
On the Analysis of Cryptographic Assumptions
in the Generic Ring Model?

Tibor Jager and Jörg Schwenk

Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

Abstract. At Eurocrypt 2009 Aggarwal and Maurer proved that break-
ing RSA is equivalent to factoring in the generic ring model. This model
captures algorithms that may exploit the full algebraic structure of the
ring of integers modulo n, but no properties of the given representation of
ring elements. This interesting result raises the question how to interpret
proofs in the generic ring model. For instance, one may be tempted to
deduce that a proof in the generic model gives some evidence that solving
the considered problem is also hard in a general model of computation.
But is this reasonable?

We prove that computing the Jacobi symbol is equivalent to factoring in
the generic ring model. Since there are simple and efficient non-generic
algorithms computing the Jacobi symbol, we show that the generic model
cannot give any evidence towards the hardness of a computational prob-
lem. Despite this negative result, we also argue why proofs in the generic
ring model are still interesting, and show that solving the quadratic resid-
uosity and subgroup decision problems is generically equivalent to fac-
toring.

1 Introduction

The security of asymmetric cryptographic systems relies on assumptions that
certain computational problems, mostly from number theory and algebra, are
intractable. Since proving useful lower complexity bounds in a general model of
computation seems to be impossible with currently available techniques, these as-
sumptions have been analyzed in restricted models, see [22, 17, 8, 1], for instance.
A natural and very general class of algorithms is considered in the generic ring
model. This model captures all algorithms solving problems defined over an alge-
braic ring without exploiting specific properties of a given representation of ring
elements. Such algorithms work in a similar way for arbitrary representations of
ring elements, thus are generic.

Considering fundamental cryptographic problems in the generic model is mo-
tivated by the following ideas. First, showing that a cryptographic assumption

? This is an extended abstract, the full version is available on eprint [13]. Supported
by the European Community (FP7/2007-2013), grant ICT-2007-216646 - European
Network of Excellence in Cryptology II (ECRYPT II).

holds with respect to a restricted but meaningful class of algorithms might indi-
cate that the idea of basing the security of cryptosystems on this assumption is
not totally flawed, and may therefore be seen as evidence that the assumption
is also valid in a general model of computation. Second, showing that a large
class of algorithms is not able to solve a computational problem efficiently is an
important insight for the search for cryptanalytic algorithms, and can be used
to deduce the optimality of certain classes of algorithms. Moreover, the generic
model is a valuable tool to study the relationship among computational prob-
lems, such as the equivalence of the discrete logarithm and the Diffie-Hellman
problem, as done in [6, 18, 19, 16, 2], for instance.

In this paper we prove a general theorem which states that solving certain
subset membership problems in the ring Zn is equivalent to factoring n. This
main theorem allows us to provide an example for a computational problem with
high cryptographic relevance which is easy to solve in general, but equivalent to
factoring in the generic model. Concretely, we show that computing the Jacobi
symbol is equivalent to factoring in the generic ring model.

For many common idealized models in cryptography it has been shown that
a cryptographic reduction in the ideal model need not guarantee security in
the “real world”. Well-known examples are, for instance, the random oracle
model [9], the ideal cipher model [3], and the generic group model [12, 11]. All
these results have in common that they used somewhat contrived constructions
that deviate from standard cryptographic practice.1 In contrast, our result on the
generic equivalence of computing the Jacobi symbol and factoring is an example
for a truly practical computational problem that is provably hard in the generic
model, but easy to solve in general. This is an important aspect for interpreting
results in the generic ring model, like [7, 8, 15, 2, 1]. Thus a proof in the generic
model is unfortunately not even an indicator that the considered problem is
indeed useful for cryptographic applications.

This negative result does not affect the other mentioned motivations for the
analysis of computational problems in the generic ring model. A lower bound
in this model allows to deduce the optimality of certain classes of algorithms,
and gives insight into the relationship between cryptographic problems, which is
also of interest. Motivated by this fact, we also show that solving the quadratic
residuosity and subgroup decision problems is generically equivalent to factoring.
For the latter problem we show that the equivalence holds even in presence of a
Diffie-Hellman oracle. Thus, a Diffie-Hellman oracle does not help in solving the
subgroup decision problem.

By taking a closer look at the construction of the simulator used in the
proof of our main theorem, we furthermore deduce that for a certain class of
computational problems there exists an efficient generic ring algorithm if and
only if there is an efficient straight line program solving the problem.

1 An exception is the result of [20], showing a (non-generic) attack on a scheme with
provable security in the generic model. However, [14] note that this stems not from
a weakness in the generic model, but from an incorrect security proof.

1.1 Related Work

Previous work considering fundamental cryptographic assumptions in the generic
model considered primarily discrete logarithm-based problems and the RSA
problem. Starting with Shoup’s seminal paper [22], it was proven that solv-
ing the discrete logarithm problem, the Diffie-Hellman problem, and related
problems [18, 17, 21] is hard with respect to generic group algorithms. Damg̊ard
and Koprowski showed the generic intractability of root extraction in groups of
hidden order [10].

Brown [8] reduced the problem of factoring integers to solving the low-
exponent RSA problem with straight line programs, which are a subclass of
generic ring algorithms. Leander and Rupp [15] augmented this result to generic
ring algorithms, where the considered algorithms may only perform the opera-
tions addition, subtraction and multiplication modulo n, but not multiplicative
inversion operations. Recently, Aggarwal and Maurer [1] extended this result
from low-exponent RSA to full RSA and to generic ring algorithms that may also
compute multiplicative inverses. Boneh and Venkatesan [7] have shown that there
is no straight line program reducing integer factorization to the low-exponent
RSA problem, unless factoring integers is easy.

The notion of generic ring algorithms has also been applied to study the
relationship between the discrete logarithm and the Diffie-Hellman problem and
the existence of ring-homomorphic encryption schemes [6, 16, 2].

2 Preliminaries

2.1 Notation

For a set A and a probability distribution D on A, we denote with a
D← A the

action of sampling an element a from A according to distribution D. We denote
with U the uniform distribution. When sampling k elements a1, . . . , ak

D← A, we
assume that all elements are chosen independently.

Throughout the paper we let n be the product of at least two different primes,
and denote with n =

∏k
i=1 p

ei
i the prime factor decomposition of n such that

gcd(pei
i , p

ej

j) = 1 for i 6= j.
Let P = (S1, . . . , Sm) be a finite sequence. Then |P | denotes the length of P ,

i.e. |P | = m. For k ≤ m we denote with Pk the subsequence (S1, . . . , Sk) of P .
For a sequences P with we write Pk v P to denote that Pk is a subsequence of
P such that Pk consists of the first |Pk| elements of P .

2.2 Uniform Closure

By the Chinese Remainder Theorem, for n =
∏k

i=1 p
ei
i the ring Zn is isomorphic

to the direct product of rings Zp
e1
1
× · · · × Zp

ek
k

. Let φ be the isomorphism
Zp

e1
1
× · · · × Zp

ek
k
→ Zn, and for C ⊆ Zn let Ci := {y mod pei

i | y ∈ C} for
1 ≤ i ≤ k.

Definition 1 (Uniform Closure). We say that U [C] ⊆ Zn is the uniform
closure of C ⊆ Zn, if

U [C] = {y ∈ Zn | y = φ(y1 . . . , yk), yi ∈ Ci for 1 ≤ i ≤ k}.

In particular note that C ⊆ U [C], but not necessarily U [C] ⊆ C. The following
lemma follows directly from the above definition.

Lemma 1. Sampling y
U← U [C] uniformly random from U [C] is equivalent to

sampling yi uniformly and independently from Ci for 1 ≤ i ≤ k and setting
y = φ(y1, . . . , yk).

2.3 Straight Line Programs

A straight line program over a ring R is a generic ring algorithm performing a
fixed sequence of ring operations, without branching, that outputs an element
of R. Thus straight line programs are a subclass of generic ring algorithms.
The following definition is a simple extension of [8, Definition 1] to straight line
programs that may also compute multiplicative inverses.

Definition 2 (Straight Line Programs). A straight line program P of length
m over Zn is a sequence of tuples

P = ((i1, j1, ◦1), · · · , (im, jm, ◦m))

where −1 ≤ ik, jk < k and ◦i ∈ {+,−, ·, /} for i ∈ {1, . . . ,m}. The output P (x)
of straight line program P on input x ∈ Zn is computed as follows.

1. Initialize L−1 := 1 ∈ Zn and L0 := x.
2. For k from 1 to m do:

– if ◦k = / and Ljk
6∈ Z∗n then return ⊥,

– else set Lk := Lik
◦ Ljk

.
3. Return P (x) = Lm.

We say that each triple (i, j, ◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote
with Pk the straight line program given by the sequence of the first k elements of
P , with the additional convention that P−1(x) = 1 and P0(x) = x for all x ∈ Zn.

2.4 Generic Ring Algorithms

Similar to straight line programs, generic ring algorithms perform a sequence
of ring operations on the input values 1, x ∈ Zn. However, while straight line
programs perform the same fixed sequence on ring operations to any input value,
generic ring algorithms can decide adaptively which ring operation is performed
next. The decision is made either based on equality checks, or on coin tosses.
Moreover, the output of generic ring algorithms is not restricted to ring elements.

We formalize the notion of generic ring algorithms in terms of a game between
an algorithm A and a black-box O, the generic ring oracle. The generic ring
oracle receives as input a secret value x ∈ Zn. It maintains a sequence P , which
is set to the empty sequence at the beginning of the game, and implements two
internal subroutines test() and equal().

– The test()-procedure takes a tuple (j, ◦) ∈ {−1, . . . , |P |} × {+,−, ·, /} as in-
put. The procedure returns false if ◦ = / and Pj(x) 6∈ Z∗n, and true otherwise.

– The equal()-procedure takes a tuple (i, j) ∈ {−1, . . . , |P |}×{−1, . . . , |P |} as
input. The procedure returns true if Pi(x) ≡ Pj(x) mod n and false other-
wise.

In order to perform computations, the algorithm submits SLP-steps to O.
Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /}, the oracle runs
test(j, ◦). If test(j, ◦) = false, the oracle returns the error symbol ⊥. Otherwise
(i, j, ◦) is appended to P . Moreover, the algorithm can query the oracle to check
for equality of computed ring elements by submitting a query (i, j, ◦) such that
◦ ∈ {=}. In this case the oracle returns equal(i, j). We measure the complexity
of A by the number of oracle queries.

2.5 Some Lemmas on Straight Line Programs over Zn

In the following we will state a few lemmas on straight line programs over Zn

that will be useful for the proof of our main theorem.

Lemma 2. Suppose there exists a straight line program P such that for x, x′ ∈
Zn holds that P (x′) 6=⊥ and P (x) =⊥. Then there exists Pj v P such that
Pj(x′) ∈ Z∗n and Pj(x) 6∈ Z∗n.

Proof. P (x) =⊥ means that there exists an SLP-step (i, j, ◦) ∈ P such that
◦ = / and Lj = Pj(x) 6∈ Z∗n. However, P (x′) does not evaluate to ⊥, thus it
must hold that Pj(x′) ∈ Z∗n.

The following lemma provides a lower bound on the probability of factoring
n by evaluating a certain straight line program P with y U← U [C] and computing
gcd(n, P (y)), relative to the probability that P (x′) 6∈ Z∗n and P (x) ∈ Z∗n for
randomly chosen x, x′

U← C.

Lemma 3. For any straight line program P and C ⊆ Zn holds that

Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]

≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← U [C]

]
.

Similar to the above, the following lemma provides a lower bound on the prob-
ability of factoring n by computing gcd(n, P (y)−Q(y)) with y

U← U [C] for two
given straight line programs P and Q, relative to the probability Pr[(P (x) ≡n

Q(x) and P (x′) 6≡n Q(x′)) | x, x′ U← C].

Lemma 4. For any pair (P,Q) of straight line programs and C ⊆ Zn holds that

Pr
[
P (x) ≡n Q(x) and P (x′) 6≡n Q(x′) | x, x′ U← C

]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)−Q(y)) 6∈ {1, n} | y U← U [C]

]
.

The proofs of Lemma 3 and 4 are based on the Chinese Remainder Theorem.
Full proofs are given in Appendix C and D of the full version [13]. We also discuss
the intuition behind these lemmas in Appendix E of [13].

3 Subset Membership Problems in Generic Rings

Definition 3 (Subset Membership Problem). Let C ⊆ Zn and V ⊆ Zn be
subsets of Zn such that V ⊆ C ⊆ Zn. The subset membership problem defined
by (C,V) is: given x

U← C, decide whether x ∈ V.

Whenever considering a subset membership problem in the following we assume
that |V| > 1.

Let (C,V) be subsets of Zn defining a subset membership problem. We for-
malize the notion of subset membership problems in the generic ring model in
terms of a game between an algorithm A and a generic ring oracle Osmp. Ora-
cle Osmp is defined exactly like the generic ring oracle described in Section 2.4,
except that Osmp receives a uniformly random element x U← C as input. We say
that A wins the game, if x ∈ V and AOsmp(n) = 1, or x 6∈ V and AOsmp(n) = 0.

Note that any algorithm for a given subset membership problem (C,V) has
at least the trivial success probability Π(C,V) := max{|V|/|C|, 1 − |V|/|C|} by
guessing, due to the fact that x is sampled uniformly from C. For an algorithm
solving the subset membership problem given by (C,V) with success probability
Pr[S], we denote with

Adv(C,V)(AOsmp(n)) := |Pr[S]−Π(C,V)|

the advantage of A.

Theorem 1. For any generic ring algorithm A solving a given subset member-
ship problem (C,V) over Zn with advantage Adv(C,V)(AOsmp(n)) by performing
m queries to Osmp, there exists an algorithm B that outputs a factor of n with
success probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on dlog2 ne-bit numbers, and sampling m random elements from
U [C].

Proof Outline. We replace Osmp with a simulator Osim. Let Ssim denote the
event that A is successful when interacting with the simulator, and let F denote
the event that Osim answers a query of A different from how Osmp would have
answered. Then Osmp and Osim are indistinguishable unless F occurs. There-
fore the success probability Pr[S] of A in the simulation game is upper bound
by Pr[Ssim] + Pr[F]. We derive a bound on Pr[Ssim] and describe a factoring
algorithm whose success probability is lower bound by Pr[F].

3.1 Introducing a Simulation Oracle

We replace oracle Osmp with a simulator Osim. Osim receives x U← C as input, but
never uses this value throughout the game. Instead, all computations are per-
formed independent of the challenge value x. Note that the original oracle Osmp

uses x only inside the test() and equal() procedures. Let us therefore consider
an oracle Osim which is defined exactly like Osmp, but replaces the procedures
test() and equal() with procedures testsim() and equalsim().

– The testsim()-procedure samples xr
U← C and returns false if ◦ = / and

Pj(xr) 6∈ Z∗n, and true otherwise (even if Pj(xr) =⊥).
– The equalsim()-procedure samples xr

U← C and returns true if Pi(xr) ≡
Pj(xr) mod n and false otherwise (even if Pi(xr) =⊥ or Pj(xr) =⊥).

Note that the simulator samples m random values xr, r ∈ {1, . . . ,m}. Also note
that all computations of A are independent of the challenge value x when inter-
acting with Osim. Hence, any algorithm A has at most trivial success probability
in the simulation game, and therefore

Pr[Ssim] ≤ Π(C,V).

3.2 Bounding the Probability of Simulation Failure

We say that a simulation failure, denoted F , occurs if Osim does not simulate
Osmp perfectly. Observe that an interaction of A with Osim is perfectly indis-
tinguishable from an interaction with Osmp, unless at least one of the following
events occurs.

1. The testsim()-procedure fails to simulate test() perfectly. This means that
testsim() returns false on a procedure call where test() would have returned
true, or testsim() returns true where test() would have returned false. Let
Ftest denote the event that this happens on at least one call of testsim().

2. The equalsim()-procedure fails to simulate equal() perfectly. This means that
equalsim() has returned true where equal() would have returned false, or
equalsim() has returned false where equal() would have returned true. Let
Fequal denote the event that this happens at at least one call of equalsim().

Since F implies that at least one of the events Ftest and Fequal has occurred, it
holds that

Pr[F] ≤ Pr[Ftest] + Pr[Fequal].

In the following we will bound Pr[Ftest] and Pr[Fequal] separately.

Bounding the Probability of Ftest. The testsim()-procedure fails to simulate
test() only if either testsim() has returned false where test() would have returned
true, or testsim() has returned true where test() would have returned false. A
necessary condition2 for this is that there exists Pj v P and xr ∈ {x1, . . . , xm}
such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n),

or
(Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n) or (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n).

We can simplify this condition a little by applying Lemma 2. The existence of
Pj v P and xr such that (Pj(xr) =⊥ and Pj(x) 6∈ Z∗n) implies the existence
of Pk v P such that k < j and (Pk(xr) 6∈ Z∗n and Pk(x) ∈ Z∗n). An analogous
argument holds for the case (Pj(x) =⊥ and Pj(xr) 6∈ Z∗n). Hence, testsim()-
procedure fails to simulate test() only if there exists Pj v P such that

(Pj(x) ∈ Z∗n and Pj(xr) 6∈ Z∗n) or (Pj(xr) ∈ Z∗n and Pj(x) 6∈ Z∗n).

Proposition 1.

Pr[Ftest] ≤ 2m(m+ 2) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

We sketch the proof of Proposition 1 in Appendix B. A full proof is given in
Appendix F of the full version.

Bounding the Probability of Fequal The equalsim()-procedure fails to sim-
ulate equal() only if either equalsim() has returned false where equal() would
have returned true, or equalsim() has returned true where equal() would have
returned false. A necessary3 condition for this is that there exist Pi, Pj v P and
xr ∈ {x1, . . . , xm} such that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr))
or (Pi(x) ≡n Pj(x) and (Pi(xr) =⊥ or Pj(xr) =⊥))
or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x))
or (Pi(xr) ≡n Pj(xr) and (Pi(x) =⊥ or Pj(x) =⊥)).

Again we can apply Lemma 2 to simplify this a little: the existence of Pj ∈ P
and xr such that (Pj(xr) =⊥ and Pj(x) 6=⊥) implies the existence of Pk ∈ P
such that (Pk(xr) 6∈ Z∗n and Pk(x) ∈ Z∗n). Analogous arguments hold for the

2 The condition is not sufficient, because algorithm A need not have queried a division
by Pj in its r-th query.

3 The condition is not sufficient, because algorithm A need not have queried (i, j, =)
in its r-th query.

other cases where one straight line program evaluates to ⊥. Hence, equalsim()-
procedure fails to simulate equal() only if there exist Pi, Pj v P or Pk v P such
that

(Pi(x) ≡n Pj(x) and Pi(xr) 6≡n Pj(xr))
or (Pi(xr) ≡n Pj(xr) and Pi(x) 6≡n Pj(x))
or (Pk(xr) 6∈ Z∗n and Pk(x) ∈ Z∗n)
or (Pk(x) 6∈ Z∗n and Pk(xr) ∈ Z∗n).

Proposition 2.

Pr[Fequal] ≤ 2m(m2 + 3m+ 1)Φ+ 2m(m+ 1)Ψ,

where

Φ = max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′ U← C

]}
Ψ = max

0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

The proof of Proposition 2, which is based on the same ideas as the proof of
Proposition 1, is given in Appendix G of the full version.

Bounding the Probability of F . Summing up, we obtain that the total
probability of F is at most

Pr[F] ≤ Pr[Ftest] + Pr[Fequal]

≤ 2m(m2 + 3m+ 1)Φ+ 4m(m+ 1)Ψ.

where Φ and Ψ are defined as above.

3.3 Bounding the Success Probability

Since all computations of A are independent of the challenge value x in the
simulation game, any algorithm has only the trivial success probability when
interacting with the simulator. Thus the success probability of any algorithm
when interacting with the original oracle is bound by

Π(C,V) + Adv(C,V)(AOsmp) = Pr[S] ≤ Pr[Ssim] + Pr[F] ≤ Π(C,V) + Pr[F],

which implies

Adv(C,V)(AOsmp) ≤ Pr[F].

3.4 The Factoring Algorithm

Consider a factoring algorithm B running A, recording the sequence of queries
A issues, and proceeding as follows.

– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /} in its r-th
query, the algorithm samples y

U← U [C] and computes gcd(Pk(y), n) for
0 ≤ k ≤ r.

– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {=} in its r-th query,
the algorithm samples y U← U [C] and computes gcd(Pi(y) − Pj(y), n) for
−1 ≤ i < j ≤ r.

Running time. By assumption,A submits m queries. Thus, the algorithm eval-
uates O(m2) straight line programs. Each query can be evaluated by performing
at most m steps, which yields O(m3) operations in Zn. Moreover, the algorithm
samples m random values y from U [C] and performs m gcd-computations on
dlog2 ne-bit numbers.

Success probability. B evaluates any straight line program Pk with a uni-
formly random element y of U [C]. In particular, B computes gcd(Pk(y), n) for
y

U← U [C] and the straight line program Pk v P satisfying

Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]

= max
0≤k≤m

{
Pr
[
Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′

U← C
]}

.

Let γ1 := max0≤k≤m{Pr[Pk(x) 6∈ Z∗n and Pk(x′) ∈ Z∗n | x, x′
U← C]}, then

by Lemma 3 algorithm B finds a factor in this step with probability at least

γ1

(
|C|
|U [C]|

)2

.
Moreover, B evaluates any pair Pi, Pj of straight line programs in P with a

uniformly random element y U← U [C]. So in particular B evaluates gcd(Pi(y) −
Pj(y), n) with y

U← U [C] for the pair of straight line programs Pi, Pj v P satis-
fying

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′ U← C

]
= max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′ U← C

]}
.

Let γ2 := max−1≤i<j≤m{Pr[Pi(x) ≡n Pj(x) and Pi(x′) 6≡n Pj(x′) | x, x′ U← C]},
then by Lemma 4 algorithm B succeeds in this step with probability at least

γ2

(
|C|
|U [C]|

)2

. So, for γ := max{γ1, γ2}, the total success probability of algorithm
B is at least

γ

(
|C|
|U [C] |

)2

.

Relating the success probability of B to the advantage of A. Using the
above definitions of γ1, γ2, and γ, the fact that Adv(C,V)(AOsmp(n)) ≤ Pr[F],
and the derived bound on Pr[F], we can obtain a lower bound on γ by

Adv(C,V)(AOsmp(n)) ≤ Pr[F] ≤ 4m(m+ 1)γ1 + 2m(m2 + 3m+ 1)γ2

≤ 2m(m2 + 5m+ 3)γ,

which implies the inequality

γ ≥
Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

.

Therefore the success probability of B is at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

.

4 Computing the Jacobi Symbol with Generic Ring
Algorithms

Let us denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Z∗n | x ≡ y2 mod n, y ∈ Z∗n}.

Let (x | n) denote the Jacobi symbol [23, p.287] and let Jn := {x ∈ Zn | (x | n) =
1} be the set of elements of Zn having Jacobi symbol 1. Recall that QRn ⊆ Jn,
and therefore given x ∈ Zn\Jn it is easy to decide that x is not a quadratic
residue by computing the Jacobi symbol.

There exist simple efficient algorithms computing the Jacobi symbol in Zn

without factoring n. These algorithms are not generic, cf. [23, p.288].

Theorem 2. Suppose there exist a generic ring algorithm A solving the subset
membership problem given by (C,V) with C = Z∗n and V = Jn with advantage
Adv(C,V)(AOsmp(n)) by performing m ring operations. Then there exists an algo-
rithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on dlog2 ne-bit numbers, and sampling m random elements from
Z∗n.

Proof. The theorem follows by applying Theorem 1 and the fact that U [Z∗n] =
Z∗n, since (

|C|
|U [C] |

)2

=
(
|Z∗n|
|Z∗n|

)2

= 1

5 The Generic Quadratic Residuosity Problem and
Factoring

Definition 4 (Quadratic Residuosity Problem). The quadratic residuosity
problem is the subset membership problem given by C = Jn and V = QRn.

Given the factorization of n, solving the quadratic residuosity problem in Zn is
easy, also for generic ring algorithms. Thus, in order to show the equivalence
of generic quadratic residuosity and factoring, we have to prove the following
theorem.

Theorem 3. Suppose there exist a generic ring algorithm A that solves the
quadratic residuosity problem in Zn with advantage Adv(C,V)(AOsmp(n)) by per-
forming m ring operations. Then there exists an algorithm B finding a factor of
n with probability at least

Adv(C,V)(AOsmp(n))
8m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on dlog2 ne-bit numbers, and sampling m random elements from
Z∗n.

Proof. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends
on whether n is a square in N.

|Jn| =

{
φ(n)/2, if n is not a square in N,
φ(n), if n is a square in N,

where φ(·) is the Euler totient function [23, p.24]. Note also that U [Jn] = U [C] =
Z∗n. Therefore it holds that |Jn| = |C| ≥ φ(n)/2 and |U [C] | = |Z∗n| = φ(n). Thus
we can apply Theorem 1, using that(

|C|
|U [C] |

)2

=
(
|Jn|
|Z∗n|

)2

≥
(
φ(n)/2
φ(n)

)2

=
1
4
.

6 The Generic Subgroup Decision Problem and Factoring

Let n = pq and let G be a cyclic group of order n. Then there exists a subgroup
Gp ⊆ G of order p.

Definition 5 (Subgroup Decision Problem). The subgroup decision prob-
lem is the subset membership problem (C,V) with C = G and V = Gp.

Recall that any cyclic group of order n is isomorphic to the additive group of
integers (Zn,+). Now, since we are going to consider generic algorithms, we may
assume that the algorithm operates on the group G = (Zn,+), of course without

exploiting any property of this representation.4 Assuming an oracle DH solving
the Diffie-Hellman problem in G, we observe that this operation corresponds to
the multiplication in Zn. Hence, the group G together with oracle DH exhibits
the same algebraic structure as the ring Zn.

By the Chinese Remainder Theorem, the ring Zn is isomorphic to the direct
product Zp ×Zq. Let φ : Zp ×Zq → Zn denote this isomorphism. The subgroup
Gp of G with order p consists of the elements Gp = {φ(xp, 0) | xp ∈ Zp}. So for
generic ring algorithms the subgroup decision problem can be stated as: given
x ∈ Zn, decide whether x ≡ 0 mod q.

In order to model the generic subgroup decision problem, consider an oracle
Osdp which is defined exactly like the generic ring oracle described in Section 2.4,
except that it does not provide the operation /. Osdp receives an element x ∈ Zn

as input, where x is constructed as follows: sample (xp, xq) U← Zp × Zq and bit
b

U← {0, 1} uniformly random, and let x := φ(xp, bxq). An algorithm can query
the oracle for the (inverse) group operation by submitting a query (i, j, ◦) with
◦ ∈ {+,−}. The Diffie-Hellman oracle is queried by submitting (i, j, ◦) with
◦ ∈ {·}.

We say that the algorithm wins the game, if x ∈ Gp and AOsdp(n) = 1, or
x 6∈ Gp and AOsdp(n) = 0. We define the advantage of an algorithm A solving
the subgroup decision problem with probability Pr[S] as

Adv(AOsdp(n)) :=
∣∣∣∣Pr[S]−

(
1
2

+
1
q

)∣∣∣∣ .
Remark 1. If we would also allow to query the oracle for divisions (which cor-
respond to an “inverse Diffie-Hellman oracle” in the above setting), then there
would be a simple algorithm determining whether x ∈ Gp by returning true iff
division by x fails. Interestingly, we will show that there is no generic algorithm
making similar use of a standard Diffie-Hellman oracle, unless factoring n is easy.
Therefore a further consequence of the theorem presented in the following section
is that a standard Diffie-Hellman oracle does not imply a inverse Diffie-Hellman
oracle in general, unless factoring is easy.

Remark 2. The subgroup decision problem was introduced in [5] for groups with
bilinear pairing. Essentially such a pairing can be added to the generic model by
allowing the algorithm to perform a single multiplication operation when eval-
uating the bilinear pairing map,5 as done in [4]. By providing a Diffie-Hellman
oracle, we do not restrict the algorithm to a fixed number of multiplications.
Hence, our proof includes the problem stated in [5] as a special case.

4 One may equivalently assume that the generic group oracle uses the group (Zn, +)
for the internal representation of group elements.

5 Plus some minor technical details to distinguish between different groups.

6.1 Generic Equivalence to Factoring

In the sequel we show that solving the subgroup decision problem in groups of
order n is as hard as factoring n, even if the algorithm has access to an oracle
solving the Diffie-Hellman problem.

Theorem 4. Suppose there exist a generic ring algorithm A solving the sub-
group membership problem in G with advantage Adv(AOsdp(n)) by making m
queries to an oracle performing the (inverse) group operation and solving the
Diffie-Hellman problem. Then there exists an algorithm B finding a factor of n
with probability at least Adv(AOsdp(n)) by running A once and performing O(m3)
additional operations in Zn and m gcd-computations on dlog2 ne-bit numbers.

Proof. Let us consider an interaction of A with an oracle Op which is defined as
follows. Op works similar to Osdp, but performs all computations in Zp. That is,
the equal()-procedure returns true on input (i, j) iff Pi(x) ≡ Pj(x) mod p. Note
that now all computations are performed in the Zp-component of the decompo-
sition Zp × Zq of Zn, hence the algorithm receives no information on whether
x ≡ 0 mod q. Thus in the simulation game any algorithm has only trivial success
probability Pr[Ssim] = 1/2 + 1/q.

Now consider an interaction of A with oracle Osdp. Either this interaction
is indistinguishable from an oracle Op, in which case the algorithm has only
trivial success probability, or there exist Pi, Pj v P with such that Pi(x) ≡
Pj(x) mod p, but Pi(x) 6≡ Pj(x) mod n. In this case a factor of n is found by
computing gcd(Pi(x)− Pj(x), n). Note that

1
2

+ Adv(C,V)(AOsdp(n)) ≤ Pr[Ssim] + Pr[F]

⇐⇒ Adv(C,V)(AOsdp(n)) ≤ Pr[F]

Thus, n is factored this way by running A, recording P and computing

gcd(Pi(x)− Pj(x), n)

for all −1 ≤ i < j ≤ m with probability at least Adv(C,V)(AOsdp(n)).

The above proof generalizes from n = pq to n =
∏k

i=1 p
ei
i for all subgroups with

prime-power order pei
i in a straightforward manner.

7 Analyzing Search Problems in the Generic Ring Model

In Section 3 we have constructed a simulator for a generic ring oracle for the ring
Zn. When interacting with the simulator, all computations are independent of
the secret challenge value x. Therefore we have been able to conclude that any
generic algorithm has only the trivial probability of success in solving certain
decisional problems (namely the considered subset membership problems) when
interacting with the simulator. Moreover, we have shown that any algorithm

that can distinguish between simulator and original oracle can be turned into a
factoring algorithm with (asymptotically) the same running time.

In contrast to decisional problems, where the algorithm outputs a bit, our
construction of the simulator can also be applied to prove the generic hardness
of search problems where the algorithm outputs a ring element or integer. Let
us sketch two possibilities. The first one is to formulate a suitable subset mem-
bership problem which reduces to the considered search problem and then apply
Theorem 1. Another possibility is to use our construction of the simulator to
bound the probability of a simulation failure relative to factoring. In order to
bound the success probability in the simulation game, it remains to show that
there exists no straight line program solving the considered problem efficiently
under the factoring assumption.

Acknowledgements. We would like to thank Andy Rupp and Sven Schäge for
helpful discussions, and Yvo Desmedt and the program commitee members for
valuable suggestions.

References

1. Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to
factoring. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes
in Computer Science, pages 36–53. Springer, 2009.

2. Kristina Altmann, Tibor Jager, and Andy Rupp. On black-box ring extraction
and integer factorization. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
(2), volume 5126 of Lecture Notes in Computer Science, pages 437–448. Springer,
2008.

3. John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based
hash function. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture
Notes in Computer Science, pages 328–340. Springer, 2006.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

5. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer, 2005.

6. Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their ap-
plication to cryptography (extended abstract). In Neal Koblitz, editor, CRYPTO,
volume 1109 of Lecture Notes in Computer Science, pages 283–297. Springer, 1996.

7. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent
to factoring. In Kaisa Nyberg, editor, EUROCRYPT, volume 1403 of Lecture Notes
in Computer Science, pages 59–71. Springer, 1998.

8. Daniel R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology
ePrint Archive, Report 2005/380, 2005. http://eprint.iacr.org/.

9. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

10. Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and
signature schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT,
volume 2332 of Lecture Notes in Computer Science, pages 256–271. Springer, 2002.

11. Alexander W. Dent. Adapting the weaknesses of the random oracle model to the
generic group model. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of
Lecture Notes in Computer Science, pages 100–109. Springer, 2002.

12. Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki
Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Sci-
ence, pages 458–469. Springer, 2000.

13. Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assump-
tions in the generic ring model, full version. Cryptology ePrint Archive, 2009.
http://eprint.iacr.org/.

14. Neal Koblitz and Alfred J. Menezes. Another look at generic groups. pages 13–28,
2006.

15. Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regard-
ing generic ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT,
volume 4284 of Lecture Notes in Computer Science, pages 241–251. Springer, 2006.

16. Ueli Maurer and Dominik Raub. Black-box extension fields and the inexistence
of field-homomorphic one-way permutations. In Kaoru Kurosawa, editor, ASI-
ACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 427–443.
Springer-Verlag, 2007.

17. Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P.
Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2005.

18. Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups.
In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, volume 1403
of Lecture Notes in Computer Science, pages 72–84, 1998.

19. Ueli M. Maurer and Stefan Wolf. The relationship between breaking the
Diffie-Hellman protocol and computing discrete logarithms. SIAM J. Comput.,
28(5):1689–1721, 1999.

20. Phong Q. Nguyen and Igor Shparlinski. On the insecurity of a server-aided RSA
protocol. In Colin Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in
Computer Science, pages 21–35. Springer, 2001.

21. Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-
Reza Sadeghi. Sufficient conditions for intractability over black-box groups:
Generic lower bounds for generalized DL and DH problems. In Josef Pieprzyk,
editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer Science, pages
489–505. Springer, 2008.

22. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology - EUROCRYPT 1997, volume 1233
of Lecture Notes in Computer Science, pages 256–266, 1997.

23. Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2005.

A Proof Sketch for Lemma 3

For notational convenience, let us define Γ (P) := Pr[P (x′) 6∈ Z∗n and P (x) ∈
Z∗n | x, x′

U← C] and Λ(P) := Pr[gcd(n, P (y)) 6∈ {1, n} | y U← U [C]]. Thus, in
order to prove Lemma 3 we have to show that the inequality(

|U [C] |
|C|

)2

Λ(P) ≥ Γ (P) (1)

holds. To this end, we will define an auxiliary function νi(P). Then we express
Γ (P) and Λ(P) in terms of νi(P). More precisely, we will upper bound Γ (P) by
an expression in νi(P) and lower bound Λ(P) by an expression in νi(P). The
resulting inequality is proven easily by complete induction.

Defining an auxiliary function. Recall that we denote with n =
∏k

i=1 p
ei
i

the prime factor decomposition of n. Let

νi(P) := Pr
[
P (x) ≡ 0 mod pi | x

U← U [C]
]

be the probability that P (x) ≡ 0 mod pi for some prime pi dividing n and x
U←

U [C]. Recall that φ : Zp
e1
1
×· · ·×Zp

ek
k
→ Zn is a ringisomorphism, and P performs

only ring operations in Zn. Therefore P implicitly performs all operations on each
component Zp

ei
i

separately (and independently). Moreover, sampling x U← U [C]
is equivalent to sample φ(x1, . . . , xk) with xi chosen independently and uniform
from Ci for 1 ≤ i ≤ k (cf. Lemma 1). Thus we can express the probability that
P (x) ∈ Z∗n for x U← U [C] as

Pr
[
P (x) ∈ Z∗n | x

U← U [C]
]

=
k∏

i=1

(1− νi(P)).

Bounding Γ (P) in terms of νi(P). For independently sampled x, x′, we
have

Γ (P) = Pr
[
P (x′) 6∈ Z∗n and P (x) ∈ Z∗n | x, x′

U← C
]

= Pr
[
P (x) 6∈ Z∗n | x

U← C
]
· Pr

[
P (x) ∈ Z∗n | x

U← C
]

Note that, since C ⊆ U [C], it holds that

Pr
[
P (x) ∈ Z∗n | x

U← C
]
≤ Pr

[
P (y) ∈ Z∗n | y

U← U [C]
] |U [C] |
|C|

and similarly

Pr
[
P (x) 6∈ Z∗n | x

U← C
]
≤
(

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
]) |U [C] |

|C|
.

Therefore we can conclude that

Γ (P) ≤ Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] (

1− Pr
[
P (y) ∈ Z∗n | y

U← U [C]
])(|U [C] |

|C|

)2

=
k∏

i=1

(1− νi(P))

(
1−

k∏
i=1

(1− νi(P))

)(
|U [C] |
|C|

)2

. (2)

Bounding Λ(P) in terms of νi(P). We can find a factor of n by computing
gcd(n, P (y)), if P (y) ≡ 0 mod pi for at least one prime pi dividing n, and P (y) 6≡
0 mod n. Using similar arguments as above, we can therefore express Λ(P) in
terms of νi(P) as

Λ(P) = Pr
[
gcd(n, P (y)) 6∈ {1, n} | y U← C

]
= 1−

k∏
i=1

νi(P)−
k∏

i=1

(1− νi(P)). (3)

Putting things together. Combining (2) and (3), we see that (1) holds if(
1−

k∏
i=1

(1− νi(P))

)2

≥
k∏

i=1

νi(P)

holds, which is shown easily by complete induction on k ≥ 2.

B Proof Sketch for Proposition 1

If there exists Pj such that (Pj(x) =⊥ and Pj(xr) 6=⊥), then this implies that
there exists Pk v P with k < j such that (Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n)
by Lemma 2. Hence, in order to bound the probability of Ftest, it suffices to
consider the probability that there exists a straight line program Pj v P such
that

(Pj(xr) 6∈ Z∗n and Pj(x) ∈ Z∗n) or (Pj(x) 6∈ Z∗n and Pj(xr) ∈ Z∗n) (4)

for x, x1, . . . , xm
U← C.

By (essentially) applying the union bound we can see that for fixed Pj this
probability is bounded by

2mPr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]
.

Using this, we obtain the following bound on the probability that there exists
any Pj v P satisfying (4).

Pr[Ftest] ≤ 2m
m∑

j=0

Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]

≤ 2m(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) 6∈ Z∗n and Pj(x′) ∈ Z∗n | x, x′

U← C
]}

