular function aux required by the application they can often be adapted
accordingly. A concrete example is given in Section 6, in our discussion of the
Bellare-Rogaway encryption scheme.

On the choice of the relation class. Recall that the definition of non-
malleability is parametrized by a class of relations. As explained earlier in the
paper, no non-malleable hash function for an arbitrary class exists (see Remark 1
after Definition 3). In the sequel, we exhibit a class of relations for which we show
how to construct non-malleable hash functions, and then present our provably
secure construction.

Specifically, we consider the class of relations Rrinfo
pred, parameterized by an

optional function rinfo and which consists of all relations of the form R(x, x∗) =



P (x, P ∗(rinfo(x), x∗)), for all efficient predicates P, P ∗.8 The function rinfo(x)
may be empty or consist of a small fraction of bits of x (e.g., up to logarithmically
many), and should be interpreted as the information about x that may be used
in evaluating the relation R. It is important that rinfo is an univertible function,
as otherwise, if one could recover x from rinfo(x), then Rrinfo

pred would comprise
all efficient relations, R(x, x∗) = P ∗(x, x∗), and non-malleability with respect to
this class, again, would not be achievable.

As an example consider the empty function rinfo such that Rpred consists of
all relations R(x, x∗) = P (x, P ∗(x∗)). This class of relations allows to check for
instance that individual bits of x and x∗ are complement of each other, i.e., if πj

denotes the projection onto the j-th bit then one sets P ∗(x∗) = πj(x∗) and lets
P (x, P ∗(x∗)) output 1 if πj(x) 6= πj(x∗). This example has also been used by
Boldyreva and Fischlin [7] to show the necessity of non-malleability for OAEP,
and to give an example of a perfectly one-way hash function that is malleable in
the sense that flipping the first bit of an image produces a hash of the pre-image
whose first bit is also flipped.

In the examples above rinfo has been the empty function. Of course, using
non-trivial functions rinfo allows for additional relations and enriches the class
Rrinfo

pred. Consider for example a hash function H that is malleable in the sense that
an adversary, given H(K, r‖m) for random r ∈ {0, 1}k, can compute H(K, r‖m′)
for some m′ 6= m. One way to capture that the two pre-images coincide on the
first k bits is to set rinfo(r||m) = r and to set P ∗(r, x∗) = 1 if and only if r
is the prefix of x∗. Since rinfo should be univertible, the function should rather
return only a fraction of r, though. Similarly, one can see that the class Rrinfo

pred

“captures” relations like R(x, x∗) = 1 iff x⊕ x∗ = δ for some constant δ, and
many other useful relations.

Finally, we note that each relation from the class also checks that the chosen
input distribution X “complies” with the eligible distributions from the under-
lying POWHF. That is, each relation also checks that the predicate Ppow(X )
of the POWHF is satisfied. The full relation R(X , x, x∗) then evaluates to 1 iff
P (x, P ∗(rinfo(x), x∗)) = 1 and Ppow(X ) = 1. More formally, for any predicate
Ppow and uninvertible function rinfo we define the class of relations:

Rrinfo,Ppow

pred =
{
R :

there exist efficient (probabilistic) predicates P, P ∗

such that R(X , x, x∗) = P (x, P ∗(rinfo(x), x∗)) ∧ Ppow(X )

}
.

Our construction also uses a simulation-sound zero-knowledge proof of knowledge
Π = (CRS,P,V) for the NP-relation Rpow defined by:

Rpow = {(Kpow||ypow, x||r) : POW(Kpow, x; r) = ypow} .

which essentially says that one “knows” a pre-image of a hash value. Simulation-
sound NIZK proofs of knowledge for such relations can be derived from trapdoor
permutations [29, 14]. We recall the definition of the former in the full version.

The construction and its security. The following theorem captures the
security of our construction.
8 Where we neglect the distribution X as part of the relation’s input for the moment.



Theorem 1. Let P = (POWK,POW,POWVf) be a perfectly one-way hash func-
tion with respect to Ppow and aux, where aux = (hint, rinfo) for probabilistic func-
tions hint and rinfo. Let Π = (CRS,P,V) be a simulation-sound non-interactive
zero-knowledge proof of knowledge for relation Rpow. Then the following hash
function H = (HK,H,HVf) is non-malleable with respect to hint and Rrinfo,Ppow

pred :

– PPTA HK on input 1k samples Kpow
$← POWK(1k) and crs $← CRS(1k) and

outputs K = (Kpow, crs). The associated domain DK is given by DKpow .
– PPTA H on input K and x ∈ DK computes ypow ← POW(Kpow, x; r) for

random r
$← RNDKpow as well as π

$← P(crs,Kpow||ypow, x||r). It outputs
y = (ypow, π).

– PTA HVf for inputs K = (Kpow, crs), x and y = (ypow, π) outputs 1 if and
only if
POWVf(Kpow, x, ypow) = 1 and V(crs,Kpow||ypow, π) = 1.

In addition, H is collision-resistant.

Due to space limitations we provide the detailed proof in the full version of
the paper [6].

Remark 1. The malleability adversary has access to essentially two different
sources of partial information about x: hint(x) which it receives explicitly as
input, and rinfo(x) which it can use indirectly through the relation R. This
motivates the requirement that P be perfectly one-way with respect to partial
information aux = (hint, rinfo).

Remark 2. As mentioned after the definition of non-malleable hash functions,
some applications (like the one about HMAC [19]) may require a stronger no-
tion in which the adversary can adaptively generate distributions and receives
the images, before deciding upon y∗. Our construction above can be extended
to this case, assuming that the POWHF obeys a corresponding “adaptiveness”
property and that the zero-knowledge proof of knowledge is multiple simulation-
sound and multiple zero-knowledge. Such adaptively-secure POWHFs (for uni-
form distributions) can be built from one-way permutations [18] and suitable
zero-knowledge proofs exist, assuming trapdoor permutations [29, 14].

5 On the Complexity of Non-Malleable Functions

In this section we discuss the existential complexity of non-malleable functions.
We first indicate, via an oracle separation result, that deriving non-malleable
hash and one-way functions via one-way permutations is infeasible. In the full
version [6] we also discuss the relation between non-malleability and one-wayness.

5.1 On the Impossibility of Black-Box Reductions

We first show that, under reasonable conditions, there is no black-box reduction
from non-malleable hash functions (which might not even be collision-resistant



but rather one-way only) to one-way permutations. For space reasons most of
the proofs have been moved to the full version of the paper [6].

Black-Box Reductions. In their seminal paper Impagliazzo and Rudich [24]
have shown that some cryptographic primitives cannot be derived from other
primitives, at least if the starting primitive is treated as a black box. Instead of
separating primitives as in [24] here we follow the more accessible approach of
Hsiao and Reyzin [23], giving a relaxed separation result with respect to black-
box security reductions. We give a formalization of the oracle-based black-box
separation approach that we use in the full version.

For our result we assume that the algorithms of the hash function H are
granted oracle access to a random permutation oracle P (which is one-way, of
course). A black-box reduction to P is now an algorithm which, with oracle ac-
cess to P and a putative successful attacker A on the non-malleability property,
inverts P with noticeable probability. Such an attacker A may take advantage of
another oracle O (related to P) which allows it to break the non-malleability but
does not help to invert the one-way permutation P. Since neither the construc-
tion nor the reduction are given access to O, the reduction must be genuinely
black-box.

Defining Oracles P and O. For now we let P be a random permutation
oracle which in particular is a one-way function. Below we show through de-
randomization techniques that some fixed P must also work. For our separa-
tion we let the side information of the non-malleable hash function include
an image of the uniformly distributed input x under P. More precisely, con-
sider the function hintPsep which on input (1k,K, x) for random x computes
hx = P(0k||x|| 〈HVf〉 ||K) for the description 〈HVf〉 of the verification algorithm
and finally outputs hx.9

We next construct the oracle O that helps to break non-malleability. The
idea is that using O it is possible to extract from the image y and “hint” hx

(described above) the pre-image x of y. Since the adversary gets y as input, but
the simulator does not, the oracle is only helpful to the adversary. Note that
breaking non-malleability means that no simulator of comparable complexity is
able to approximate the success probability of AP,O closely. To ensure that the
simulator has the equal power as AP,O we grant the simulator SP,O therefore
access to both oracles P,O.

Construction 1. Let oracle O take as input a parameter 1k, an image y and
a “hint” hx. The oracle first finds the pre-image z||x|| 〈HVf〉 ||K of hx under P
and verifies that z = 0k; if not it immediately returns ⊥. Else it checks that
HVfP(K,x, y) = 1 and returns x if so (and outputs ⊥ otherwise).

9 We note that the side information hx does not reveal any essential information about
x in the sense that one can show that, for any non-malleable hash function for the
uniform input distribution and no side information at all, the hash function remains
non-malleable with respect to hx relative to the random permutation P (but not
relative to O, of course). Also observe that the common strategy of using black-box
simulators usually works for any side information, and in particular for the one here.



We show that O does not help to invert P, thus showing that relative to the
oracles there still exists one-way permutations:

Proposition 1. For any efficient algorithm B?,?, the probability that BP,O breaks
the one-wayness of P is negligible.

In light of this lemma we conclude that there exists a particular P that is
hard to invert for all PPT adversaries with oracles P,O. The argument is the
same as in [23]. For a fixed PPT adversary B, we define the sequence of events
(indexed by k) where B inverts strings of length k with some good probability;
for a suitable choice of parameters, the sum of the probabilities (over P) of these
events converges and by the first Borel-Cantelli lemma only finitely many of
these events may occur, almost surely. Then taking the countable intersection
over all PPT B, we get that there is at least one P with the desired property.

Separation. We require some mild, technical conditions for our non-malleable
hash function and the relation. Namely, we assume that

– the hash function is non-trivial meaning that it is infeasible to predict an
image for uniformly distributed input over {0, 1}k (thus ruling out trivial
examples like constant hash functions), and

– the relation class R contains the relation Rsep which on input (X , x, x∗)
checks that X is the uniform distribution on {0, 1}k, and that parity(x) =⊕
xi = parity(x∗) =

⊕
x∗i . Note that Rsep ∈ Rpred for our predicate-based

relations, even for the empty function rinfo, and can thus be achieved in
principle.

Theorem 2. Let HP = (HKP ,HP ,HVfP) be a non-trivial non-malleable hash
function with respect to hintPsep and R 3 Rsep. Then there exists an adversary
AP,O that breaks non-malleability of HP (for any simulator SP,O).

Corollary 1. There exists no black-box reduction from non-trivial non-malleable
functions (with respect to hintPsep and R 3 Rsep) to one-way permutations.

At first glance it seems as if our result would transfer (after some minor
modifications) to other non-malleable primitives like commitments. This is not
the case. The oracle O in our construction relies on the ability to check whether
a pre-image x matches an image y (public verifiability of hash functions), while
other primitives such as encryption E(m; r) and commitments Com(m; r) use
hidden randomness (which is not part of the input of function hint).

Relating Non-Malleability and Perfect One-Wayness. In the full ver-
sion we show that non-malleability implies a variant of perfect-one-wayness.

6 Applications

In this section we study the usefulness of our notion for cryptographic applica-
tions. As an example we show that when one of the two random oracles in the



aforementioned encryption scheme proposed by Bellare and Rogaway in [4] is
instantiated with a non-malleable hash function, the scheme remains IND-CCA
secure. In addition, we argue that non-malleability is useful in preventing off-line
computation attacks against a certain class of cryptographic puzzles.

Instantiating random oracles. We start with recalling the scheme. Let F
be a familiy of trapdoor permutations and G,H be random oracles. The message
space of the scheme BRG,H [F ] = (K, E ,D) is the range of G. The key generation
algorithm K outputs a random F-instance f and its inverse f−1 as the public
and secret key, respectively. The encryption algorithm E on inputs f and m
picks random r in the domain of f (we assume that r ∈ {0, 1}k) and outputs
(f(r), G(r)⊕m,H(r||m)). The decryption algorithm on inputs f−1 and (y, g, h)
first computes r ← f−1(y), then m← g ⊕G(r), and outputs m iff H(r‖m) = h.
The scheme BRG,H [F ] is proven to be IND-CCA secure in the random oracle
model assuming that F is one-way [4].

Here we study the possibility of realizing the random oracle H with an ac-
tual hash function family H = (HK,H,HVf), a so-called partial H-instantiation
of the scheme. More precisely, we modify the scheme so that the public key and
secret key also contain a key K

$← HK(1k) specifying a function. Then E com-
putes H(K, r‖m) instead of H(r‖m), and D computes HVf(K, r‖m,h) instead of
checking that H(r‖m) = h. We refer to this scheme as BRG,H[F ]. The following
shows that functions that meet our notion of non-malleability are sufficient for
a secure partial H-instantiation.

Before stating the sufficient conditions for security to hold, we fix some
notation. Below we let the function rinfoBR(x) = msbk/2(x) output the k/2
most significant bits of its input. The class of relations we require here for
non-malleability is only a subset of the achievable class discussed in Section 4.
Namely, we only require a relation of the form RBR(X , x, x∗) = P ∗(rinfoBR(x), x∗)
∧Ppow(X ), where Ppow is the predicate that checks that X is the canonical rep-
resentation of the uniform distribution on the first k bits, and P ∗ is the pred-
icate that simply verifies that msbk/2(x∗) = rinfoBR(x). We choose this specific
predicate RBR so that it can check if x = x∗, while erring with only negligible
probability, but still admit the construction of non-malleable hash functions.

Below we will require that the trapdoor permutation family is msbk/2-partial
one-way, meaning that it is hard to compute the k/2 most significant bits of the
random input r given a random instance f and f(r) (cf. [21] for the formal
definition). This is a rather mild assumption to impose on F . For example,
RSA was shown to be partial one-way under the RSA assumption in [21]. A
general approach to construct such a partial one-way family F is to define f(r) =
g(msbk/2(r))‖g(lsbk/2(r)) for a trapdoor permutation g.10

10 In fact, this construction also has the useful property that f(r) is still hard to invert,
even if given msbk/2(r). Thus this trapdoor permutation is suitable for constructing
POWHFs secure with respect to side information (msbk/2(r), f(r)) and therefore, via
our construction, non-malleable hash functions for side information hintBR(r) = f(r)
and the relation RBR. In other words, non-malleable hash functions for hintBR and
RBR exist under common cryptographic assumptions.



We need one more technical detail before stating the theorem. We start with
some hash function family H = (HK,H,HVf) and trapdoor permutation family
F . We write H = (HKF ,H,HVf) for the modified hash function for which key
generation outputs a random instance of F along with the original hash key.
Below we write hintBR for the function that takes as input a key (K, f) and
string x, and outputs f(r), where r are the first k bits of the input x. We note
the IND-CPA version of the scheme by Bellare and Rogaway was shown secure
in the standard model by Canetti [9], assuming the hash function is a POWHF
with respect to a similar hint function.

Theorem 3. Let F be an msbk/2-partial one-way trapdoor permutation family
and let H = (HKF ,H,HVf) be a collision-resistant hash function which is non-
malleable with respect to the function hintBR and to the relation RBR. Assume
further that H is a perfectly one-way hash function with respect to Ppow and
hintBR. Then BRG,H[F ] is IND-CCA secure (in the RO model).

Remark. Although the non-malleability property of the hash implies that no
partial information about pre-images is leaked (cf. the full version for a formal
statement of this implication), the theorem above requires the hash to be per-
fectly one-way in the sense of Definition 4, which is a stronger requirement in
general. The proof of the theorem is in the full version [6].

Application to cryptographic puzzles. Cryptographic puzzles are a de-
fense mechanism against denial of service attacks (DoS). The idea is that, before
spending any resources for the execution of a session between a client and a
server, the server requires the client to solve a puzzle. Since solving puzzles re-
quires spending cycles, the use of puzzles prevents a malicious client to engage
in a large number of sessions without spending itself a significant amount of
resources. One desirable condition is that the server does not store any client-
related state.

A simple construction for such puzzles proposed by Juels and Brainard [25]
is based on any arbitrary one-way function h : {0, 1}l → {0, 1}l. First, select at
random x

$← {0, 1}l and compute y = h(x). Then, a puzzle is given by the tuple
(x[1..l − k], y) consisting of the first l − k bits of x together with y. To prove
it solved the puzzle, the client has to return (x, y). It can be easily seen that
the construction above is not entirely satisfactory. In particular, it either fails
against replay attacks —where the clients present the same puzzle-solution pair
to the server— or the server needs to store all of the x’s used to compute the
puzzles.

The solution proposed to mitigate the above problem is to compute x as
H(S, t), where S is some large bitstring known only to the server, and t is some
bitstring that somehow “expires” after a certain amount of time (this can be for
example the current system time). The puzzle is then given by (t, x[1..l− k], y),
where y = h(x). A solution (or solved puzzle) is (t, x, y) which needs to satisfy
the obvious equations, and moreover, t is not an expired bitstring.

In the setting above, non-malleability of H surfaces as an important property.
If out of the first two elements (t,H(S, t)) of a puzzle solution the adversary can



efficiently construct (t′, H(S, t′)) for t′ 6= t, a string which has not yet expired,
then the defense sketched above is rendered useless: the adversary can easily
construct new puzzles (together with their solutions). Requiring that the func-
tion H is non-malleable with respect to the relation R(s1, s2) = 1 iff s1 = (S, t)
and s2 = (S, t′) for t 6= t′ is sufficient to prevent the above attack.
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