
A Framework for Universally Composable
Non-Committing Blind Signatures

Masayuki Abe and Miyako Ohkubo

Information Sharing Platform Laboratories
NTT Corporation, Japan

{abe.masayuki,ookubo.miyako}@lab.ntt.co.jp

Abstract. A universally composable (UC) blind signature functional-
ity demands users to commit to the message to be blindly signed. It
is thereby impossible to realize in the plain model. We show that even
non-committing variants of UC blind signature functionality remain not
realizable in the plain model. We then characterize adaptively secure UC
non-committing blind signatures in the common reference string model
by presenting equivalent stand-alone security notions. We also present a
generic construction based on conceptually simple Fischlin’s blind signa-
ture scheme.

1 Introduction

Background. Since the introduction of blind signatures [9] vast num-
ber of papers are devoted to efficient constructions, security analysis, and
extensions. Major applications include untraceable payment systems [9]
and anonymous voting [10, 13]. The standard notions of security for blind
signature schemes in the stand-alone setting are blindness and unforge-
ability [9, 22, 18]. Universal composability (UC) framework [3] offers se-
curity in more general setting where other arbitrary protocols are run-
ning concurrently. It asserts that the properties provided by an idealized
functionality retain even under general composition. A blind signature
functionality is first suggested by Canetti in [4] and formally defined by
Fischlin in [11] with a round-optimal realization in the common reference
string (CRS) model. Kiayias and Zhou study adaptive security in [19].

In known blind signature functionalities, e.g., [11, 19], a user commits
to a message to request a signature. Then a signature is issued by the
functionality remotely from the view of the signer. In [11], Fischlin pointed
out that a UC blind signature protocol that realizes such a functionality
implies a UC commitment protocol in the static corruption model and
thus impossible to realize in the plain model [7]. A more formal argument
is given by Lindell in [20, 21]. A common idea for these arguments is that

2 Masayuki Abe and Miyako Ohkubo

the existence of a simulator implies extraction of the input message and
hence contradicts to the blindness.

Is there a hope to circumvent the above impossibility if the function-
ality is relaxed by giving up the commitment property? In some applica-
tions such as a simple e-cash or a coupon system, every message can be
a random string that the users do not need to know or fix in advance.
Such applications only concern blindness and unforgeability. In [2], Buan,
Gjøsteen, and Kr̊akmo presented a non-committing blind signature func-
tionality where corrupt users no longer deposit messages. Thus there is
no need to extract the messages for simulation. It was shown that such
a non-committing blind signature functionality is realizable in the plain
model and the presented security is equivalent to the unforgeability and
weak blindness defined by Juels, Luby and Ostrovsky in [18].

Our contribution. Somewhat contradictory, we show that universally
composable non-committing blind signatures are still impossible in the
plain model. Our proof shows that if the functionality provides blind-
ness the presence of a simulator contradicts to the unforgeability in the
plain model. Importantly, the positive result in [2] stands only in a re-
stricted corruption model where the signer can be corrupted only after
the key generation process. As stated in the paper, such a restriction is
too strong that it is equivalent to incorporating a trusted party in the
protocol. Our result holds for the most general corruption model. It is
also pretty robust in the sense that it applies to wide variety of blind sig-
nature functionalities that formulate blindness in a reasonable way like
all existing functionalities do.

Despite the negative result, non-committing blind signatures remain
an interesting cryptographic object to study. The less demanding func-
tionality would allow simple protocol designs in advanced models. This
paper presents a thorough characterization of a non-committing blind sig-
nature functionality that is secure against adaptive adversaries without
secure erasures. We prove that the properties captured by the functional-
ity is equivalent to a pair of stand-alone security notions in the common
reference string model, which are the standard unforgeability and a new
strong notion of blindness which we call equivocal simulation blindness.
We then decompose the equivocal simulation blindness to more handy
notions called session equivocality and signature equivocality in a specific
setting. We also show a generic construction. The simplicity of our frame-
work can be highlighted when compared to the result on the adaptive
security for the committing blind signatures [19].

A Framework for Universally Composable Non-Committing Blind Signatures 3

Due to lack of space, most proofs are moved to the full version [1],
which also includes results in the static corruption model.

2 Notations

All algorithms in this paper run in polynomial-time in the security pa-
rameter λ. By y ← A(x; r) we mean that algorithm A is invoked with
input x and uniformly chosen randomness r, and outputs something la-
beled as y. Randomness r may be omitted. By (a, b) ← ⟨A(x), B(y)⟩ we
denote an execution of interactive Turing machines A and B on input
x and y and with output a and b, respectively. When only one side of
the output is of concern, we write a ← ⟨A(x), B(y)⟩L for the left side
and b ← ⟨A(x), B(y)⟩R for the right side. We write a[ω] ← A when A
has some extra output ω. The meaning of ω depends on the context and
will be noted whenever this notation is used. For notations and notions
related to the UC framework we refer to [6].

3 Blind Signature Schemes

3.1 Syntax and Standard Security Notions

A blind signature scheme BS in the common reference string model con-
sists of five algorithms BS = BS.{Crs,Key,User,Signer,Vrf}. BS.Crs is a
common reference string generator. BS.Key is a key generator. BS.User is
an interactive signature request algorithm and BS.Signer is a signing algo-
rithm. Interaction between BS.User and BS.Signer forms a signature gen-
eration protocol. BS.Vrf is a signature verification algorithm. A blind sig-
nature scheme must provide completeness and consistency. Roughly, com-
pleteness is that for any (m,σ) made faithfully through BS.Crs, BS.Key,
BS.User, and BS.Signer, verification algorithm BS.Vrf outputs 1. Consis-
tency is that BS.Vrf outputs the same value for the same input (even for
keys generated by an adversary). We refer to [14] for details and discus-
sions on these properties. Two standard security notions are unforgeabil-
ity and blindness as shown below.

Definition 1 (Unforgeability: UF). A blind signature scheme BS is
unforgeable if SuccufF ∗(λ) = Pr[ForgeBSF ∗(λ) = 1] is negligible in λ for
any algorithm F ∗ where ForgeBSF ∗ is the experiment shown below. F ∗ can
access to the oracle arbitrary number of times concurrently.

4 Masayuki Abe and Miyako Ohkubo

Experiment ForgeBSF ∗(λ) :

Σ ← BS.Crs(1λ)

(vk, sk)← BS.Key(Σ)

((m1, σ1), . . . , (mk+1, σk+1))← F ∗⟨·,BS.Signer(Σ,sk)⟩(Σ, vk)

Return 1 iff

completed← ⟨·,BS.Signer(Σ, sk)⟩R happens at most k times, and

mi ̸= mj for all 1 ≤ i < j ≤ k + 1, and

BS.Vrf(Σ, vk,mi, σi) = 1 for all 1 ≤ i ≤ k + 1.

Strong unforgeability (sUF) is defined in the same way but requiring
(mi, σi) ̸= (mj , σj) instead of mi ̸= mj , This paper focuses on the above
relatively weaker notion as it suffices for major applications.

Definition 2 (Blindness: BL). A blind signature scheme BS is blind if
Advbl

B∗(λ) = |Pr[BlindBS
B∗(λ, 0) = 1]−Pr[BlindBS

B∗(λ, 1) = 1]| is negligible
in λ for any algorithm B∗ where BlindBS

B∗ is the experiment shown below.

BlindBS
B∗(λ, b) :

Σ ← BS.Crs(1λ)
(vk,m0,m1)← B∗(Σ)
σb ← ⟨BS.User(Σ, vk,mb), B

∗⟩L
σ1−b ← ⟨BS.User(Σ, vk,m1−b), B

∗⟩L
If σ0 = ⊥ or σ1 = ⊥ then set σ0 = σ1 = ⊥.
Return b̃← B∗(σ1, σ0)

For ease of notation, we represent algorithm B∗ as stateful so that it
implicitly takes over its internal state from the previous invocation ev-
ery time it is invoked by the experiment. Only new inputs are explicitly
presented in the description. This convention is applied to all algorithms
denoted with asterisk (∗) throughout the paper.

As observed in [17], the above definition captures the case where the
adversary attempts to get useful information by aborting the sessions. [12]
extends the notion in such a way that, when adversary B∗ is given (⊥,⊥)
at the end, it is given an extra piece of information that tells which session
(the first or second or both) actually yields ⊥ in the user side. The results
in this paper also holds with respect to the stronger notion of blindness.

A Framework for Universally Composable Non-Committing Blind Signatures 5

4 UC Non-Committing Blind Signatures

4.1 Functionality Fncb

Figure 1 illustrates our non-committing blind signature functionalityFncb.
In the figure, v is a deterministic signature verification algorithm. Π is a
description of a stateless signing algorithm. See [6] for remarks on running
arbitrary algorithms in a functionality. As well as the ordinary signature
functionality in [5] we formulate Fncb not to provide any security proper-
ties if an unregistered verification key is given as input to the signature
generation and verification phases. See the discussion about the key man-
agement below.

The idea of using counters to enforce the unforgeability is the same as
that in [2]. Due to the difference of the timing that the counters are in-
creased, our formulation can live with the general communication model
thoroughly controlled by the adversary while the one in [2] needs authen-
ticated communication in its realization. Note that the bare signature
functionality in [5] can be realized without authenticated channel because
there is no link between the public-key and the identity of the signer and
it is not a matter who issues a signature as long as the signature is valid.

Non-committing Property.Observe that input messagem from a cor-
rupt user is sent nowhere nor stored in the functionality. Thus S working
on behalf of a corrupt user can complete the signature generation process
whatever m is. This formulation results in avoiding the need of extracting
the message from the corrupt users.

Unforgeability. This property holds only while signer Ps is honest.
Counter Ccmpl counts the number of completed signature generations in
the signer’s side while counter Cvalid counts the number of valid signatures
on distinct messages received by honest users with legitimate verifica-
tion. The verification process accepts signatures on new messages only if
Ccmpl > Cvalid. From the specification, it is clear that Ccmpl ≥ Cvalid always
holds as long as the signer is honest. Thus unforgeability is guaranteed in
the absolute sense. To capture weak unforgeability, Cvalid is incremented
only for unique messages in the signature generation process (see step
(ii)). Strong unforgeability can be captured by removing conditions “if
(m, ∗, 1) ̸∈ Γ” and “or (m, ∗, 1) ∈ Γ” from the signature generation and
verification phases respectively.

Completeness and Consistency. If the signer and a user are not cor-
rupted and the registered key is given as input to the signature genera-
tion phase, (m,σ, 1) is recorded. The verification phase for such faithfully

6 Masayuki Abe and Miyako Ohkubo

Key Generation : Given (KeyGen, sid) from a party Ps, verify that sid =
(Ps, sid

′) for some sid′. If not, then ignore. Else, forward (KeyGen, sid)
to simulator S. Then, on receiving (Generated, sid, v , Π) from S, send
(Generated, sid, v) to Ps and record (Ps, v ,Π). Let Ccmpl = Cvalid = 0, and
Γ be empty. This phase must be completed only once and before other phases.

Signature Generation : On receiving (Request, sid, ssid, v ′,m) for some m from
Pu, send (Request, sid, ssid, v ′) to S and do the following.
i. On receiving (Signed, sid, ssid) from S, forward it to Ps. Set Ccmpl ←

Ccmpl + 1.
ii. On receiving (Received, sid, ssid) from S, do as follows:

– If Pu is honest and v ′ = v , then do as follows. If (m, ∗, 1) ̸∈ Γ , set
Cvalid ← Cvalid + 1. Compute σ ← Π(m) and record (m,σ, 1) to Γ .
If (m,σ, 0) ∈ Γ , send an error message to signer Ps and halt. Send
(Received, sid, ssid, σ) to Pu.

– Else if Pu is corrupt or v ′ ̸= v , ask S and forward Pu whatever received
from S.

Signature Verification : On receiving (Verify, sid, ssid, v ′,m, σ) from some
party Pv, set φ = v ′(m,σ) and do as follows.
1. If v ′ ̸= v , set f = φ.
2. Else if (m,σ, f ′) ∈ Γ for any f ′, then set f = f ′.
3. Else if Ps is corrupt or (m, ∗, 1) ∈ Γ , then set f = φ and record (m,σ, f)

to Γ .
4. Otherwise:

(a) If Ccmpl > Cvalid, then set f = φ and Cvalid ← Cvalid + f .
(b) Otherwise, set f = 0.
Then record (m,σ, f) to Γ .

Output (Verified, sid, ssid, f) to Pv.
Player Corruption : On receiving corruption to Pu, send all inputs and out-

puts exchanged with Pu to simulator S. Also send all randomness used in the
evaluations of Π with respect to Pu.

Fig. 1. Non-committing blind signature functionality Fncb.

generated (m,σ) and registered v finds that record and always outputs
f = 1. Thus completeness is captured. Consistency holds for free since al-
gorithm v is deterministic. Limiting v to be deterministic loses generality
but makes the exposition considerably simpler. For issues with respect to
probabilistic verification algorithms see [5, 6, 14].

Blindness. Important observations are; 1. Π is fixed before any sub-
session for signature generation starts, 2. Π takes nothing but message
m as input, and 3. Message m and Π(m) are never sent to S or Ps

during the signature generation phase. This formulation thereby assures
that remotely computed σ is independent of the signature generation
viewed by the signer. Such a mechanism, which we call remote signing, is
suggested in [4] and employed by all known blind signature functionalities.

A Framework for Universally Composable Non-Committing Blind Signatures 7

On Key Management. The “bare” signature functionality in [4, 6] is
formulated in such a way that it stores a single public-key in every session
and the security properties are guaranteed only for the registered public-
key. The functionality enjoys concise presentation and high modularity.
We take over his approach to define Fncb. Namely, if unregistered v ′

is given as input to the signature generation or verification phase, Fncb

behaves just as S intended. So even though a user is honest, no security is
guaranteed in such a case. (Recall that the environment can pass arbitrary
v ′ to an honest user.) Accordingly, upper-level protocols that uses Fncb

must be responsible to provide registered v to the honest users.

An alternative formulation would be to let Fncb to explicitly reject
unregistered v ′. It however results in incorporating a mechanism for dis-
tributing the correct public-key within the blind signature protocol. For
instance, the protocol realizing Fncb may be constructed in Fca-hybrid
model where Fca is the certificate-authority functionality [5] that serves
only for the blind signature protocol. Though this kind of issue can be
handled by the theorem of universal composition with joint state [8], we
prefer Fncb to be basic for the sake of higher modularity.

In the literates, [11, 2] implicitly follow the same approach as ours.
They however define their functionality only for the case of receiving the
registered public-key as input to the signature generation phase. It results
in simpler presentation but eventually the details need to be provided with
care. [19] shows more extended functionality such that it handles several
public-keys under the same session-id and guarantees blindness for every
set of signatures issued with the same public-key. This approach however
suffers high complexity in its presentation.

Variations. Fncb in Fig. 1 notifies only the end of the signature gener-
ation process to the environment. It can be extended so that the envi-
ronment can give the signer explicit approval or denial for starting the
process by adding another round of interaction among S, Fncb, and Ps.
It is also possible to let the environment know about the abnormal ter-
mination of the protocol in the same way. These modifications do not
affect to the results in this paper since they can be incorporated only by
modifying the protocol wrapper in Section 5.2 accordingly.

4.2 Impossibility in the Plain Model

This section shows that Fncb cannot be realized without accessing to extra
ideal functionalities or assuming some help from incorruptible parties. To
make the statement meaningful, we consider non-trivial protocols where

8 Masayuki Abe and Miyako Ohkubo

honest parties running the protocol with right inputs terminate and out-
put something with noticeable probability.

Theorem 3. There exists no non-trivial protocol that securely realizes
Fncb in the plain model.

Proof. We use S to extract the remote signing function Π and use it to
break the unforgeability in the real protocol. Recall that a forgery could
never happen in the ideal model. Thus Z can distinguish the ideal process
and a real protocol execution by observing a successful forgery.

Suppose that there exists a non-trivial protocol π that realizes Fncb in
the plain model. Recall that Fncb is invoked when it receives (KeyGen, sid)
from a signer. It then outputs (Generated, sid, v) to the signer. Protocol
π works in the same way since it realizes Fncb. Let πKG denote such a part
of π that receives (KeyGen, sid) as input and outputs (Generated, sid, v).

Consider a particular A∗ and Z∗ that behave in execπ,A∗,Z∗ as fol-
lows. Z∗ first asks A∗ to corrupt the signer. Z∗ then runs πKG with input
(KeyGen, sid) and obtains (Generated, sid, v). (Here, without loss of gen-
erality, we assume that πKG can be run solely by the signer up to the
moment (Generated, sid, v) is output. See the discussion after the proof
for generalization.) Z∗ then sends (KeyGen, sid) and v to A∗ and receives
(Generated, sid, v) from A∗ working on behalf of the corrupt signer. Z∗

then asks a signature on a message m by sending (Request, sid, ssid, v ,m)
to an honest user. IfA∗ is to join π on behalf of the signer to generate a sig-
nature, Z∗ takes over the role and completes the protocol by faithfully fol-
lowing π. The user eventually outputs (Received, sid, ssid, σ). Finally Z∗

sends (Verify, sid, ssid, v ,m, σ) to a user and receives (Verified, sid, ssid,
f) as a result of verification. Observe that, even though the signer is cor-
rupted, Z∗ simulates an honest signer by following π. Furthermore, due
to the completeness and terminating property of π, Z∗ can complete sig-
nature generation with noticeable probability. If Z∗ completes, f = 1
appears at the end. Since π realizes Fncb, there exists a simulator S∗ for
such A∗ and Z∗. To successfully simulate A∗, simulator S∗ has to send Π
to Fncb before Z∗ sends (Request, sid, ssid, v ,m) to an honest user. Fur-
thermore, with noticeable probability, Π(m) must yield a valid signature
accepted by protocol π.

Now we construct Z that distinguishes execπ,A,Z and idealFncb,S,Z
by using above S∗ as a subroutine. Z first sends (KeyGen, sid) to the hon-
est signer and receives (Generated, sid, v). Then Z starts simulating Z∗.
It asks S∗ to corrupt the simulated signer. Then it sends (KeyGen, sid) and
v to S∗ and receives (Generated, sid, v ,Π) from S∗ on behalf of Fncb. Now

A Framework for Universally Composable Non-Committing Blind Signatures 9

Z computes σ ← Π(m) for somem. It then sends (Verify, sid, ssid, v ,m, σ)
to a verifier and receives (Verified, sid, ssid, f). The output of Z is f .

Let us evaluate Z. Suppose that Z is in execπ,A,Z . Z simulates Z∗

perfectly for S∗. In particular v in this case is generated honestly by π just
as Z∗ does. So S∗ outputs (Generated, sid, v ,Π) as expected. Then with
noticeable probability suchΠ yields σ that passes the verification protocol
of π. Thus f = 1 happens with noticeable probability in this case. Next
suppose that Z is in idealFncb,S,Z . In this case, v is generated by S. If
it is distinguishable from the one observed in execπ,A,Z , Z distinguishes
execπ,A,Z and idealFncb,S,Z on that basis. If it is indistinguishable,
S∗ outputs (Generated, sid, v ,Π) as well as in the previous case. Since
no signature generation process is completed in idealFncb,S,Z and Fncb

provides absolute unforgeability, Fncb rejects σ generated by Π. Thus f =
0 for this case. Accordingly Z distinguishes execπ,A,Z and idealFncb,S,Z
with noticeable probability.

An essential point is that Fncb demands S to extract Π even from a
corrupt signer for the sake of blindness. But the successful extraction ofΠ
contradicts to the unforgeability. The situation is very similar to the case
of UC commitments [7] where the message from a corrupt committer
must be extracted for the sake of binding property, and the successful
extraction contradicts to the hiding property.

The proof does not go through if protocol π involves incorruptible
trusted parties or any extra ideal functionalities. The point is that Z∗

should be able to run πKG by itself so that the distribution of v is solely
under the control. This allows Z to simulate Z∗ simply by sending v
generated outside of Z. If πKG involves parties other than the signer,
Z∗ corrupts them before they send off any message and simulate them
honestly by following πKG. When Z simulates Z∗, these corrupted parties
are simulated by following the behavior of the real uncorrupted players
Z is working with.

5 Characterization

5.1 Blindness based on Simulatability

The following new notion called simulation blindness assures that the
signature generation protocol can be executed without knowing the mes-
sage. Similarly, the resulting signature can be generated without involving
any information from the protocol run. To capture adaptive security, we

10 Masayuki Abe and Miyako Ohkubo

require state reconstruction property. We use the term equivocal when a
notion involves state reconstruction property.

Definition 4 (Equivocal Simulation Blindness: EqSimBLND). A
blind signature scheme BS is equivocal simulation blind if there exists a
set of algorithms SIM = SIM.{Crs,User,Sig,State} such that SIM.User and
SIM.State can be stateful and SIM.Sig must be stateless, and advantage
Adveqsib

D∗ (λ) = |Pr[EqSimBLBS
D∗(λ, 0) = 1]−Pr[EqSimBLBS

D∗(λ, 1) = 1]|
is negligible in λ for any D∗, where EqSimBLBS

D∗(λ, b) is the following
experiment. Oracles are accessible in arbitrary manner.

EqSimBLBS
D∗(λ, 1) :

Σ ← BS.Crs(1λ)
vk ← D∗(Σ)

b̃← D∗O1(Σ,vk,·)

Return b̃

O1(Σ, vk,m)
σ ← ⟨BS.User(Σ, vk,m; r), D∗⟩L
Output (σ, r)

EqSimBLBS
D∗(λ, 0) :

(Σ, t)← SIM.Crs(1λ)
vk ← D∗(Σ)

b̃← D∗O0(Σ,vk,·,t)

Return b̃

O0(Σ, vk,m, t)
δ[ωu]← ⟨SIM.User(Σ, vk, t), D∗⟩L
σ[ωs]← SIM.Sig(Σ, vk,m, t)
r ← SIM.State(ωu, ωs)
If δ = 0, then set σ = ⊥.
Output (σ, r)

Denoted by ωu and ωs are the state information of SIM.User and SIM.Sig,
respectively.

Note that SIM.State is supposed to simulate the randomness even for
the case where the interaction between SIM.User and D∗ is terminated
abnormally. SIM.State can see how the interaction is terminated by seeing
the state information ωu.

It would be more useful if we could present separate notions of simu-
latability for simulating the view of sessions by SIM.User and the signa-
tures by SIM.Sig. We call the notions session equivocality and signature
equivocality. It is however not a proper way in general. Since SIM.User
and SIM.Sig uses the same trapdoor as input and they may give nega-
tive influence each other when they are used at the same time. We thus
consider a special case where trapdoors are separated like (t1, t2), and
SIM.User (and SIM.Sig) can be run only with t1 (and t2, respectively).
With respect to the separate trapdoor generator we define two notions of
simulatability.

A Framework for Universally Composable Non-Committing Blind Signatures 11

Definition 5 (Separable Trapdoor Generator). SIM.Crs is a sepa-
rable trapdoor generator if it outputs (Σ, (t1, t2)) such that Σ is indistin-
guishable from those generated by BS.Crs with negligible advantage, say
Advcrs

C∗, for any algorithm C∗.

Definition 6 (Signature Equivocality: SigEq). A blind signature scheme
BS is signature equivocal if there exists algorithms SIM.Sig and SIM.SigState
such that advantage function Advsigeq

A∗ (λ) = |Pr[SigEQBS
A∗(λ, 0) = 1] −

Pr[SigEQBS
A∗(λ, 1) = 1]| is negligible in security parameter λ for any A∗,

where SigEQBS
A∗(λ, b) is the following experiment.

SigEQBS
A∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← A∗(Σ)

b̃← A∗Ob(Σ,vk,·,t1)

Return b̃

O1(Σ, vk,m, t1)
σ ← ⟨BS.User(Σ, vk,m; r1||r2), A∗⟩L
Output (σ, r1||r2)

O0(Σ, vk,m, t1)
σ[θ]← ⟨BS.User(Σ, vk,m; r1||r2), A∗⟩L
σ′[ωs]← SIM.Sig(Σ, vk,m, t1)
r′1 ← SIM.SigState(θ, ωs)
If σ = ⊥, then σ′ = ⊥, r′1 = r1.
Output (σ′, r′1||r2)

Symbol θ is the transcript observed by BS.User, and ωs is a state infor-
mation of SIM.Sig.

Definition 7 (Session Equivocality: SesEq). A blind signature scheme
BS is session equivocal if there exists algorithms SIM.User and SIM.SesState
such that advantage function Advseseq

E∗ (λ) = |Pr[SesEQBS
E∗(λ, 0) = 1] −

Pr[SesEQBS
E∗(λ, 1) = 1]| is negligible in λ for any algorithm E∗, where

experiment SesEQBS
E∗ is the following.

SesEQBS
E∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← E∗(Σ, t1)

b̃← E∗Ob(Σ,vk,·,t2)

Return b̃

O1(Σ, vk,m, t2):
⟨BS.User(Σ, vk,m; r1||r2), E∗⟩
Return r2

O0(Σ, vk,m, t2):
δ[ωu]← ⟨SIM.User(Σ, vk, t2), E

∗⟩L
r2 ← SIM.SesState(ωu,m)
Return r2

Oracle Ob receives a message m from E∗ and interacts with E∗. Symbol
ωu is the state information of SIM.User.

12 Masayuki Abe and Miyako Ohkubo

In Definition 6 it is assumed that randomness r used in BS.User can
be separated into two parts r1 and r2. An intuition is that r2 is used while
interacting with the signer and r1 is used after receiving the final mes-
sage from the signer for computing the output signature. This treatment
does not lose generality as one can set either part as empty. Regarding
Definition 7 we stress that the messages and the resulting signatures are
not given to E∗. Also note that trapdoor t1 is given to E∗.

We now show relations between the standard blindness and simula-
tion blindness. Since simulation blindness captures blindness in a very
strong way, it seems natural that the following lemma holds. Proofs for
the following lemmas are in [1].

Lemma 8 (EqSimBLND⇒ BL). If BS is equivocal simulation blind then
it is blind.

Proof is done in a standard way. We construct D∗ that successfully breaks
equivocal simulation blindness by using B∗ that breaks blindness.

Regarding the reverse direction, we do not know if blindness solely
implies simulation blindness or not. We however can show that there
exists a scheme that is blind and unforgeable but not simulation blind.
Namely, for the schemes that provide both blindness and unforgeability
the simulation blindness is a strictly stronger notion than blindness. This
implication is limited but sufficiently meaningful since we are interested
in schemes that provide both blindness and unforgeability. Proof can be
done in the similar way as that of Theorem 3.

Lemma 9 (BL ∧ UF ; EqSimBLND). There exists BS that is blind
and unforgeable but not equivocal simulation blind.

The following lemma states that it suffices to consider simulatability
about sessions and signatures individually when trapdoors are separable
for each purpose.

Lemma 10 (SesEq ∧ SigEq ⇒ EqSimBLND). If BS has a separable
trapdoor generator and is signature equivocal and session equivocal with
respect to the generator then BS is equivocal simulation blind.

Proof is done through three steps of game transformations starting from
EqSimBLBS

D∗(λ, 1) to EqSimBLBS
D∗(λ, 0).

A Framework for Universally Composable Non-Committing Blind Signatures 13

5.2 Protocol Wrapper Wrap()

In Fig. 2, we show how to transform a blind signature scheme BS into a
blind signature protocol by applying a simple wrapper algorithm, Wrap().
The resulting protocol Wrap(BS) is in the Fcrs-hybrid model where Fcrs

is the CRS generation and distribution functionality whose output distri-
bution is defined by BS.

Blind Signature Protocol Wrap(BS) in Fcrs-model

Key Generation: Upon receiving (KeyGen, sid) from the environment Z, a
party Ps verifies that sid = (Ps, sid

′) for some sid′. If not, do nothing. Else,
Ps derives CRS Σ from Fcrs, computes (vk, sk) ← BS.Key(Σ) and outputs
(Generated, sid, v) where v(m,σ) = BS.Vrf(Σ, vk, σ,m).

Blind Signature Generation: Party Pu and Ps do the following.
Pu-side: On receiving (Request, sid, ssid, v ′,m) from Z, derive Σ from Fcrs,

send (Request, sid, ssid, v ′) to Ps, invoke BS.User(Σ, vk′,m), and inter-
act with Ps. Take vk′ out from v ′. If BS.User outputs σ such that
BS.Vrf(Σ, vk′, σ,m) = 1, then output (Received, sid, ssid, σ).

Ps-side: On receiving (Request, sid, ssid, v ′) from a user Pu, get Σ from
Fcrs, invoke BS.Signer(Σ, sk) and interacts with Pu. If BS.Signer outputs
completed, then output (Signed, sid, ssid).

Signature Verification: On receiving (Verify, sid, ssid, v ′,m, σ) from Z, a
party Pv derives Σ from Fcrs, takes vk′ from v ′, computes f ←
BS.Vrf(Σ, vk′, σ,m), and outputs (Verified, sid, ssid, f).

Common Reference Functionality Fcrs

CRS Generation: On receiving (CrsGen, sid), Fcrs computes Σ ← BS.Crs(1λ)
for the first time and returns Σ. Simply return the same Σ for further requests.

Fig. 2. UC blind signature protocol transformed from stand-alone scheme BS.

Note that the resulting protocol does not implement any mechanism
to verify the given verification algorithm v ′. It works as intended if v ′ = v
but no security is guaranteed for the user if v ′ ̸= v . Also note that the
signer ignores v ′ given from the user and uses the genuine secret key sk.

5.3 Equivalence

Theorem 11 (UF ∧ EqSimBLND ⇔ Fncb). Protocol Wrap(BS) securely
realizes Fncb with respect to adaptive adversaries if and only if BS is
unforgeable and equivocal simulation blind.

14 Masayuki Abe and Miyako Ohkubo

“If” direction is proven by constructing a simulator, S, that uses A as
a black-box. To run A properly, S simulates entities and their communi-
cation in execFcrs

π,A,Z . We then apply the game transformation technique
starting from idealFncb,S,Z(λ, a) as Game 0. Game 1 removes the use
of simulation algorithms SIM.Crs, SIM.User, SIM.Sig, and SIM.State from
Fncb and S. The difference is negligible due to the simulation blindness.
Game 2 then modifies the verification process of Fncb so that it no longer
care for the counters. This modification is justified by the unforgeability.
Game 3 further modifies the verification process so that it completely
follows the verification function. Justification is due to the completeness
and consistency. Game 4 then modifies Fncb so that it does not record the
signed messages any more. It is justified by the completeness and consis-
tency again. Finally, Game 5 removes unused actions in Fncb and S. This
is just cosmetic to make sure that Fncb and S do nothing but executing
the real protocol. Thus Game 5 is equivalent to execFcrs

π,A,Z(λ, a).
“Only if” direction is more intricate. First, assuming that BS is not

simulation blind, we show that, for any S, there exists successful Z. Sec-
ond, assuming that BS is simulation blind but forgeable, we construct
successful Z that is not fooled by any S. For the first part, we construct
simulation algorithms SIM.Crs, SIM.User, SIM.Sig and SIM.State by using
S as a subroutine. For such simulation algorithms there exists adversary
D∗ that breaks simulation blindness since we assumed that BS is not
simulation blind. Then we use such D∗ to construct Z. A tricky issue in
constructing these simulation algorithms is that they do not share the
internal state. Since individual copy of S is run independently in these
functions, it would output different CRS-es and public-keys. Our idea is
to use the trapdoor as a container of the randomness given to S so that
every simulation algorithm can give the same randomness to S. In this
way, every copy of S works on the same CRS and public-key so that all
simulation algorithms work consistently. A formal proof is given in [1].

6 A Generic Construction

6.1 Overview

Our starting point is the “basic” blind signature scheme by Fischlin [11].
In his scheme, a user commits to message m by sending a commitment c
and the signer returns a bare signature s on c. Then the user computes
a final signature σ which actually is a non-interactive zero-knowledge
proof of knowledge about the message m and the valid signature s. Un-
forgeability is based on the binding property of the commitment and the

A Framework for Universally Composable Non-Committing Blind Signatures 15

unforgeability of the bare signature scheme and the knowledge sound-
ness of NIZK. Blindness is from the hiding property of the commitment
scheme and the zero-knowledge property of NIZK. By BSG we denote this
generic scheme. When transformed by our wrapper, Wrap(BSG) securely
realizes non-committing blind signature functionality Fncb with respect
to static adversaries. (See [1] for details.) It is a surprise that such a con-
ceptually simple scheme can provide universal composability even though
the adversary is limited to be static.

An essential issue to handle adaptive security is the state reconstruc-
tion. Looking at the structure of BSG, the session equivocality can be
easily achieved by replacing the commitment scheme with a trapdoor com-
mitment scheme. (In fact, with such a small modification to BSG, the re-
sulting Wrap(BSG) provides adaptive UC security in the erasure model.)
On the other hand, the signature equivocability is not generally possible
there. Recall that a signature is simulated by the zero-knowledge simu-
lator. It therefore can be the case that there exists no randomness that
is consistent to a real witness. To overcome this problem, we consider
eliminating the use of zero-knowledge simulator by providing a correct
witness to the proof system through the simulation of the bare signa-
ture in the signer-side. Namely, we make the signer’s signing algorithm
to be simulatable by using a signature scheme in the CRS model so that
valid signatures can be created with the trapdoor of the CRS. In this
way, we can always provide a witness to the proof system used in the
user-side algorithm. Now, witness indistinguishability of the proof sys-
tem assures that the same proof could have been created from any other
witnesses. Accordingly, a consistent randomness always exists. This par-
ticular structure is suggested in [17] for the purpose of removing the CRS
in the stand-alone model. We will take advantage of the structure for
achieving adaptive security.

6.2 Building Blocks

−NIWI (Non-interactive Witness Indistinguishable Proof System). It is
a non-interactive witness indistinguishable proof system of knowledge
when the CRS is generated in the regular way. By NIWI.Crs, NIWI.Prf
and NIWI.Vrf, we denote the CRS generation function, the proof gener-
ation function and the verification function, respectively. Additionally it
must allow state reconstruction when the CRS is simulated. Namely, one
can reconstruct a consistent randomness for a given witness and a valid
transcript. The Groth-Sahai proof system [16], the GS proof system for

16 Masayuki Abe and Miyako Ohkubo

short, meets these requirements under SXDH or DLIN assumption. It un-
fortunately does not work for any NP statement but works efficiently for
relations represented by bilinear products. We thus need to choose other
building blocks so that they fit to the GS proof system for instantiation.
−TC (Trapdoor Commitment Scheme). It is a standard trapdoor com-
mitment scheme. By TC.Key, TC.Com and TC.Vrf, we denote the key
generation function, the commitment function, and the verification func-
tion. There are two more functions such that one generates a random
commitment and the other opens the commitment to an arbitrary value
by using the trapdoor generated by TC.Key. See [1] an instantiation that
works well with GS proof system under the SXDH assumption.
−SSIG (Simulatable Signature Scheme). It is a signature scheme in the
CRS model with a special property such that valid signatures can be com-
puted from the public-key and the trapdoor bind the CRS. By SSIG.Crs
and SSIG.Key, we denote the CRS generation function and the key gen-
eration function. SSIG.Key takes the CRS and outputs a signing key and
a verification key. Besides the signature generation function SSIG.Sign,
there is a signature simulation function SSIG.Sim that generates valid sig-
natures by using the public-key and the trapdoor generated by SSIG.Crs.
It is stressed that the simulated signatures must pass the verification
by the verification function SSIG.Vrf but it is not demanded that they
are indistinguishable from the real ones. Similarly, unforgeability is the
standard unforgeability against chosen message attacks. In particular, the
adversary is not given simulated signatures.

Any standard signature scheme can be turned into a simulatable one
in an unconditional way as follows. Generate two key pairs by running
the key generation algorithm twice independently. The first key pair is
used as the CRS and the trapdoor while the second pair is used as the
verification and signing key. Normal signing is done by using the second
key. Simulation is done by the first key. A signature is accepted if it passes
the original verification predicate with respect to either of the keys.

To fit to the other building blocks, SSIG must be able to sign group
elements and the verification predicate must be represented as a product
of pairings. For such a signature scheme a feasibility result based on DLIN
assumption can be seen in [15].

6.3 The Scheme

The CRS generation function BS.Crs computes (Σwi, twi)← NIWI.Crs(1λ),
(Σtc, ttc) ← TC.Key(1λ), and (Σssig, tssig) ← SSIG.Crs(1λ), and outputs
Σ = (Σwi, Σbc, Σssig). Key generation function BS.Key is the same as

A Framework for Universally Composable Non-Committing Blind Signatures 17

SIG.Key, which outputs vk and sk. The signature generation protocol is
illustrated in Fig. 3. The proof system NIWI proves the following relation
between witness w = (s, c, z) and instance x = (vk,Σtc, Σssig,m):

TC.Vrf(Σtc, c,m, z) = 1 ∧ SSIG.Vrf(Σssig, vk, c, s) = 1

Verification function BS.Vrf takes ((Σwi, Σtc, Σssig), vk, σ,m) as input and
outputs φ ∈ {0, 1} such that φ← NIWI.Vrf(Σwi, (vk,Σtc, Σssig,m), σ).

Signer Ps Σ = User Pu

BS.Signer(Σ, sk) (Σwi, Σtc, Σssig) BS.User(Σ, vk,m)

� c
(c, z)← TC.Com(Σtc,m)

s← SSIG.Sign(Σssig, sk, c)
-s

Output completed. If SSIG.Vrf(Σssig, vk, s, c) ̸= 1 output ⊥.
σ ← NIWI.Prf(Σwi, x, w) where

x = (vk,Σtc, Σssig,m) and
w = (s, c, z).

Output σ.

Fig. 3. Generic blind signature scheme BSS. The signature generation protocol.

Theorem 12. Protocol Wrap(BSS) securely realizes Fncb in the Fcrs-
hybrid model with respect to adaptive adversaries without erasures.

We claim that the scheme is session equivocal and signature equivo-
cal. Observe that setting t1 = (twi, tssig) and t2 = (ttc) forms separated
trapdoors. Session equivocality is proven by constructing SIM.User and
SIM.SesState by using the trapdoor property of TC. Signature equivocal-
ity can be shown by constructing SIM.Sig and SIM.SigState by using the
simulation property of SSIG and state reconstractability of NIWI. Thus
from Lemma 10, we can say that the scheme is equivocal simulation blind.
We then argue that the scheme is unforgeable due to the binding property
of TC, the unforgeability of SSIG and the proof of knowledge property of
NIWI. Finally Theorem 12 is applied to complete the proof of Theorem 11.

References

1. M. Abe and M. Ohkubo. A framework for universally composable non-committing
blind signatures. IACR ePrint Archive 2009, 2009.

18 Masayuki Abe and Miyako Ohkubo

2. A. B. Buan and K. G. L. Kr̊akmo. Universally composable blind signatures in the
plain model. IACR ePrint Archive 2006/405, 2006.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pp. 136–145, 2001.

4. R. Canetti. On universally composable notions of security for signature, certifica-
tion and authentication. IACR ePrint Archive 2003/239, 2003.

5. R. Canetti. Universally composable signatures, certification and authentication.
In 17th Computer Security Foundations Workshop (CSFW), 2004. Revised version
available in IACR ePrint archive 2003/239.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive 2000/067. 2nd version updated on 13 Dec 2005.

7. R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO
2001, LNCS 2139, pp. 19–40. Springer-Verlag, 2001.

8. R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO
2003, LNCS 2729, pp. 265–281. Springer, 2003.

9. D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, pp.
199–204. Prenum Publishing Corporation, 1982.

10. D. L. Chaum. Elections with unconditionally-secret ballots and disruptions equiv-
alent to breaking RSA. In EUROCRYPT ’88, LNCS 330, pp. 177–182. Springer-
Verlag, 1988.

11. M. Fischlin. Round-optimal composable blind signatures in the common reference
model. In CRYPTO ’06, LNCS 4117, pp. 60–77. Springer-Verlag, 2006.

12. M. Fischlin and D. Schröder. Security of blind signatures under aborts. In Public
Key Cryptography, PKC 2009, LNCS 5443. pp. 297–316. Springer-Verlag, 2009.

13. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In AUSCRYPT ’92, LNCS 718, pp. 244–251. Springer-Verlag, 1993.

14. J. Garay, A. Kiayias, and H.-S. Zhou. Sound and fine-grain specification of cryp-
tographic tasks. IACR ePrint Archive 2008/132, 2008.

15. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT 2006, LNCS 4284, pp. 444–459. Springer-Verlag,
2006.

16. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for
NP. In EUROCRYPT 2006, LNCS 4004, pp. 339–358. Springer-Verlag, 2006.

17. C. Hazay, J. Katz, C. Koo, and Y. Lindell. Concurrently-secure blind signatures
without random oracles or setup assumptions. In TCC 2007, LNCS 4392, pp.
323–341. Springer-Verlag, 2007.

18. A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In
CRYPTO ’97, LNCS 1294, pp. 150–164. Springer-Verlag, 1997.

19. A. Kiayias and H. Zhou. Equivocal blind signatures and adaptive UC-security. In
TCC 2008, LNCS 4948, pp. 340–355. Springer-Verlag, 2008.

20. Y. Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In STOC, pp. 683–692. ACM, 2003.

21. Y. Lindell. Lower bounds and impossibility results for concurrent self composition.
Journal of Cryptology, 21(2):200–249, 2008.

22. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):339–360, 2000.

