
Improved generic algorithms for 3-collisions

Antoine Joux1 and Stefan Lucks2

1 dga and Université de Versailles Saint-Quentin-en-Yvelines
uvsq prism, 45 avenue des États-Unis, f-78035, Versailles cedex, France

antoine.joux@m4x.org
2 Bauhaus-Universität Weimar, 99423 Weimar, Germany

Stefan.Lucks@uni-weimar.de

Abstract. An r-collision for a function is a set of r distinct inputs with
identical outputs. Actually finding r-collisions for a random map over a
finite set of cardinality N requires at least about N (r−1)/r units of time
on a sequential machine. For r=2, memoryless and well-parallelizable
algorithms are known. The current paper describes memory-efficient and
parallelizable algorithms for r ≥ 3. The main results are: (1) A sequential
algorithm for 3-collisions, roughly using memory Nα and time N1−α

for α ≤ 1/3. In particular, given N1/3 units of storage, one can find
3-collisions in time N2/3. (2) A parallelization of this algorithm using
N1/3 processors running in time N1/3, where each single processor only
needs a constant amount of memory. (3) A generalisation of this second
approach to r-collisions for r ≥ 3: given Ns parallel processors, with
s ≤ (r−2)/r, one can generate r-collisions roughly in time N ((r−1)/r)−s,
using memory N ((r−2)/r)−s on every processor.

Keywords: multicollision, random map, memory-efficient, parallel implementa-
tion, cryptanalysis

1 Introduction

The problem of finding collisions and multicollisions in random mappings is
of significant interest for cryptography, and mainly for cryptanalysis. It is well
known that finding an r-collision for a random map over a finite set of cardinality
N requires 3 more than N (r−1)/r map evaluations.

Multicollisions for hash functions. If the map under consideration is a hash func-
tion, or has been derived from a hash function, many researchers consider faster
multicollisions as a certificational hash function weakness. Accordingly, it was
worrying for the research community to learn that multicollisions could be found
much faster for a widely used class of hash functions: iterated hash functions [9].
For n-bit hash functions from this class, one can generate 2k-collisions in time
3 An r-collision is a set of r different inputs x1, . . . , xr which all generate the same

output map(x1) = · · · = map(xr). For an r-collision, one needs to evaluate the map
(r!)1/r ·N (r−1)/r times [22]. For small r, we can approximate this by O(N (r−1)/r).



k · 2n/2, rather than the expected time 2n(2k−1)/2k

. The basic observation is
straightforward: given a sequence of k consecutive 2-collisions, it is possible with
iterated hash functions to consider the 2k different messages obtained by taking
all possible choices of message block for each collision and obtain 2k times the
same output. These iterated multicollisions have been generalized later, to more
complex types of iterated hash functions, for example, see [6, 13, 7]. It was also re-
marked that these iterated multicollisions were a rediscovery and generalization
of an older attack of Coppersmith [2].

In particular, this type of multicollisions allowed a surprising attack on hash
cascades, i.e., hash functions H, which are the concatenation of two hash func-
tions G1 and G2, i.e., H(X) := (G1(X), G2(X)). If, say, G1 is an iterated
hash function and vulnerable to the multicollision attack, and G2 is any n-bit
hash function, the adversary just needs to generate a 2n/2-multicollision for G1.
Thanks to the birthday paradox, among the 2n/2 messages colliding for G1, one
expects to find a pair of messages colliding for G2 with constant probability. As
a consequence, a collision for the 2n-bit hash function H can be obtained with
much less than 2n hash evaluations.

Multicollisions for random maps. In contrast to [9], we consider generic attacks,
and, accordingly, we model our functions as random maps. In that case, the
number of N (r−1)/r is a lower bound on the sequential time required for finding a
r-collision, and time-optimal algorithms are well-known. Furthermore, it is well-
known how to find ordinary collisions (aka 2-collisions) with negligible memory
(using Floyd, Brent or Nivasch [15] cycle finding algorithms), and also how to
parallelize these algorithms using distinguished point methods [18–20, 23–27].

In general, the issue of memory-efficient and parallelizable r-collision algo-
rithms appears to be an unsolved question. Authors usually assume N (r−1)/r

units of memory (i.e., the maximum any algorithm can use in the given amount
of time) and neglect parallelization entirely. For recent examples of the applica-
tion of multicollisions to cryptography, see, e.g., the cryptanalysis of the SHA-3
candidates Aurora-512 [3, 21] and JH-512 [12, 29]. We stress that [3, 21, 12, 29]
employ generic multicollisions as a part of their attacks, always assuming maxi-
mum memory and ignoring the issue of parallel implementations.

So the question is, do authors need to be so pessimistic, or are there memory-
efficient and parallelizable algorithms for r-collisions? For small r, and mainly
for r = 3, the current paper provides a clearly positive answer. As an applica-
tion of our results, we will observe attacks on the SHA-3 candidate hash function
Aurora-512. These attacks make heavy use of multicollisions on internal struc-
tures. Some attacks on other SHA-3 candidates don’t benefit from our algorithms
for different reasons. See section B of the appendix.

Notation. To avoid writing cumbersome logarithmic factors, we often express
running times using the soft-Oh-notation. Namely, Õ(g(n)) is used as a short-
hand for O(g(n) · log(g(n))k) for some fixed k.

2



2 Known algorithm for 3-collisions

While the number of values that needs to be computed before a 3-collision can
be formed is often considered and analyzed, e.g. in [17, Appendix B] or [22], the
known algorithmic method to find such a 3-collision is rarely considered in detail
and is mostly folklore. In order to compare the new algorithms which we describe
in sections 3 to 6 with existing algorithms, we thus give a precise description of
the folklore algorithm, together with a larger variety of time/memory tradeoffs.
Throughout this section, we fix two parameters α and β and consider 3-collisions
for a function F defined on a set of cardinality N . The parameter α controls the
amount of memory, limiting it to Õ(Nα). Similarly, β controls the running time,
at Õ(Nβ). Of course, these parameters need to satisfy the relation α ≤ β.

We consider Algorithm 1. This algorithm is straightforward. First, it com-
putes, stores and sorts Nα images of random points under F . For bookkeeping
purposes, it also keeps track of the corresponding preimages. Second, it computes
Nβ additional images of random points and seek each in the precomputed table.
Whenever a hit occurs, it is stored together with the initial preimage in the
sorted table. The algorithm succeeds if one of the Nα original images is found
twice more during the second phase and if the three corresponding preimages
are distinct. In the formal description given as Algorithm 1, we added an op-
tional step which packs colliding values generated during the first step into the
same array element. If this optional step is omitted, then the early collisions are
implicitly discarded. Indeed, in the second phase, we make sure that the search
algorithm always returns the first position where a given value occurs among
the known images F (x). During the complexity analysis, we ignore the optional
packing step since it runs in time Nα and can only improve the overall running
time by making the algorithm stop earlier.

We now perform a rough heuristic analysis of Algorithm 1, where constants
and logarithmic factors are ignored. On average, among the Nβ images of the
second phase, we expect that Nα+β−1 values hit the sorted table of Nα elements.
Due to the birthday paradox, after Nα/2 hits, we expect a double hit to occur. At
that point, the algorithm succeeds if the three known preimages corresponding
to the double hit are distinct, which occurs with constant probability. For the
algorithm to succeed, we need:

α+ β − 1 ≥ α/2,

as a consequence, to minimize the running time, we enforce the condition:

α+ 2β = 2. (1)

For α = β, we find α = β = 2/3 and obtain the classical folklore result with time
and memory Õ(N2/3). Other tradeoffs are also possible. With constant memory,
i.e. α = 0, we find a running time Õ(N). Another tradeoff with α = 1/2 and
β = 3/4 will be used as a point of comparison in section 3.

3



Algorithm 1 Folklore 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Parameters: α ≤ β satisfying condition 1

Let Nα ←− dNαc
Let Nβ ←−

˚
Nβ
˝

Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let a←−R [0, N − 1]
Let Img[i]←− F (a)
Let Pr1[i]←− a
Let Pr2[i]←− ⊥

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i←− 1
while i < Nα do

Let j ←− i+ 1
while Img[i] == Img[j] do

if Pr1[i] 6= Pr1[j] then
if Pr2[i] == ⊥ then

Let Pr2[i]←− Pr1[j]
else

if Pr2[i] 6= Pr1[j] then
Output ‘3-Collision (Pr1[i],Pr2[i],Pr1[j]) under F ’ and Exit

end if
end if

end if
Let j ←− j + 1

end while
Let i←− j

end while

Second step:
for i from 1 to Nβ do

Let a←−R [0, N − 1]
Let b←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] 6= a then
if Pr2[j] == ⊥ then

Let Pr2[j]←− a
else

if Pr2[j] 6= a then
Output ‘3-Collision (Pr1[j],Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for

4



3 A new algorithm for 3-collisions

Now equipped with an analysis of Algorithm 1, we are ready to propose a new al-
gorithm which offers different time-memory tradeoffs, which are better balanced
for existing hardware. The basic idea is extremely simple: Instead of initializing
an array with Nα images, we propose to initialize it with Nα collisions under
F . To make this efficient in terms of memory use, each collision in the array
is generated using a cycle finding algorithm on a (pseudo-)randomly permuted
copy of F . Since each collision is found in time N1/2 the total running time of
this new first step is N1/2+α.

The second step is left unchanged, we simply create Nβ images of random
points until we hit one of the known collisions. Note that, thanks to the new
first phase, it now suffices to land once on a known point to succeed. As a
consequence, we can replace condition 1 by the weaker condition:

α+ β = 1. (2)

Since the running time of the first step is N1/2+α, it would not make sense
to have β < 1/2 + α. Thus, we also enforce the condition α ≤ 1/4. Under
this condition, the new algorithm runs in time Õ(N1−α) using Õ(Nα) bits of
memory. In particular, we can find 3-collisions in time Õ(N3/4) using Õ(N1/4)
bits of memory. This is a notable improvement over Algorithm 1 which requires
Õ(N1/2) bits of memory to achieve the same running time.

Note on the creation of the Nα initial collisions. One question that frequently
arises when this algorithm is presented is: “Why is it necessary to randomize F
with a pseudo-random permutation ?”

Behind this question is the idea that changing the starting point of the cycle
finding algorithm should suffice to obtain random collisions. However, this is not
true. Indeed, the analysis of random mapping (for example, see [4]) shows that
on average a constant fraction of points belong to a so-called “giant tree”. By
definition, each starting point in the giant tree enters the main cycle in the same
place. As a consequence, without randomization of F the corresponding collision
would be generated over and over again and the 3-collision algorithm would not
work.

4 Detailed complexity analysis of algorithms 1 and 2

In this section, we analyze in more details the complexity and success probability
of algorithms 1 and 2, assuming that F is a random mapping. This detailed anal-
ysis particularly focuses on the following problematic issues which were initially
neglected:

1. Among the Nα candidates stored in Img and its companion arrays, which
fraction can non-trivially be completed into a 3-collision?

5



Algorithm 2 Improved 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Family of pseudo-random permutation ΠK , indexed by K in K
Require: Parameters: α ≤ β satisfying condition 2

Let Nα ←− dNαc
Let Nβ ←−

˚
Nβ
˝

Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let K ←−R K
Use cycle finding algorithm on F ◦ΠK to produce collision F ◦ΠK(a) = F ◦ΠK(b)
Let Img[i]←− F ◦ΠK(a)
Let Pr1[i]←− ΠK(a)
Let Pr2[i]←− ΠK(b)

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i←− 1
while i < Nα do

Let j ←− i+ 1
while Img[i] == Img[j] do

if Pr1[i] 6= Pr1[j] then
if Pr2[i] 6= Pr1[j] then

Output ‘3-Collision (Pr1[i],Pr2[i],Pr1[j]) under F ’ and Exit
end if

end if
Let j ←− j + 1

end while
Let i←− j

end while

Second step:
for i from 1 to Nβ do

Let a←−R [0, N − 1]
Let b←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] 6= a then
if Pr2[j] == ⊥ then

Let Pr2[j]←− a
else

if Pr2[j] 6= a then
Output ‘3-Collision (Pr1[j],Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for

6



2. In the second step, when a value F (a) hits the array Img, what is the proba-
bility of obtaining a real 3-collision and not simply replaying a known value
of a?

3. Which logarithmic factors are hidden in the Õ expression ?
4. In the first step of Algorithm 2, how can we make sure that we never en-

counter a bad configuration where the cycle finding algorithm runs for longer
than Õ(N1/2)?

To answer the first question, remark that each candidate stored into Img is
a random point that has at least one preimage for Algorithm 1 or at least two
preimages for Algorithm 2. According to [4], we know that the expected fraction
of points with exactly k distinct preimages is e−1/k!. As a consequence, if we
denote by Pk the fraction of points with at least k preimages, we find:

P1 =
e− 1
e

, P2 =
e− 2
e

and P3 =
e− 5/2

e
.

The expected fraction of elements from Img which can be correctly completed
into a 3-collision is P3/P1 ≈ 0.127 for Algorithm 1 and P3/P2 ≈ 0.304 for
Algorithm 2. To compensate the loss, the easiest is to make the stored set larger
by a factor of 8 in the first case and 3 in the second.

We now turn to the second question. Of course, at this point, the candidates
that cannot be correctly completed need to be ignored. Among the original set
of Nα candidates, we now focus on the subset of candidates that can correctly be
computed and let N ′α denote the size of this subset. Since in the second phase we
are sampling points uniformly at random, the a posteriori probability of having
chosen one of the two already known preimages is at most 2/k, where k is the
number of distinct preimages for this point. Since k ≥ 3, the a posteriori prob-
ability of choosing a new preimage is, at least, 1/3. Similarly, for Algorithm 1,
the a posteriori probability of choosing a preimage distinct from the single orig-
inally known one is at least 2/3. To offset this loss of probability, Nβ should be
multiplied by a constant factor of 3.

The logarithmic factors involved in the third question are easy to find,
they simply come from the sort and binary search steps. Note that when Nα ·
log(Nα) < Nβ the sort operation costs less than the second step and can be ig-
nored. Moreover, as soon as α < β, this bound is asymptotically achieved when
N tends to infinity. However, the binary search appears within the second step
and a real penalty is paid.

If we are willing to spend some extra memory – blowing up the memory by
a constant factor –, this cost can be eliminated using hashing techniques. To
cover the case of Nα · log(Nα) = Nβ , we need a data structure with constant-
time insert and lookup operations. One such data structure is “cuckoo hashing”,
where lookup operations need worst-case constant time, and insert operations
need expected constant time – as long as less than half of the memory slots are
used [16].4 However, for typical applications, the cost of the binary search ought
4 Furthermore, delete operations only need worst-case constant time, and recent im-

provements even enable update operations in worst-case constant time [1].

7



to remain small, compared to the cost of evaluating the function F . Thus, in
practice, we expect only a tiny benefit from using hash tables.

The simplest answer to the fourth question is to fix some upper bound on
the allowed running time of each individual call to the collision through cycle
finding algorithm. If the running time is exceeded, we abort and restart with a
fresh permutation ΠK . With a time limit of the form λ

√
N and a large enough

value of λ, we make sure that each individual call to the cycle finding algorithm
runs in time O(N1/2) and the probability of success is a constant close to 1, say
larger than 2/3.

5 A second algorithm with more tradeoff options

The algorithm presented in section 3 only works for memory up to N1/4. This
limitation is due to the way the collisions are generated during the first step
of Algorithm 2. In order to extend the range of possible tradeoffs beyond that
point, it suffices to find a replacement for this first step. Indeed, the second
step clearly works with a larger value of α, as long as we keep the relation
α+ β = 1. Of course, since no 3-collision is expected before we have performed
N2/3 evaluations of F , the best we can hope for is an algorithm with running time
N2/3. Such an algorithm may succeed if we can precompute a table containing
N1/3 ordinary collisions.

In this section, we consider the problem of generating N1/3 collisions in time
bounded by Õ(N2/3) using at most Õ(N1/3) bits of memory. Surprisingly, a
simple method inspired from Hellman’s time-memory tradeoff [5] is able to solve
this problem. More generally, for α ≤ 1/3, this method allows us to compute Nα

collisions in time less than Õ(N1−α) using at most Õ(Nα) bits of memory. The
idea is to first build Nα chains of length Nγ ; each chain starts from a random
point and is computed by repeatedly applying F up to the Nγ-th iteration.
The end-point of each chain is stored together with its corresponding start-
point. Once the chains have been build, we sort them by end-point values. Then,
restarting from Nα new random points, we once again compute chains of length
Nγ , the difference is that we now test after each evaluation of F whether the
current value is one of the known end-points. In that case, we know that the chain
we are currently computing has merged with one chain from the precomputation
step. Such a merge usually corresponds to a collision, the only exception occurs
when the start-point of the current chain already belongs to a precomputed
chain (a “Robin Hood” using the terminology of [27]). Then, backtracking to the
beginning of both chains, we can easily construct the corresponding collision. A
pseudo-code description of this alternative first step is given as Algorithm 3.

Note that, instead of building two sets of chains, it is also possible to build a
single set and look for previously known end-points. This alternative approach is
a bit trickier to implement but uses fewer evaluations of F . However, the overall
cost of the algorithm remains within the same order.

Clearly, since each of the two sets of chains we are constructing contain Nα+γ

points, the expected number of collisions is O(N2α+2γ−1). Remembering that we

8



Algorithm 3 Alternative method for constructing Nα collisions
Require: Oracle access to F operating on [0, N − 1]
Require: Parameter: α ≤ 1/3

Let γ ←− (1− α)/2
Let Nα ←− dNαc
Let Nγ ←− dNγc
Create arrays Start and End of Nα elements.
Create arrays Img, Pr1 and Pr2 of Nα elements.

Construction of first set:
for i from 1 to Nα do

Let a←−R [0, N − 1]
Let Start[i]←− a
for i from 1 to Nγ do

Let a←− F (a)
end for
Let End[i]←− a

end for
Sort End, applying the same permutation on elements of Start

Construction of second set and collisions:
Let t←− 1
while t < Nα do

Let a←−R [0, N − 1]
Let b←− a
for j from 1 to Nγ do

Let b←− F (b)
if b is in End (first occurrence in position k) then

Let a′ ←− Start[k]
for l from 1 to Nγ − j do

Let a′ ←− F (a′)
end for
if a 6= a′ then
{Checks that a genuine merge between chains exists}

Let b←− F (a)
Let b′ ←− F (a′)
while b 6= b′ do

Let a←− b
Let a′ ←− b′
Let b←− F (a)
Let b′ ←− F (a′)

end while
Let Img[t]←− b
Let Pr1[t]←− a
Let Pr2[t]←− a′
Let t←− t+ 1

end if
Exit Loop on j

end if
end for

end while
Return arrays Img, Pr1 and Pr2 containing Nα collisions.

9



wish to construct Nα collisions, we need to let γ = (1−α)/2. The running time
necessary to compute these collisions is Nα+γ = N (1+α)/2. Note that, since
α ≤ 1/3, we have (1 + α)/2 ≤ 1− α. As a consequence, the running time of the
complete algorithm is dominated by the running time Nβ = N1−α of the second
step.

6 Parallelizable 3-collision search

Since the computation involved during a search for 3-collisions is massive, it
is essential to study the possibility of parallelizing such a search. For ordinary
collisions, parallelization is studied in details in [27] using ideas introduced in
[18–20, 23–26].

We first remark that the algorithms we have studied up to this point are badly
suited to parallelization. Their main problem is that a large amount of memory
needs to be replicated on every processor which is very impractical, especially
when we want to use a large amount of low-end processors. We now propose an
algorithm specifically suited to parallelization. For simplicity of exposition, we
first assume that Np ≈ N1/3 processors are available and aim at a running time
Õ(N1/3). Moreover, we would like each processor to use only a constant amount
of memory. However, we assume that every processor can efficiently communicate
with every other processor, as long as the amount of transmitted data remains
small. It would be easy to adapt the approach to a network of small processors,
with each processor connected to a central computer possessing Õ(N1/3) bits of
memory.

As for ordinary collisions, the key idea is to use distinguished points. By
definition, a set of distinguished points is a set of points together with an efficient
procedure for deciding membership. For example, the set of elements in [0,M−1]
can be used as a set of distinguished points since membership can be tested using
a single comparison. Moreover, with this choice, the fraction of distinguished
points among the whole set is simply M/N . Here, since we wish to have chains
of average length N1/3, we choose for M an integer near N2/3.

The distinguished point algorithm works in two steps. During the first step,
each processor starts from a random start-point s and iteratively applies F
until a distinguished point d is encountered. It then transmits a triple (s, d, L),
where L is the length of the path from s to d, to the processor whose number
is d (mod Np). We abort any processor if it doesn’t find a distinguished point
within a reasonable amount of time, for example, following what [27] does for
2-collisions, we may abort after 20N/M steps. Once all the paths have been
computed, we start the second step. Each processor looks at the triples it now
holds. If a given value of d appears three or more times, the processor recomputes
the corresponding chains, using the known length information to synchronize
the chains. If three of the chains merge at a common position, a 3-collision is
obtained.

Of course, even with less than N1/3 processors, it is possible to do a partial
parallelization. More precisely, given Nθ processors with θ ≤ 1/3, it is possible

10



Algorithm 4 Parallelizable 3-collisions using distinguished points
Require: Oracle access to F operating on [0, N − 1]
Require: Number of processors Np ≤ N1/3

Require: Identity of current processor: Id ∈ [0, Np − 1]

Let M ←−
l
N2/3

k
{M defines distinguished points}

Let Lmax = 20
l
N1/3

k
Construction of triples:

Let s←−R [0, N − 1]; a←− s; L←− 0
while L < Lmax do

Let a←− F (a); L←− L+ 1
if a < M then

Send triple T ←− (s, a, L) to processor a (mod Np) and Exit Loop
end if

end while

Acquisition of triples:
Store received triples (s, d, L) in local arrays A, D, L numbered from 1 to K
Sort D, applying the same permutation on elements of A and L

Processing of triples:
Let i←− 1
while i ≤ K do

Let j ←− i+ 1
while j ≤ K and D[j] = D[i] do

Let j ←− j + 1
end while
if j ≥ i+ 3 then

Let L←− max(L[i], · · · ,L[j − 1])
for ` from L downto 0 do

for k from i to j − 1 do
if L[k] ≥ ` then

Let D[k]←− A[k]; A[k]←− F (A[k]))
{D[k] overwritten to keep previous value of A[k]}

end if
end for
Check for 3 equal values in A[i · · · j − 1] with differing values of D
If found, Output the 3-collision and Exit

end for
end if
Let i←− j

end while

11



to find 3-collisions in time Õ(N2/3−θ). In that case, each processor needs a local
memory of size O(N1/3−θ) to store all the triples it owns.

7 Extension to r-collisions, for r > 3

For r-collisions, recall that we need to evaluate F on approximately r!1/rN (r−1)/r

points before hoping for a collision. When considering that r is a fixed value,
r!1/r is a constant and vanishes within the Õ notation. With this new context,
Algorithm 4 is quite easy to generalize. Here, the important parameter is to cre-
ate shorter chains and compute more of them. The reason for shorter chains is
that (as in Hellman’s Algorithm [5]), we need to make sure that there are not too
many collisions between one chain and all the others. Otherwise, the algorithm
spends too much time recomputing the same evaluations of the random map,
which is clearly a bad idea. To avoid this, we construct chains which are short
enough to make sure that the average number of (initial5) collisions between an
individual chain and all the other chains is a constant. Since the total number
of elements in all the other chains is essentially N (r−1)/r, the length of chains
should remain below N1/r.

To achieve maximal parallelization when searching for an r-collision, Np ≈
N (r−2)/r processors are required. The integerM that defines distinguished points
should be near N (r−1)/r. Each processor first builds a chain of average length
N1/r (as before we abort after 20N/M steps), described by a triple (s, d, L).
Each chain is sent to the processor whose number is d (mod Np). During the
second step, any processor that holds a value of d that appears in r or more triples
recomputes the corresponding chains. If r chains merge at the same position, a
r-collision is obtained.

Given Nθ processors with θ ≤ (r − 2)/r, it is possible to find r-collisions in
time Õ(N (r−1)/r−θ). In that case, each processor needs a local memory of size
O(N (r−2)/r−θ).

With a single processor, the required amount of memory is O(N (r−2)/r).
Thus, as r grows, the advantage of the single processor approach on the folklore
algorithm (which requires O(N (r−1)/r) memory) becomes smaller and smaller.
As a consequence, for larger values of r, it is essential to rely on parallelization.

8 Conclusion

In this paper, we revisited the problem of constructing multicollisions on random
mappings and showed that it can be done using less memory than required
by the folklore algorithm. For 3-collisions, the sequential running remains at
Õ(N2/3) but the amount of memory can be reduced from O(N2/3) to O(N1/3).
A remaining open problem is to determine whether this amount of memory can
further be reduced.
5 Of course, once a collision occurs, all the values that follow are colliding. However,

we do not count these follow-up collisions.

12



Furthermore, finding 3-collisions can be very efficiently parallelized. Given
N1/3 parallel processors, each equipped with constant memory, the problem
can be solved in time Õ(N1/3). More generally for r ≥ 3, we show how to
generate r-collisions on Nθ processors, each with local memory O(N (r−2)/r−θ),
in time Õ(N (r−1)/r−θ). It is interesting to note that the cost of the parallelizable
approach in the full-cost model [28] decreases as θ grows.

References

1. Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Prov-
able worst-case performance and experimental results. In ICALP, LNCS. Springer,
2009.

2. Don Coppersmith. Another birthday attack. In Hugh C. Williams, editor,
CRYPTO’85, volume 218 of LNCS, pages 14–17, Santa Barbara, CA, USA, Au-
gust 18–22, 1986. Springer-Verlag, Berlin, Germany.

3. Niels Ferguson and Stefan Lucks. Attacks on AURORA-512 and the double-mix
Merkle-Damg̊ard transform. Cryptology ePrint Archive, Report 2009/113, 2009.

4. Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, volume 434
of LNCS, pages 329–354, Houthalen, Belgium, April 10–13, 1990. Springer-Verlag,
Berlin, Germany.

5. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

6. Jonathan J. Hoch and Adi Shamir. Breaking the ICE - finding multicollisions
in iterated concatenated and expanded (ICE) hash functions. In Matthew J. B.
Robshaw, editor, FSE 2006, volume 4047 of LNCS, pages 179–194, Graz, Austria,
March 15–17, 2006. Springer-Verlag, Berlin, Germany.

7. Jonathan J. Hoch and Adi Shamir. On the strength of the concatenated hash
combiner when all the hash functions are weak. In ICALP (2), volume 5126 of
LNCS, pages 616–630. Springer, 2008.

8. Tetsu Iwata, Kyoji Shibutani, Taizo Shirai, Shiho Moriai, and Toru Akishita. AU-
RORA: a cryptographic hash algorithm family. Submission to NIST’s SHA-3 com-
petition, 2008.

9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 306–316, Santa Barbara, CA, USA, August 15–19, 2004. Springer-Verlag,
Berlin, Germany.

10. Florian Mendel. Preimage attack on Blender. Available from
http://ehash.iaik.tugraz.at/ wiki/Blender.

11. Florian Mendel, Christian Rechberger, and Martin Schläffer. Cryptanalysis
of twister. In Proceedings of ACNS, Springer, To appear, Available from
http://ehash.iaik.tugraz.at/wiki/Twister.

12. Florian Mendel and Sœren S. Thomsen. An observation on JH-512. Available from
http://ehash.iaik.tugraz.at/wiki/JH.

13. Mridul Nandi and Douglas R. Stinson. Multicollision attacks on some generalized
sequential hash functions. IEEE Transactions on Information Theory, 53(2):759–
767, 2007.

14. Craig Newbold. Observations and attacks on the SHA-3 candidate Blender. Avail-
able from http://ehash.iaik.tugraz.at/wiki/Blender.

13



15. G. Nivasch. Cycle detection using a stack. Information Processing Letter,
90(3):135–140, 2004.

16. Rasmus Pagh and Flemming F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–
144, 2004.

17. Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis,
KU Leuven, 1993.

18. Jean-Jacques Quisquater and Jean-Paul Delescaille. Other cycling tests for DES
(abstract). In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages
255–256, Santa Barbara, CA, USA, August 16–20, 1988. Springer-Verlag, Berlin,
Germany.

19. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search?
application to DES (extended summary). In Jean-Jacques Quisquater and Joos
Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 429–434,
Houthalen, Belgium, April 10–13, 1990. Springer-Verlag, Berlin, Germany.

20. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search.
New results and applications to DES. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 408–413, Santa Barbara, CA, USA, August 20–24,
1990. Springer-Verlag, Berlin, Germany.

21. Yu Sasaki. A collision attack on AURORA-512. Cryptology ePrint Archive, Report
2009/106, 2009.

22. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
paradox for multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC 06, volume 4296 of LNCS, pages 29–40, Busan, Korea, November 30 –
December 1, 2006. Springer-Verlag, Berlin, Germany.

23. Paul C. van Oorschot and Michael J. Wiener. A known plaintext attack on two-
key triple encryption. In Ivan Damg̊ard, editor, EUROCRYPT’90, volume 473
of LNCS, pages 318–325, Aarhus, Denmark, May 21–24, 1990. Springer-Verlag,
Berlin, Germany.

24. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with appli-
cation to hash functions and discrete logarithms. In ACM CCS 94, pages 210–218,
Fairfax, Virginia, USA, 1994. ACM Press.

25. Paul C. van Oorschot and Michael J. Wiener. Improving implementable meet-in-
the-middle attacks by orders of magnitude. In Neal Koblitz, editor, CRYPTO’96,
volume 1109 of LNCS, pages 229–236, Santa Barbara, CA, USA, August 18–22,
1996. Springer-Verlag, Berlin, Germany.

26. Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agreement
with short exponents. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 332–343, Saragossa, Spain, May 12–16, 1996. Springer-Verlag, Berlin,
Germany.

27. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12(1):1–28, 1999.

28. Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology,
17(2):105–124, March 2004.

29. Hongjun Wu. The complexity of Mendel and Thomsen’s preimage attack on JH-
512. Available from http://ehash.iaik.tugraz.at/wiki/JH.

A Practical implementation

Since we only performed a heuristic analysis of our algorithms, in order to show
that they are really effective, we decided to illustrate our 3-collision techniques

14



with a practical example. For this purpose, we construct a random function by
Xoring two copies of the DES algorithm (with two different keys). More precisely,
we let:

F (x) = DESK1(x)⊕DESK2(x),

where6 K1 = (3322110077665544)16 and K2 = (3b2a19087f6e5d4c)16. Since x
is on 64 bits, the time and memory requirements of the folklore algorithm are
around 243. Where current computers are concerned, performing 243 operations
is easily feasible. However, storing 243 values of x requires 246 bytes, i.e. 64 Ter-
abytes. As a consequence, finding 3-collisions on F with the basic parameters
of the folklore algorithm is probably beyond feasibility. Using a different time-
memory trade-off, restricting the storage to 232 values would raise the time
requirement to 248 operations. This is within the range of currently accessible
computations. However, since the algorithm is not parallelizable, it would require
a high-end computer.

With the new algorithms presented in this paper, it becomes possible to com-
pute triple collisions much more efficiently on the function F . For our implemen-
tation, we chose M = 244 to define the distinguished points, which yielded chains
of expected length 220. The abort length was set at 8 times the expected length,
rather than the factor 20 given in Algorithm 4. For computing the chains, we
used a mix of 32 Intel Xeon processors at 2.8 GHz and 8 Nvidia CUDA cards
(Tesla type). We collected a total of 35 447 322 chains and obtained 3 078 699
groups of three or more chains yielding the same distinguished endpoints. The
largest group contained 36 chains, which shows that it would have been prefer-
able to use slightly shorter chains. On processors only, this first phase would
have taken about 94 CPU-days to run. On a single CUDA card, it would have
taken 11.5 days.

For simplicity of implementation, the second phase of the algorithm was
only performed on Intel processors and not on CUDA cards. It took less than
18 CPU-days to test all groups and it yielded the following triple-collisions:

F (d332b9ba5e5a7d4e) = F (51b8095db532afcc) = F (b084dc15dce042ab),
F (ca76ff906d6587cf) = F (e1f7f59a5757d01b) = F (0285f58147e863c2),
F (c3783ef30c8bcc3d) = F (65f14d412fd91173) = F (1042d827e5078000).

We would like to thank CEA/DAM7 for kindly providing the necessary com-
puting time on its Tesla servers.

6 This keys might seem weird, but they should not have any special proper-
ties. In truth, we intended to choose K1 = (0011223344556677)16 and K2 =
(08192a3b4c5d6e7f)16, i.e., (8899aabbccddeeff)16 with high bits stripped. Unfor-
tunately, the first-named author made a classical endianness mistake while imple-
menting the algorithm.

7 Commissariat à l’énergie atomique, Direction des applications militaires.

15



B Applications

B.1 Collisions for the Hash function AURORA-512

AURORA is a family of cryptographic hash functions submitted to the NIST
SHA-3 hash function competition [8]. Like the other members of the AURORA
family, AURORA-512 employs different internal compression functions, each
mapping a 256-bit chaining value and a 512-bit message block to generate a new
256-bit chaining value. AURORA-512 is the high-end member of that family,
maintaining an internal state of 512 bit. As required by the NIST, the authors
of AURORA-512 explicitly claim “collision resistance of approximately 512/2
bits” for AURORA-512. In other words, collision attacks must not significantly
improve over the generic birthday attack, which takes roughly the time of 2256

hash operations.
Internally, AURORA-512 works almost like the cascade of two iterated hash

functions, except for one important extra operation:

MF : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

See Algorithm 5 for a simplified description of AURORA-512.

Algorithm 5 AURORA-512: Hashing 8 message blocks.
Require: Input Chaining Values (Left, Right) ∈ ({0, 1}256)2

for i from 0 to 7 do
Left ←− Compress(Left, Message Block(i))
Right ←− Compress(Right, Message Block(i))

end for
(Left, Right) ←− MF(Left, Right)

Every eighth iteration, MF is called to mix the two half-states. This seems
to defend against the cascade-attack from [9]: Between two MF-operations, one
can generate local collisions in each iteration in one of either the left string, or
the right string. Thus, the adversary can get a local 28-collision. But to apply
the attack from [9], one would rather need a 2128-collision, so the attack fails.

Assume, for a moment, that the adversary has generated a 27-collision on Left
in the first 7 iterations of the loop. For the right string, we have 27 different values
Right1, Right2, . . . , Right128. If two of them collide, a collision for AURORA-512
has been found. For a fixed Message Block(7), the chance of a collision, i.e. of
j 6= k with

Compress(Rightj , Message Block(7))
=

Compress(Rightk, Message Block(7))

is about 27 · (27 − 1) · 2−1/2256. By trying out 2256−(6+7) different values for
Message Block(7), we expect to find a collision. Note that this means to make

16



27 calls to the function Compress. Hence, this attack takes the time of about
2256−(6+7)+7 = 2250 compression function calls, plus the time to generate the
27-collision at the beginning. This is essentially the memoryless variant of the
attack from [3], except that the authors of [3] actually generate a 28-collision
on Left, by exploiting the previous eight-tuple of message blocks. The attack is
memoryless, since the adversary only needs to generate 2-collisions on Left, and
the claimed time is 2249.

In [3], Ferguson and Lucks further propose an attack which uses local r-
collision, instead of local 2-collisions. A similar attack has been proposed inde-
pendently [21]. Using eight local r-collisions allows to speed-up the attack to
roughly 2256/r7 compression function calls (plus the time to generate the re-
quired r-collisions). [3] suggest r = 9 (beyond that, computing the r-collisions
becomes too costly) and claim time 2234.5, including the time to generate ten lo-
cal 9-collisions. The price for the speed-up is utilizing a huge amount of memory,
however.

Our memory-efficient 3-collision allows a different time-memory tradeoff. The
time is 2256/37 ≈ 2245. Recall N = 2256, and set α := 1/16, β := 15/16 in
Algorithm 2. In that case one local 3-collision requires time 2240, which we
neglect. The memory requirements are down to 216, i.e., almost negligible.

It is also possible to use more general r-collisions to further improve this
attack. For example, we can use 4-collisions obtained using the algorithm of
section 7. To simplify the comparison with previous attacks, we assume a single
processor, i.e. set θ = 0, however, with more processors, we would obtain an
even better attack. With this choice, a 4-collision on 256-bits is obtained in time
2192 using a memory of size 2128. The corresponding speedup is 47. Similarly, 8-
collisions on 256 bits are obtained in time 2224 each, using 2192 units of memory.
The speed-up is 87. Other trade-offs are possible.

The results on collision attacks for AURORA-512 can be summarised as
follows:

r time memory reference
(arity) [compr. fn. calls]

9 2234.5 2229.6 [3]
8 2236 2236 [21]
2 2249 — [3]
3 2245 216 (this paper)
4 2242 2128 (this paper)
8 2235 2192 (this paper)

B.2 Attacks on other Hash Functions

Several attacks on several other SHA-3 candidates make heavy use of multicol-
lisions, and it appears a natural idea to plug in our algorithms for reducing the
memory consumption of these attacks. We actually tried to do so, but only suc-
ceeded for Aurora-512. In the current section, we will explain why we failed for
other obvious candidates.

17



Several attacks, such as the attacks on Blender [14, 10] and on Twister [11],
employ multicollisions, but it turns out that these can actually be generated by
Joux-style iterated 2-collisions, which is very memory-efficient – and also faster
than our general multicollision algorithms, anyway.

An obvious candidate to employ our algorithms to improve given cryptana-
lytic attacks is a preimage attack on JH-512 [12]. Like Aurora, JH is a family of
hash functions submitted to the SHA-3 competition. The high-end 512-bit vari-
ant is denoted as JH-512. Internally, JH-512 is a wide-pipe hash function with an
internal state of 1024 bit, and it employs an invertible compression function. [12]
propose a meet-in-the-middle attack which requires “2510.3 compression function
evaluations and a similar amount of memory” (our emphasis). The authors of
[12] stress: “We do not claim that our attack breaks JH-512 (due to the high
memory requirements).” The author of JH-512 provides a more detailed anal-
ysis of this attack, claiming “2510.6 [units of] memory”. A main phase of the
attack is generating several 51-collisions on one half of the chaining values (i.e.,
on 512 bits). By applying our algorithms to this task, it is possible to reduce the
memory required for this phase to 2(512/51)·49 units of memory.

But another phase of the attack from [12] is to apply the inverse of the com-
pression function to generate 2509 internal target values. The attack successfully
generates a message which hashes to a given preimage, if the first part of the
message hashes to any of these 2509 target values. Finally, the overall amount
of storage for the attack is dominated by storing these 2509 values, regardless of
improving memory-efficiency of the multicollision phase.

18


