
Non-Malleable Statistically Hiding Commitment

from Any One-Way Function

Zongyang Zhang, Zhenfu Cao, Ning Ding, and Rong Ma

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, P.R.China

{zongyangzhang,zfcao,dingning,marong}@sjtu.edu.cn

Abstract. We give a construction of non-malleable statistically hiding
commitments based on the existence of one-way functions. Our construc-
tion employs statistically hiding commitment schemes recently proposed
by Haitner and Reingold [1], and special-sound WI proofs. Our proof of
security relies on the message scheduling technique introduced by Dolev,
Dwork and Naor [2], and requires only the use of black-box techniques.

1 Introduction

A commitment scheme is an interactive protocol between two parties,
the committer, who holds a value, and the receiver. It usually consists of
two phases: the commit phase and the reveal phase. During the commit
phase, the committer puts a value in a “locked box” and sends it to
the receiver. In the reveal phase, the committer sends the “key” to the
receiver, then the receiver opens the box and retrieves the value. Two
basic properties of a commitment scheme are the hiding property (the
receiver cannot learn the committed value before the reveal phase) and
the binding property (the committer is bounded to one value after the
commit phase). There are two fundamental types of commitment schemes,
statistical hiding and statistical binding. In this work, we focus mainly
on statistically hiding commitment schemes, where the hiding property
holds against unbounded receivers while the binding property is required
to hold only against polynomially bounded senders.

The concept of non-malleability was first introduced by Dolev et al. [2].
The basic properties of commitment schemes cannot prevent malleable
attacks mounted by a man-in-the-middle adversary who has full control
of the communication channel between the committer and the receiver.
Loosely speaking, a commitment scheme is non-malleable if one cannot
transform the commitment of a value into a commitment of a related
value. This kind of non-malleability is called non-malleability with respect
to commitment [3]. The notion of non-malleability used by Di Crescenzo et



al. [4] is called non-malleability with respect to opening, i.e., the adversary
cannot construct a commitment from a given one, such that after having
seen the opening of the original commitment, the adversary is able to
correctly open his commitment with a related value. In the rest of this
paper, when we say non-malleability, we actually mean non-malleability
with respect to opening.

1.1 Related Work

Statistically hiding commitment schemes were first shown to exist
based on number-theoretic assumptions [5, 6], or more generally, based on
any collection of claw-free permutations [7] with an efficiently-recognizable
index set [8]. Subsequent work on constructing statistically hiding com-
mitment schemes are based on collision-resistant hash functions [9], or
based on any one-way permutation [10], or based on regular one-way func-
tions [11]. Nguyen et al. [12] and Haitner and Reingold [1] made funda-
mental progress by constructing statistically hiding commitment schemes
based on the minimal cryptographic assumption that one-way functions
exist.

Based on number-theoretic assumptions, non-malleable statistically
hiding commitment schemes were designed in [13, 3] assuming the exis-
tence of a common reference string that is shared by the two players
before the protocol execution. Thus, their schemes do not work in the
plain model (i.e., without setup assumptions). More recently, Pass and
Rosen [14] constructed a non-malleable commitment scheme that was
statistically hiding based on a family of collision-resistant hash functions.
Their scheme is round-efficient and needs only constant-round commu-
nication. However, the security proof relies on non-black-box techniques
and is not efficient.

As one of the central goals of cryptography is to reduce complexity as-
sumptions for various cryptographic primitives and construct them under
more standard assumptions, there remain open questions as to whether
or not non-malleable statistically hiding commitment can be based solely
on the existence of one-way functions, and be shown secure relying only
on black-box techniques.

1.2 Our Result

In this paper, we give affirmative answers to both of the questions
posed above. We show that the existence of one-way function is a suf-



ficient condition for the existence of non-malleable statistically hiding
commitment.

Theorem 1. If one-way functions exist, then there exists a non-malleable
statistically hiding commitment scheme.

Our commitment scheme uses the commitment scheme [1] to commit
to the desired value, but modify the opening process by adding a “trap-
door” that can be extracted and used by the simulator to cheat in the
reveal phase, and would not be known to the committer in a real execu-
tion. Although the extraction requires rewinding, we rely on the message
scheduling technique of Lin et al. [15], which is a slight modification of the
message scheduling technique introduced by Dolev et al. [2], to show this
will suffice to prove the non-malleability. Our proof requires only stan-
dard black-box techniques. As a tradeoff, however, our protocol needs
polynomial rounds of interaction.

The preliminaries and definitions are illustrated in section 2. Our non-
malleable statistically hiding commitment scheme is shown in section 3.

2 Preliminaries and Definitions

For any NP languages L, note that there is a natural witness relation
RL containing pairs (x,w) where w is the witness for the membership of
x in L. A function �(⋅), where � : ℕ → [0, 1] is called negligible if for every
positive polynomial p(⋅), for all sufficiently large n ∈ ℕ, �(n) < 1

p(n) . A

probability ensemble is a sequence X = {Xi}i∈I of random variables,
where I is a countable index set and Xi is a random variable rang-
ing over {0, 1}p(∣i∣) for some polynomial p(⋅). Two probability ensembles
X = {Xi}i∈I and Y = {Yi}i∈I are computationally indistinguishable, if
no probabilistic polynomial-time (PPT) algorithm distinguishes between
them with more than negligible probability. For page limited, we assume
the readers are family with interactive proofs.

Special-sound proofs. A 3-round public-coin interactive proof for the lan-
guage L ∈ NP with witness relation RL is special-sound with respect
to RL, if for any two accepting transcripts (�, �, ) and (�′, �′, ′) for
some statement x ∈ L, such that � = �′ and � ∕= �′, a witness w such
that (x,w) ∈ RL can be computed by a polynomial-time deterministic
procedure.



2.1 Witness Indistinguishability

The concept of witness indistinguishability was proposed by Feige and
Shamir [16]. An interactive proof system is witness indistinguishable (WI)
if the verifier cannot tell which of the witnesses is being used by the prover
to carry out the proof, even if the verifier knows both witnesses. We focus
on NP languages L with a corresponding witness relation RL. The readers
are referred to [16] for formal definition.

Special-sound WI proofs for NP languages can be based on the ex-
istence of non-interactive commitment schemes. Assuming only one-way
functions, 4-round special-sound WI proofs for NP languages exist.1 More
precisely, there is a 3-round special-sound WI proof for the language of
Hamiltonian Graphs [17], assuming one-way permutation families exist.
If the commitment scheme used by the protocol [17] is replaced by Naor’s
commitment scheme [18], then it becomes a 4-round special-sound WI
proof while the assumption is reduced to the existence of one-way func-
tions. For simplicity, we use 3-round special-sound WI proofs in our pro-
tocol though our proof works also with 4-round special-sound WI proofs.

2.2 Commitment Schemes

In this work, we consider statistically hiding commitment schemes.

Definition 1 (Commitment Scheme). A pair of PPT interactive ma-
chines ⟨C,R⟩ is said to be a commitment scheme if the following two
properties hold:

Statistical hiding: For every unbounded interactive Turing machine R∗,
it holds that the ensemble

{
staR

∗

⟨C,R⟩(v1, z)
}
v1∈{0,1}n,n∈ℕ,z∈{0,1}∗

and the en-

semble
{
staR

∗

⟨C,R⟩(v2, z)
}
v2∈{0,1}n,n∈ℕ,z∈{0,1}∗

have negligible statistical dif-

ference, 2 where staR
∗

⟨C,R⟩(v, z) denotes the random variable describing the

output of R∗ after receiving a commitment to v using ⟨C,R⟩.

Computational binding: A malicious (expected) PPT committer S∗ can
succeed in opening a given commitment in two different ways only with
negligible probability. The reader is referred to [19, 1] for more details.

1 A 4-round protocol is special sound if there exits polynomial-time deterministic
procedure to extract the witness from any two accepting transcripts (�, �, �, ) and
(� ′, �, �, ) such that � = � ′, � = �′ and � ∕= �′.

2 The statistical difference between two ensembles {Xi}i∈I and {Yi}i∈I is defined by
1
2
⋅
∑

�

∣

∣Pr[Xi = �]− Pr[Yi = �]
∣

∣.



2.3 Non-Malleable Commitments

As stated in [14], we formalize the notion of non-malleability by a
comparision between a man-in-the-middle execution and a simulated ex-
ecution. Just as [2, 15], we consider a tag-based variant of non-malleability.

Let ⟨C,R⟩ be a commitment scheme. Let n ∈ ℕ be a security param-
eter. Let ℛ ∈ {0, 1}n × {0, 1}n be a polynomial-time computable valid
relation [13] (i.e., for all v ∈ {0, 1}n, ℛ(v,⊥) = 0.). In the man-in-the-
middle execution, the adversary A is simultaneously participating in a
left and right interaction. In the left interaction, the man-in-the-middle
adversary A interacts with the committer C to receive a commitment to
a value v using tag tag. In the right interaction, A interacts with the re-
ceiver R and tries to commit to a related value using tag of its choice ˜tag.
After commit phase execution in both interactions, A receives decommit-
ment keys from C and then generates the corresponding decommitment
key for ṽ. Prior to the interaction, the value v is given to C as local input.
A receives an auxiliary input z, which might contain a priori information
about v. If the right commitment or decommitment fails, or tag = ˜tag,
ṽ is set to =⊥. Let the boolean random variable mimA

open(ℛ, v, z) denote

whether A succeeds. Note mimA
open(ℛ, v, z) = 1 if and only if A decommits

to a value ṽ such that ℛ(v, ṽ) = 1.

In the simulated execution, a simulator S directly interacts with hon-
est receiver R. As in the man-in-the-middle execution, the value v is cho-
sen prior to the interaction, and S receives some a prior information about
v as part of its auxiliary input z. S also receives tag tag. S first executes
the commitment scheme with R. Once the commitment phase has been
completed, S receives the value v and attempts to decommit to a value ṽ

with tag t̃ag. If tag = t̃ag, ṽ is set to ⊥. Let the boolean random variable
simS

open(ℛ, v, z) denote whether S succeeds. Note simS
open(ℛ, v, z) = 1 if

and only if S decommits to a value ṽ such that ℛ(v, ṽ) = 1.

Definition 2 (Non-malleable Commitment [14]). A commitment
scheme ⟨C,R⟩ is said to be non-malleable with respect to opening if for
every PPT man-in-the-middle adversary A, there exists an expected PPT
simulator S and a negligible function � : ℕ → [0, 1], such that for every
polynomial-time computable valid relation ℛ ⊆ {0, 1}n × {0, 1}n, for all
tags of polynomial length, for every v ∈ {0, 1}n and every z ∈ {0, 1}∗, the
following holds:

Pr[mimA
open(ℛ, v, z) = 1] < Pr[simS

open(ℛ, v, z) = 1] + �(n)



A commitment scheme that is non-malleable according to Definition 2
is liberal non-malleable rather than strict non-malleable [2, 3]. Note we
follow [14] in that non-malleability is guaranteed only if the commit phase
and the reveal phase do not overlap.

3 Construction

We begin by presenting a high-level overview of our protocol. Our
protocol is based on the statistically hiding commitment scheme [1] while
relying on the messages scheduling technique [15] which is a slight mod-
ification of the message scheduling technique of [2]. The commit phase
of our protocol is the same as that of the commitment protocol in [1].
The reveal phase, however, comes in two parts. Roughly, the reveal phase
employs the two-witness technique by Feige [20] and the well known FLS-
technique [21]. First, the receiver proves that it knows one of the preim-
ages of either element s0 or element s1 computed by itself in the domain
of a one-way function. Then, the committer sends the committed value v

and proves it knows how to open the commitment or one of the preim-
ages of either element s0 or element s1. The proofs used by the prover and
the verifier are all tag-based WI proofs elaborately scheduled as [15]. For
simplicity of exposition, our description relies on the existence of one-
way functions with efficiently recognizable range.3 We also assume the
one-way function is length-preserving. Since any one-way function can be
transformed into length-preserving one-way function [19].

3.1 Tag-Based Witness-Indistinguishable Proof

�1

�1

1

�2

�2

2

(a) design0

�2

�1

�1

1

�2

2

(b) design1

Fig. 1. Two schedules

Protocol ⟨Ptag, Vtag⟩
Security Parameter: 1n

Common Input: An instance x ∈ {0, 1}n

Tag string: tag ∈ {0, 1}t(n)

For j = 1 to t(n)
P ⇔ V : Execute designtagj

Execute design1−tagj

Fig. 2. Tag-based WI proof
⟨Ptag, Vtag⟩

3 The protocol can be easily modified to work with arbitrary one-way function by
providing a witness hiding proof that an element is in the range of the one-way
function.



First, we propose a tag-based WI proof for every NP language L which
is used as a basic tool in the final commitment scheme. The length of
the tag is polynomial bounded to the length of the security parameter n.
Denote the polynomial by t(⋅). In Fig. 1, both design0 and design1 contain
two executions of special-sound WI proofs for L but with elaborately
designed scheduling. The tag-based WI proof ⟨Ptag, Vtag⟩ for L is shown
in Fig. 2. The protocol is composed of 4t-round special-sound WI proofs
for language L. More precisely, there are t rounds, where in round j, the
schedule designtagj is followed by design1−tagj

. The properties of ⟨Ptag, Vtag⟩
are easy to verify. The details are omitted.

One basic technique in proving the security of most zero-knowledge
and commitment protocols is standard rewinding. However, the rewinding
technique is problematic when extending to concurrent (here one-left one-
right) execution environment as an adversary may adaptively schedule
its messages that withstand any targeted simulator (i.e., the simulator
may run super-polynomial time or is exposed to malleability attack.).
Considering the non-malleability property for commitment schemes, the
pivot is to design the stand-alone simulator that satisfying Definition 2.
Here we also come up with the problem of how to simulate when the
adversary adaptively schedules its messages.

The scheduling in Fig. 1 which is identical to [15] is vital in achieving
the non-malleability. The main advantage of this scheduling is that for
the proof given by a man-in-the-middle adversary, there exists a point
at which the adversary cannot answer the challenge from the verifier by
simply modifying the proof on the other side (provided the tag of the
proof is different from that of the proof on the other side.).

Related to the above scheduling is a notion called safe-point, from
which it is possible to perform extraction by standard rewinding until
we obtain a second proof transcript, without “affecting” the other side
interaction. Below is the formal definition of safe-point, which is mainly
taken from [15] and abridged to our setting.

Definition 3 (Safe-point [15]). A prefix � of a transcript � is called
a safe-point, if there exists an accepting proof (�r, �r, r) in the right
interaction, such that

1. �r occurs in �, but not �r (and r).

2. For any proof (�l, �l, l) in the left interaction, if only �l occurs in �,
then �l occurs after r.



When protocol ⟨Ptag, Vtag⟩ is run concurrently, it is guaranteed there
is a safe-point for right interaction that has a tag different from the left
interaction following from the next lemma.

Lemma 1 (Safe-point Lemma [15]4). In any one-one man-in-the-
middle execution of ⟨Ptag, Vtag⟩, if the right interaction has a different
tag from the tag of the left interaction, there exists a safe-point for the
right interaction.

3.2 Non-Malleable Statistically Hiding Commitment Scheme

Let ⟨SHC,SHR⟩ be the statistically hiding commitment scheme[1] from
any one-way function 5 and let ⟨Ptag, Vtag⟩ be a tag-based WI proof for
NP. The commitment protocol is shown in Fig. 3. The length of the tag
is m(n). Our construction in fact compiles any statistically hiding com-
mitment scheme with non-interactive reveal phase into a non-malleable
statistically hiding one with interactive reveal phase, assuming the exis-
tence of one-way functions.

Theorem 2. Suppose that ⟨SHC,SHR⟩ is a statistically hiding commit-
ment scheme with non-interactive reveal phase and ⟨Ptag, Vtag⟩ is a tag-
based WI proof. Then ⟨C,R⟩ is a non-malleable statistically hiding com-
mitment scheme.

Remark 1. The commitment scheme shown in Fig. 3 is tag-based non-
malleable. Compared with existing tag-based commitment schemes [2,
15, 22], it seems a bit strange that our construction uses tags only in the
reveal phase. In fact, this approach is inspired by the work of [14, 15]. Even
tag-based non-malleable commitments can be transformed into content-
based non-malleable commitments in a standard way [2], we explicitly
present one in Appendix A for reference.

Remark 2. The high level approach of our commitment scheme is to com-
bine [14] with [2, 15]. That is, to commit to v, in the commit phase, a
sender commits v using the statistically hiding commitment scheme [1],

4 The safe-point lemma in [15] applies to any one-many concurrent execution environ-
ment, where the adversary participates in one left interaction and polynomial many
right interactions. Here we use a simpler version of the safe-point lemma, where the
adversary participates in one left interaction and one right interaction.

5 Note the commitment scheme [1] is only for a single bit. By running their scheme in
parallel, we obtain a commitment scheme of any polynomial length. Hence, we also
assume that the basic statistically hiding commitment scheme is for a string.



Protocol ⟨C,R⟩
Security Parameter: 1n

Tag string: tag ∈ {0, 1}m(n)

String to be committed: v ∈ {0, 1}n

Commit Phase:

C ⇔ R : Run the commit phase of commitment scheme ⟨SHC,SHR⟩, where C

runs SHC and R runs SHR.
R : Abort if the above commit phase fails.
Let com be the transcripts of messages obtained. C records the decommitment
key in dec.

Reveal Phase:

Stage 1:

R → C : Pick uniformly r0, r1 ∈ {0, 1}
n, compute s0 = f(r0) and s1 = f(r1)

and send s0, s1.
R ⇔ C : R and C engage in an execution of ⟨Ptag, Vtag⟩ with tag tag, where
R uses rb as witness (b ∈ {0, 1}) and runs Ptag to prove to C (running Vtag)
knowledge of a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of the
verifier (i.e., C) is 2n.
C: Abort if either s0 or s1 is not in the range of f or the proof fails.

Stage 2: C → R : Send v.
Stage 3:

C ⇔ R : C and R engage in an execution of ⟨Ptag, Vtag⟩ with tag tag, where C

runs Ptag to prove to R (running Vtag) that there exists a value dec s.t. dec is
the valid decommitment key of com corresponding to v or there exists a value
r s.t. s0 = f(r) or s1 = f(r). The challenge length of the verifier (i.e, R) is 2n.

Fig. 3. Non-malleable statistically hiding commitment scheme ⟨C,R⟩

and in the reveal phase, a sender sends v and proves using a “simulation-
extractable” argument [2, 15] that the commit phase transcript opens to
v. The simulation strategy at a high level is from [14]. For technical rea-
sons, naively using the simulation-extractable arguments from [2, 15] does
not work. We need to modify the opening process by adding a “trapdoor”
that can be extracted and used by the simulator to cheat in the reveal
phase. This is the reason why we add one more phase (i.e., Stage 1).
Whereas in [2, 15], the trapdoor is only used in the hybrid experiment for
analysis and may therefore hard-wired via a different analysis.

Proof (sketch). We need to prove the scheme satisfies the following three
properties: statistical hiding, computational binding and non-malleability
with respect to opening. We start by proving the hiding and non-malleability
properties and then return to the proof of the binding property.

Statistical hiding. The hiding property follows directly from the hiding
property of the commitment scheme ⟨SHC,SHR⟩. Note that ⟨SHC,SHR⟩
is statistically hiding, and so ⟨C,R⟩ is also statistically hiding.



Non-malleability. We show that for every PPT man-in-the-middle adver-
sary A, there exists a probabilistic expected polynomial-time simulator
S and a negligible function � such that for every polynomial-time com-
putable relation ℛ ⊆ {0, 1}n × {0, 1}n, for every tag tag of length m(n),
for every v ∈ {0, 1}n and every z ∈ {0, 1}∗, it holds that

Pr[mimA
open(ℛ, v, z) = 1] < Pr[simS

open(ℛ, v, z) = 1] + �(n) (1)

Denote by Arev the state of A after the the commit phase, i.e., Arev

contains A’s description along with its configuration at that time just
before the reveal phase starts.

We proceed to describing the simulator S. S on input z and security
parameter 1n interacts with an honest receiver R and runs the adver-
sary A internally. During the commit phase, on a high level, S internally
incorporates A and emulates the commit phase of the left execution for
adversary A by honestly committing to 0n, while externally relaying mes-
sages in the right execution between A and R.

Once the commit phase is finished, S receives a value v and has to
perform the reveal phase internally with Arev. In Stage 1, S plays as an
honest sender in the left reveal phase and as an honest receiver in the right
reveal phase. Once the simulation of Stage 1 completes, S applies the safe-
point lemma to find a safe-point and extract a witness w to the statement
proved by Arev in the left reveal phase by standard rewinding.6 In Stage

2, S just sends v to Arev in the left reveal phase. Then the simulation for
Stage 3 begins. S uses a fake witness (i.e. the trapdoor w) to simulate the
left interaction for Arev, while emulating the right interaction as an honest
receiver. When the simulation for Stage 3 completes, S again applies the
safe-point lemma to find a safe-point and extract a witness w̃ (i.e., the
decommitment keys of A) in the right interaction. Finally, by using w̃, S
can complete the reveal phase of the external execution with R.

More formally, S proceeds as follows on auxiliary input z and tag tag:

1. S internally incorporates A(z).

2. During the commit phase S proceeds as follows:

(a) S internally emulates left interaction for A by honestly committing
to 0n.

(b) Messages from right execution are forwarded externally to R.

3. Once the commit phase has finished, S receives the value v. Let
com, c̃om denote the left and right execution transcripts respectively.

6 In Stage 1, the committer acts as a prover and the receiver acts as a verifier. The
safe-point and safe-point lemma still work by interchanging right and left.



4. During the reveal phase S internally incorporates Arev and proceeds
as follows:

(a) Stage 1 Main Execution Phase: S emulates a one-one man-
in-the-middle execution by playing as honest sender with tag
tag on the left and as honest receiver on the right. After com-
pleting the execution, denote by � the transcripts of messages
obtained. Denote the right tag by ˜tag. We emphasize here that
S can emulate left interaction independent of v in Stage 1.

Stage 1 Rewinding Phase: Next, S attempts to extract the
witness used by Arev on the left if tag ∕= ˜tag.

i. In �, find the first point � that is a safe-point. Let the
associated proof be (��, ��, �).

ii. Repeat until a second proof transcript (��, �
′
�, 

′
�) is ob-

tained:
Emulate the left interaction as in the Stage 1 Main Execu-

tion phase. For the right interaction:

– If Arev expects to get a new proof from the right receiver,
S then emulates the proof by generating design0 himself.
Forward one of the two proofs internally.

– If Arev sends a challenge for a proof whose first message
occurs in �: cancel the execution, rewind to � and con-
tinue.

iii. If �� ∕= �′
�, extract and record the witness w from (��, ��, �)

and (��, �
′
�, 

′
�). Otherwise halt and output fail.

Finally, if the above (i.e. step 4a) runs for more than 2n steps, halt
and output fail.

(b) Stage 2: Send v to the adversary Arev.

(c) Stage 3 Main Execution Phase: By using w as witness, S can
easily simulate left interaction for Arev. The right interaction
is emulated by S adopting honest receiver strategy. After com-
pleting the execution, denote by �′ the transcripts of messages
obtained in the execution of Stage 2 and Stage 3 .

Stage 3 Rewinding Phase: S attempts to extract the decom-
mitment key of Arev on the right:

i. In �′, find the first point �̃ that is a safe-point. Let the
associated proof be (�̃�̃, �̃�̃, ̃�̃).

ii. Repeat until a second proof transcript (�̃�̃, �̃
′
�̃, ̃

′
�̃) is ob-

tained:
Emulate the right interaction as in the Stage 3 Main Exe-

cution Phase. For the left interaction:



– If Arev expects to get a new proof from the committer,
S is free to answer the request by using the witness w,
except when Arev sends a challenge for a proof whose first
message occurs in �̃, S cancels the execution, rewinds to
�̃ and continues.

iii. If �̃�̃ ∕= �̃′
�̃, extract a witness w̃ from (�̃�̃, �̃�̃, ̃�̃) and (�̃�̃, �̃

′
�̃, ̃

′
�̃).

Otherwise halt and output fail.
iv. If w̃ is a valid decommitment key for ⟨SHC,SHR⟩, i.e.,

(c̃om, w̃,ṽ) is a legal transcript for ⟨SHC,SHR⟩, set r̃ev = w̃.
Otherwise halt and output fail.

Finally, if the above (step 4b) runs for more than 2n steps, halt
and output fail.

(d) If the right interaction is accepting and tag ∕= t̃ag, and r̃ev contains
a valid decommitment key, run the honest committer strategy on
input c̃om and decommitment key r̃ev, value ṽ with tag t̃ag.

Running time of S. We show that the running time of S is expected
PPT. Note the time spent by S in the commit phase is poly(n). After S
extracts the witness w̃, the time spent by S in step 4d is also poly(n). Next,
we show that the expected time spent by S in the reveal phase (except
running time in step 4d) is also poly(n). For simplicity, we assume that
S does not check the fail condition and may run for more than 2n steps
(since this only increases the total running time).

Recall that in the reveal phase, S rewinds A from two safe points. We
need to show the time spent in step 4a and step 4c are all expected PPT.
We first analyze the time spent in step 4a during the simulation. Then
using the same method, we show that the time spent in step 4c is also
expected PPT.

Note the time spent by S in the Stage 1 Main Execution Phase is poly(n).
We then show the time spent in Stage 1 Rewinding Phase is expected PPT.
The analysis hereafter is similar to that in [15] but is simpler. Let T (i) be
the random variable that describes the time spent in rewinding a proof
after i messages have been exchanged. We show that E[T (i)] ≤ poly(n)
and then by linearity of expectation, we conclude that the expected time
spent by S in the Stage 1 Rewinding Phase is

∑
i E[T (i)] ≤

∑
i poly(n) ≤

poly(n).
Next we will bound the time E[T (i)]. Given a partial transcript of

messages �, let Pr[�] denote the probability that � occurs as a prefix of the
execution emulated in Stage 1 Main Execution Phase. Let p� denote the
probability that � is a safe-point 7 and is rewound. From the construction
of S, we know that S keeping rewinding until it finds another accepting



transcript (��, �
′
�, 

′
�) for �, canceling each rewinding for which � is not a

safe-point, i.e., Arev requests the second message of a proof in the right-
interaction whose first message occurs in �. As the emulated committer
and receiver act identically as real committer and real receiver in this
stage, conditioned on �, a view occurring in a rewinding from � is same
as occurring in the Stage 1 Main Execution Phase. Thus, the probability of
canceling a rewinding from � is at most 1−p�. Furthermore, the expected
number of rewindings is at most 1

p�
. Therefore, the expected number of

rewindings from � is at most p� ⋅
1
p�

= 1 and each rewinding takes at most

poly(n) steps, i.e., E[T (i)∣�] ≤ poly(n). Thus,

E[T (i)] =
∑

� of length i

E[T (i)∣�] ⋅ Pr[�] ≤ poly(n) ⋅
∑

� of length i

Pr[�] ≤ poly(n)

The expected running time of S in step 4c is also polynomial-time
using similar analysis as above. We omit the details.

Analysis of the simulator S. In order to show equation (1), we define a
hybrid stand-alone simulator HYB1 that also receives v as auxiliary input.
HYB1 proceeds exactly as S except that in the commit phase, instead of
feeding A a commitment to 0n, HYB1 feeds A a commitment to v.

Since both the experiment S and HYB1 are efficiently computable, the
following claim follows directly from the hiding property of ⟨SHC,SHR⟩.

Claim 1 There exits some negligible function �′ such that
∣∣∣Pr[simS

open(ℛ, v, z) = 1]− Pr[simHYB1
open (ℛ, v, z) = 1]

∣∣∣ < �′(n)

Next we proceed to showing the following claim.

Claim 2 There exists some negligible function �′′ such that
∣∣∣Pr[mimA

open(ℛ, v, z) = 1]− Pr[simHYB1
open (ℛ, v, z) = 1∣¬fail]

∣∣∣ < �′′(n)

Proof (sketch). Note the view of A in the commit phase in a real inter-
action is identical to the view of A in HYB1. Furthermore, HYB1 feeds A
messages according to the correct distribution in Stage 1, the view of Arev

in the simulation of Stage 1 by experiment HYB1 is identical to the view
of Arev in a real interaction. The view of Arev in the simulation of Stage 3

7 Note the roles of C and R interchange in Stage 1 where C acts as a verifier and R

acts as a prover. The safe-point lemma will be used by interchanging the right and
the left.



by HYB1 is computationally indistinguishable following from the witness-
indistinguishability of ⟨Ptag, Vtag⟩. As the safe-point lemma shows, when
the right interaction has a different tag from the left interaction, there is
a safe-point. Hence, according to the actions of HYB1, it will either out-
put fail or succeed in the extraction from Arev. Conditioned on HYB1 not
outputting fail, by the computational-binding property of ⟨SHC,SHR⟩, ex-
cept with negligible probability, the witness w̃ and the value ṽ extracted
by HYB1 are the valid decommitment key and committed value of A,
respectively.

We next show
∣∣Pr[simHYB1

open (ℛ, v, z) = 1]− Pr[simHYB1
open (ℛ, v, z) = 1∣¬fail]

∣∣
is negligible by proving that the probability that event fail happens is
negligible. This together with Claim 1 and Claim 2 conclude Eq. (1).

Claim 3 HYB1 outputs fail with negligible probability.

Proof. The proof of this claim is similar to that of [15]. More precisely,
HYB1 outputs fail only in three cases: HYB1 runs for more than 2n steps;
or the same proof transcript is obtained from some safe-point; or the
witness extracted is not a valid decommitment. The arguments of the
first two cases are almost the same as those in [15]. The main difference
lies in the analysis of the third case.

HYB1 runs for more than 2n steps: We know that the expected run-
ning time of HYB1 and S are same, i.e., poly(n). Using Markov in-
equality, we conclude that the probability that HYB1 runs more than
2n steps is at most poly(n)

2n .

The same proof transcript is obtained from some safe-point: This
case occurs if HYB1 picks some challenge � (resp. �̃) in Stage 1 (resp.
Stage 3) Rewinding Phase that appeared as a challenge in the Stage 1

(resp. Stage 3 ) Main Execution Phase. As HYB1 runs for at most 2n

steps, it picks at most 2n challenges. Furthermore, the length of each
challenge is 2n. By applying the union bound, we obtain that the prob-
ability that a � (resp. �̃) is picked twice is at most 2n

22n
. Since there are

at most polynomial many challenges in Stage 1 (resp. Stage 3), using
union bound again, we conclude that the probability that it outputs
fail in this case is negligible.

The witness extracted is not a valid decommitment: 8 Suppose, on
the contrary, the witness extracted is not the decommitment key for
⟨SHC,SHR⟩, then by the special-sound property, it follows that it must
be a value r′ such that f(r′) = sb′ for some b′ ∈ {0, 1}. Denote by rb



(b ∈ {0, 1}) the witness used by HYB1 in Stage 1 of right interaction. If
b′ = 1−b, then we can break the one-way function f . Given A, z and v,
we construct an algorithm B that inverts f . The input to B is an n-bit
string y = f(x) where x was chosen randomly from {0, 1}n. B wants
to output a pre-image of y under f . B proceeds as follows: B runs
identically as HYB1 with inputs z, v with the exception that when
simulating the right receiver for A in Stage 1 of reveal phase, it picks
a random bit b ∈ {0, 1} and a random string rb ∈ {0, 1}n, and sets
sb = f(rb), s1−b = y. By using rb as witness, it can simulate the right
interaction with Arev easily. Finally, if B extracts a witness r′ where
f(r′) = y, then we break the one-wayness of f . The probability that
B inverts f is identical to the probability that HYB1 inverts f which
is non-negligible. This contradicts the one-wayness of f .

We therefore have only to deal with the case that B always outputs r′

such that f(r′) = sb, i.e., B always outputs same preimage it knows.
Then we can break the witness indistinguishability of the underlying
special-sound proofs as follows: Recall that the proof ⟨Ptag, Vtag⟩ in
Stage 1 of right interaction contains 4m number of special-sound WI
proofs. The above assumption is that B always extracts the same
preimage used by itself in Stage 1 of right interaction. We know that
if the 4m number proofs use r0, B outputs r0, and if the 4m number
proofs use r1, B outputs r1. Applying standard hybrid arguments,
there exists i ∈ [4m], by using r0 for the first i−1 proofs and r1 for the
last 4m− i proofs, the witness used in the i-th special-sound proof is
the same as that of the witness extracted by B. We can use this session
to break the witness-indistinguishability of special-sound WI proof.
The probability we break the witness-indistinguishability property of
the underlying special-sound proof is 1

4m times the probability that
HYB1 inverts f which is non-negligible. This contradicts the witness-
indistinguishability property of the underlying special-sound proof.

Computational binding. The binding property intuitively follows from the
binding property of the underlying commitment scheme ⟨SHC,SHR⟩ and
the special-sound property (or more precisely proof of knowledge prop-
erty) of the underlying proof in ⟨Ptag, Vtag⟩. A formal proof proceeds along

8 The proof in this case heavily relies on the “simulation-extractability” property of
⟨Ptag, Vtag⟩ in Stage 1. An ordinary WI proof of knowledge is not suffice here, as
the problem in this case is reduced to the security of one-way functions or witness-
indistinguishability of underlying subprotocols, in the presence of an expected PPT
adversary who can rewind the same subprotocols.



the lines of the proof of non-malleability. More precisely, suppose, there
exists an adversary A that can violate the binding property of ⟨C,R⟩,
then we design an algorithm A′ that violates the binding property of
⟨SHC,SHR⟩. A′ incorporates A and relays the commit phase messages to
an external honest receiver SHR. In the reveal phase, there is no need of A′

to simulate the left interaction for A. Note in the non-malleability proof,
two extraction are executed. Here, we only execute one extraction by
standard rewinding, and obtain the decommitment key. Using this infor-
mation, A′ can easily complete the reveal phase with SHR. It follows from
the witness-indistinguishability property of ⟨Ptag, Vtag⟩ that the probabil-
ity that A′ breaks the binding property of ⟨SHC,SHR⟩ is negligible close
to the probability that A breaks the binding property of ⟨C,R⟩.

Schedule of messages: In the non-malleability proof, the design of S is
based on an unspecified assumption, i.e., in the reveal phase, Stage 3

on both interactions will not start unless the simulations for Stage 1 are
completed. Without loss of generality, this assumption is reasonable.

Consider the scenario where the simulation for Stage 1 of the left in-
teraction and Stage 3 of the right interaction overlap. The simulation goes
well as the adversary runs as a prover in Stage 3 of the right interaction,
and the rewinding of Stage 1 of the left interaction will not “rewind” the
Stage 3 of the right interaction (i.e., the adversary can only answer the
left challenge by itself, without the help from the right interaction). By
using the safe-point lemma, the simulator can still find a safe-point and
extract the witness to the statement proved by the adversary by standard
rewinding. Furthermore, the adversary also runs as a prover in Stage 1 of
the left interaction, and the rewinding of Stage 3 of the right interaction
will not “rewind” the Stage 1 of the left interaction. Due to a more simpler
but similar reason, when the simulation for Stage 3 of the left interaction
and Stage 1 of the right interaction overlap, the simulator has no difficulty
and the two extractions also performs well. We take a special note of the
fact that the safe-point lemma depicts the existence of safe-point in any
one-one concurrent execution environment, and considers an environment
where one-side of the interaction is empty as a special case.

4 Acknowledgement.

We thank the anonymous reviewers for their valuable comments. Zongyang
Zhang thank Huijia Lin for helpful discussions on the definition of safe-
point. The work is supported by the National Nature Science Foundation



of China No.60673079 and No.60773086, and by the National 973 Pro-
gram No. 2007CB311201.

References

1. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In Johnson, D.S., Feige, U., eds.: STOC, ACM (2007) 1–10

2. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30 (2000) 391–437

3. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In Bellare,
M., ed.: CRYPTO. Volume 1880 of Lecture Notes in Computer Science., Springer
(2000) 413–431

4. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable
commitment. In: STOC. (1998) 141–150

5. Boyar, J., Kurtz, S.A., Krentel, M.W.: A discrete logarithm implementation of
perfect zero-knowledge blobs. J. Cryptology 2 (1990) 63–76

6. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37 (1988) 156–189

7. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17 (1988) 281–308

8. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9 (1996) 167–190

9. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptology 10 (1997) 163–194

10. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptology 11 (1998) 87–108

11. Haitner, I., Horvitz, O., Katz, J., Koo, C.Y., Morselli, R., Shaltiel, R.: Reducing
complexity assumptions for statistically-hiding commitment. In Cramer, R., ed.:
EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science., Springer
(2005) 58–77

12. Nguyen, M.H., Ong, S.J., Vadhan, S.P.: Statistical zero-knowledge arguments for
NP from any one-way function. In: FOCS, IEEE Computer Society (2006) 3–14

13. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In Pfitzmann, B., ed.: EUROCRYPT. Volume 2045
of Lecture Notes in Computer Science., Springer (2001) 40–59

14. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38 (2008) 702–752

15. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In Canetti, R., ed.: TCC. Volume 4948 of
Lecture Notes in Computer Science., Springer (2008) 571–588

16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, ACM (1990) 416–426

17. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians. (1986) 1444–1451

18. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4 (1991)
151–158

19. Goldreich, O.: The Foundations of Cryptography - Volume 1. Cambridge Univer-
sity Press, UK (2001)



20. Feige, U.: Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis,
The Weizmann Institute of Science, Rehovot, Israel (1990)

21. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29 (1999) 1–28

22. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. Cryptology
ePrint Archive, Report 2003/252 (2003) http://eprint.iacr.org/.

A A Content-Based Non-Malleable Commitment Scheme

Let ⟨SHC,SHR⟩ be the statistically hiding commitment scheme [1]
from any one-way function and let ⟨Ptag, Vtag⟩ be a tag-based WI proof
for all NP. Let SS = (SG,Sig,SVer) be a secure signature scheme. The
content-based non-malleable statistically hiding commitment scheme is
shown in Fig. 4. Due to page limit, the formal proof is omitted here.

Protocol ⟨C,R⟩
Security Parameter: 1n

String to be committed: v ∈ {0, 1}n

Commit Phase:

C ⇔ R : Run the commit phase of commitment scheme ⟨SHC,SHR⟩.
R : Abort if the above commit phase fails.
Denote the above transcript as com. C records the decommitment key in dec.

Reveal Phase:

Stage 1:

R→ C : Set (pk0, sk0)← SG(1n) and send pk0.
R → C : Pick uniformly r0, r1 ∈ {0, 1}

n, compute s0 = f(r0) and s1 = f(r1)
and send s0, s1.
R⇔ C : R and C engage in an execution of ⟨Ppk0

, Vpk0
⟩ with tag pk0, where

R uses rb as witness (b ∈ {0, 1}) and runs Ppk0
to prove to C (running Vpk0

)
that there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., C) is 2n. C aborts if either s0 or s1 is not in the range of f
or the proof fails.
R→ C : Let tr0 be the transcript so far. Set �0 ← Sig(tr0, sk0) and send �0.
C : Abort if Sver(pk0, tr0, �0) ∕= 1.

Stage 2: C → R : Send v.
Stage 3:

C → R : Set (pk1, sk1)← SG(1n) and send pk1.
C ⇔ R : C and R engage in an execution of ⟨Ppk1

, Vpk1
⟩ with tag pk1, where

C uses witness dec and runs Ppk1
to prove to R (running Vpk1

) that there
exists a value dec s.t. dec is the decommitment key of com corresponding to v

or there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., R) is 2n.
C → R : Let tr1 be the transcript so far. Set �1 ← Sig(tr1, sk1) and send �1.
R : Abort if Sver(pk1, tr1, �1) ∕= 1.

Fig. 4. Non-malleable statistically hiding commitment scheme ⟨C,R⟩


