
Secure Multi-party Computation
Minimizing Online Rounds

Seung Geol Choi1?, Ariel Elbaz1?, Tal Malkin1?, and Moti Yung2

1 Columbia University {sgchoi, arielbaz, tal}@cs.columbia.edu
2 Google Inc. & Columbia University moti@cs.columbia.edu

Abstract. Multi-party secure computations are general important procedures to
compute any function while keeping the security of private inputs. In this work
we ask whether preprocessing can allow low latency (that is, small round) secure
multi-party protocols that are universally-composable (UC). In particular, we al-
low any polynomial time preprocessing as long as it is independent of the exact
circuit and actual inputs of the specific instance problem to solve, with only a
bound k on the number of gates in the circuits known.
To address the question, we first define the model of “Multi-Party Computation on
Encrypted Data” (MP-CED), implicitly described in [FH96,JJ00,CDN01,DN03].
In this model, computing parties establish a threshold public key in a prepro-
cessing stage, and only then private data, encrypted under the shared public key,
is revealed. The computing parties then get the computational circuit they agree
upon and evaluate the circuit on the encrypted data. The MP-CED model is inter-
esting since it is well suited for modern computing environments, where many
repeated computations on overlapping data are performed.
We present two different round-efficient protocols in this model:

– The first protocol generates k garbled gates in the preprocessing stage and
requires only two (online) rounds.

– The second protocol generates a garbled universal circuit of size O(k log k)
in the preprocessing stage, and requires only one (online) round (i.e., an
obvious lower bound), and therefore it can run asynchronously.

Both protocols are secure against an active, static adversary controlling any num-
ber of parties. When the fraction of parties the adversary can corrupt is less than
half, the adversary cannot force the protocols to abort.
The MP-CED model is closely related to the general Multi-Party Computation
(MPC) model and, in fact, both can be reduced to each other. The first (resp. sec-
ond) protocol above naturally gives protocols for three-round (resp. two-round)
universally composable MPC secure against active, static adversary controlling
any number of parties (with preprocessing).

Keywords: Computing with Encrypted Data, Multi-Party Computation, Public
key Cryptography, Cryptographic Protocols, Universal Composition.

1 Introduction

Secure Multi-party Computation (MPC). Protocols for MPC enable a set of parties
to correctly evaluate a function such that no information about the private inputs of the
? supported in part by NSF Grants CCF-0347839, CNS-0716245 and CNS-0831094.

parties is revealed, beyond what is leaked by the output of the function. This notion was
first presented by Yao [Y86] for the two-party case, and by Goldreich et al. [GMW87]
for the multi-party case. However, implementations for MPC are notoriously ineffi-
cient. Many protocols implementing them have delays associated with the depth of the
circuit and even constant round protocols produce very long delays. The question that
we want to settle in this work is whether one can use preprocessing computation in order
to “be ready” once the inputs and the actual circuit (problem) to compute on are given.
Note that the world of computing is transforming into “cloud services” where parties
can “rent” computational resources. Thus, it may make sense to perform a lengthy pre-
processing in the background, with no specific input and problem to solve in mind, just
as a preparation. To this end cloud resources can be employed on behalf of users, and
massive computations and communication can be performed. Then in the online stage
once the input is given and the circuit determined, it can be performed much faster given
the preprocessing. As long as at least one of the servers in the cloud is not corrupted,
the correctness and privacy of the online stage computation is guaranteed.

We consider the following variation on secure multi-party computation, called multi-
party computing with encrypted data (MP-CED): (1) The computing parties publish a
shared public key, and hold shares of the matching private key. (2) The parties also know
some bound on the circuit size that they will be required to compute securely. The par-
ties then perform a preprocessing stage. For this stage too, we may try to minimize the
parties’ work and computation rounds, but this is not the main goal, which is the effi-
ciency of the on-line stage. (3) The input distribution is a database of encrypted data that
can be published by many parties (not necessarily those taking part in the computation);
i.e., think about the parties as a service (like the census bureau) computing on behalf
of a larger population. (4) The concrete computation circuit (or circuits) is given, and
the input to use from the database (their indices in the database) are determined. Then
and only then (5) the parties are engaged in a short computation to achieve the task and
produce the output while protecting the private data. Note that the input database may
be reused for many computations.

We remark that our model is somewhat related to a multi-party extension of the
model by Rivest, Adleman and Dertouzos [RAD78]. They put forth a scenario for secure
computation over database of encrypted data, called Computing with Encrypted Data
(CED). This model is highly attractive since it represents the case where a database is
first collected and maintained and only later a computation on it is decided upon and
executed (e.g., data mining and statistical database computation done over the encrypted
database). We discuss the encrypted data model and the multi-party version here, and in
fact show that MP-CED and MPC can be reduced to each other (shown in Section 3.3).

1.1 Motivation

We consider protocols in the universal composability (UC) framework introduced by
Canetti [C01]. UC secure protocols remain secure even when executed concurrently
with arbitrary other protocols running in some larger network, and can be used as sub-
routines of larger protocols in a modular fashion.

Round-Efficient Protocols with Preprocessing. Round complexity is an important cri-
terion for the efficiency of an MPC protocol. A long line of work, including

[BMR90,IK00,GIKR01,DI05,DI06,DIK+08], focused on reducing both the round com-
plexity and communication complexity.

Also, it is known that UC secure computation of general functions is not possible
in the plain model in the case of honest minority. In particular, UC secure two-party
computation of a wide class of functionalities was ruled out by [CF01,CKL03]. To cir-
cumvent these impossibility results, it is common to assume some pre-computation
setup, and the most common assumption is that a common reference string (CRS) is
made available to the parties before the computation. Canetti et al. [CLOS02] showed
that (under suitable cryptographic assumptions) a CRS suffices for UC secure MPC of
any well-formed functionality.

In our work, we consider stronger relaxation on the setup, called general prepro-
cessing [DI05]3, in which the parties perform some work as long as it is independent of
the inputs and the circuit for which the actual computation is to be done later. The main
motivation for this model is to reduce the amount of work during the execution of the
protocol beyond a preprocessing phase.

Considering the two aspects above, we ask the following natural question:

Allowing any polynomial time preprocessing (in some input parameter) before
the circuit (whose size is bound by the same input parameter) and the inputs
are known, is there a very small constant round protocol?

1.2 Our Results

We address the aforementioned question affirmatively by constructing two different
round-efficient protocols for MP-CED, which we call P1 and P2. Both protocols can be
naturally transformed into round-efficient protocols for MPC (c.f. Section 3.3). Each
protocol has its own advantage depending on the following parameters:

1. round complexity in the online stage (our major concern),
2. round complexity in the preprocessing stage, and
3. the number of gates constructed throughout the protocol.

In terms of online round complexity, protocol P1 is “two rounds” whereas that of pro-
tocol P2 is “one round” (which is optimal, since even non-secure computation need to
collect the data and it takes one round). There are some cases, however, in which the
preprocessing round complexity of P1 is better, under some efficiency considerations.
We use general constant-round MPC protocols [IPS08] for the preprocessing stage in
P2, whereas in P1 we can use the protocol given in Appendix A, which requires exactly
2n rounds. When n is small enough, preprocessing in P1 can be more round-efficient
(when n is large, a general MPC protocol can be used in P1, too). Also, the number of
gates constructed in P2 is larger than that in P1. To evaluate a circuit with up to k gates,
P1 constructs k garbled gates in the preprocessing stage, as explained below. In con-
trast, P2 generates a universal circuit [V76] in the preprocessing stage, which is later

3 Preprocessing in [DI05] is independent only of the inputs (it depends on the circuit to be
evaluated), whereas we require preprocessing to be independent both of the circuit and of the
inputs.

used (in the online stage) to evaluate a given circuit. The smallest known universal cir-
cuit that can evaluate a circuit with k gates has O(k log k) gates [KS08]. We overview
the two protocols in the following.

First Protocol (P1). In a big picture, we follow the framework of Yao’s garbled circuit
technique. However, the main difference is that, in our protocol, garbling is done on
the individual gate level so that this procedure can be executed in the preprocessing
level independently of the circuit to be given and computed later. In the online stage,
construction of wires between gates according to the given circuit is performed.

– In the preprocessing stage, the parties generate a ‘garbled’ truth table for each in-
dividual gate. Truth tables are for NAND gates, and they have four rows and three
columns – left-input, right-input, and output. Each row is randomly shuffled, and
each element is an encryption of Boolean value. We emphasize that no party knows
anything more than the fact that it’s a randomly shuffled encrypted table for NAND.

In addition, a fresh pair of public key and (encrypted) private key is generated
for each row. This key is used for constructing encrypted wiring information in the
online stage, when the circuit is given.

– In the online stage, given the encrypted data and a circuit, the computing parties
‘connect’ truth tables by adding wiring information. The wiring information tells,
given two tables Tpred, Tsucc according to the topology of the circuit, which row
of Tpred’s output column is equal to which row of Tsucc’s input column. We note
that this information should be carefully revealed; otherwise, the adversary may try
computing different rows of the truth tables using the wirings, and may learn more
than is allowed. In fact, during the computation (online stage), exactly one row’s
wirings for each table should be revealed.

To enable such wirings we introduce Multi-Party Conditional Oblivious Decryp-
tion Exposure (M-CODE) (in Section 2), which is a multi-party extension to the
CODE functionality, introduced in [CEJ+07] for the two party case. M-CODE as-
sumes a group of parties share a secret key x of a public key y. Three ciphertexts
cout, cin, ckey — all encrypted under y — and a new public key z are given as input.
For ` ∈ {out, in, key}, let m` be the plaintext encrypted in c`. If mout equals min,
M-CODE outputsEz(mkey). Otherwise, M-CODE chooses a random value r and out-
puts Ez(r). The computing parties use M-CODE such that, for each row of a truth
table, the three ciphertexts of the M-CODE are (1) output value of the previous table
(2) the input value of this row and (3) the secret key for this row. We refer the reader
to Section 3.1 for more details.

With two round implementation of M-CODE for ElGamal encryption, we obtain a
two-round protocol for MP-CED and a three-round protocol for MPC.

Theorem 1. Assuming the DDH assumption holds, protocol P1 is a two-round UC
secure protocol for MP-CED in the Fzk hybrid — and, thereby three-round UC secure
protocol for MPC in the Fzk hybrid in the general preprocessing model — against an
active and static adversary as long as at most t < n computing parties are corrupted.

The protocols manipulate linear number of gates in the circuit size. Furthermore, if
t < n/2 parties are corrupted, P1 is robust against abort.4

Second Protocol (P2). Protocol P2 follows Yao’s garbled technique more closely than
P1. However, the circuit that is to be garbled is a universal circuit [V76,KS08] to main-
tain independence of the circuit to be given. Optimal round complexity in the online
stage is achieved by putting a simple constraint on the input-layer labels in the garbled
circuit and by employing the multiplicative homomorphism of ElGamal encryption. As
in the first protocol, a group of parties share a secret key x of a public key y.

– In the preprocessing stage, the parties generate a garbled circuit [Y86] of a universal
circuit CU , with some special restrictions on keys of input wires. In the garbled
circuitCU , there are two keyswi

0 andwi
1 for each wire i, wherewi

b corresponds to the
wire carrying bit b (see Section 3.2 for more detail). The special restriction on input
wires is that wi

1/w
i
0 = h for a random global value h unknown to any party. The two

keys can be constructed by picking wi
0 uniformly at random and letting wi

1 = h ·wi
0.

In addition to the garbled circuit of CU , the following encryptions are generated:
(1) the encryption Ey(h) and (2) Ey(wi

0) for each input wire i. Construction of a
garbled circuit along with aforementioned encryptions — i.e., Ey(h) and Ey(wi

0)’s
— can be performed using a constant-round UC secure protocols for general MPC
[KOS03,IPS08]. Input contribution of a bit 0 is done by Ey(h0), and for a bit 1,
re-encrypted Ey(h1) is used via homomorphism.

– In the online stage, for each input wire i where a bit b is the contributed input
for the wire, computing parties obtain wi

b. The encryption Ey(wi
b) can be obtained

via homomorphism given the encrypted input ci = Ey(hb), giving Ey(wi
0) · ci =

Ey(wi
0h

b) = Ey(wi
b), since wi

1 = h · wi
0. Now parties obtains the key wi

b for each
input wire i using threshold decryption and can locally evaluate the garbled circuit.
Note that wi

b does not leak any information on b since it’s randomly distributed (with
wi

1−b hidden).

Theorem 2. Assuming the DDH assumption holds, protocol P2 is a one-round UC
secure protocol for MP-CED in the Fzk hybrid – and, thereby two-round UC secure
protocol for MPC in the Fzk hybrid in the general preprocessing model – against an
active and static adversary as long as at most t < n computing parties are corrupted.
The protocol processes k log k gates where k is the circuit size. Furthermore, if t < n/2
parties are corrupted, P2 is robust against abort.

1.3 Related Work

Round Complexity. Beaver et al. [BMR90] showed the first MPC protocol that required
constant (but large) number of rounds, and Damgård and Ishai [DI05] presented the first
adaptively UC secure protocol that achieves two rounds in the (linear) preprocessing
model when the number of malicious parties t < n/5 and some higher constant rounds

4 Instantiation of protocol P1 (in particular, key setup in the preprocessing) is parameterized by
t. Therefore protocol P1 is not a ’best-of-both-worlds’ protocol [IKLP06]. This is true of P2,
too.

when t < n/2. Recently, Ishai et al. constructed UC secure protocol with malicious
majority in the OT hybrid model running in (large) constant rounds [IPS08] (see Fig 1).

For the two-party setting, which is a special case of MPC, Katz and Ostrovsky
[KO04] showed that it’s impossible to construct a secure protocol running in four rounds
using enhanced trapdoor permutation (eTDP) or homomorphic encryption in a black-
box manner in the plain model, and they constructed a five-round protocol. To over-
come this lower bound, Horvitz and Katz [HK07] used CRS to construct a UC secure
two-party protocol in two rounds. Nielsen and Orlandi [?] gave a two party protocol us-
ing a cut-and-choose approach. In a big picture, their idea is somewhat similar to ours:
after many garbled gates are generated, they are connected to each other according to
the circuit to be evaluated.

In the (non-UC) stand-alone setting, the work of [IK00,AIK05] gave a general
non-interactive reduction of any n-party functionality computed by a polynomial size
Boolean circuit into a (possibly randomized) functionality of degree-3 over GF (2).
Combining this reduction with any secure protocol with malicious majority (for exam-
ple, [GMW87]) leads to round-efficient protocols in the stand-alone setting.

MP-CED. Some nontrivial instantiations for CED were shown, originating with Sander
et al. [SYY99], who gave a protocol for circuits in NC1. Beaver [B00] extended this
result to accommodate any function in NLOGSPACE [BL96]. Recently, Gentry pre-
sented a construction for any polynomial size circuit by showing doubly-homomorphic
encryption scheme from ideal lattices [G09], however it is not yet clear if this can give
efficient protocols for MP-CED (see discussion in Section 3.3).

MP-CED was also considered by Franklin and Haber [FH96] and the subsequent
works [JJ00,CDN01,DN03]. In their works, after a threshold encryption key is estab-
lished, each party broadcasts the encryption of its input, and the parties evaluate the
circuit on the encrypted data. However, they do not explicitly treat the setting as a
unique model for MP-CED, with a specific setup state that is independent of the inputs
and the circuits to be computed, and do not consider input separation – inputs can be
contributed by parties that do not take part in the computation. Note that all these pre-
vious works in the model dealt with the two party case, which we extend herein to the
multi-party case.

The protocol given by Cramer et al. [CDN01] computes an arithmetic circuit and
achieves security in the case of honest majority, but the number of rounds is linear in
the depth of the circuit. A UC adaptively secure protocol with the same round complex-
ity was given by [DN03]. Jackobson and Juels [JJ00] use mix-and-match approach to
compute on encrypted data, but their approach requires even more rounds (linear in the
sum of the depth of the circuit and the number of parties). Figure 1 lists these previous
works, in some relations to our protocols (while concentrating on on-line rounds, and
omitting some of the advantages our results has beyond the table).

2 Preliminaries

For any integer t, let [t] = {0, 1, . . . , t − 1}. Let k be a security parameter. We choose
a cyclic group Gq

g of order q ≈ 2k with a generator g where the DDH problem [DH76]
is hard. For example, Gq

g can be a subgroup of order q of a multiplicative group Z∗p for

MPC circuit rounds security]corr
[KOS03] B O(1) St t < n
[DI05] B 2 Ad t < n/5

[DI05,DI06] B O(1) Ad t < n/2
[DIK+08] B O(1) Ad t < n/2
[IPS08] B O(1) Ad t < n
P1 B 3 St t < n
P2 B 2 St t < n

MP-CED circuit rounds security]corr
[CDN01] Ar O(d) SA, St t < n/2

[JJ00] B O(n+ d) SA, St t < n/2
[DN03] Ar O(d) UC, Ad t < n/2
P1 B 2 UC, St t < n
P2 B 1 UC, St t < n

]corr = number of corrupted parties, B = Boolean, Ar = Arithmetic, St = static, Ad = adaptive,
SA = stand-alone
Fig. 1: UC Secure Constant-Round MPC Protocols (Left) and MP-CED Protocols (Right).
We denote by d the depth of a given circuit, by n the number of parties, and by t the number
of corrupted parties. P1 and P2 denote the protocols proposed here. Here the column ’rounds’
means the number of rounds in the online stage.

a safe prime p = 2q + 1, i.e., Gq
g = {g0, g1, . . . , gq−1} (mod p). We assume Gq

g is
known in advance.

ElGamal Encryption. ElGamal encryption [E85] is semantically secure under the
DDH assumption over Gq

g [TY98]. The key generation algorithm generates a public/secret
key pair (y, x) where x ∈R [q] and y = gx. Encryption of a message m ∈ Gq

g under a
public key y, denoted by Ey(m), is (gr,myr) where r ∈R [q]. Decryption of a cipher-
text c = (α, β) with the secret key x, denoted by Dx(c), is β/αx.

Homomorphism. Multiplication of two ciphertextsEy(m1) = (gr1 ,m1y
r1) andEy(m2) =

(gr2 ,m2y
r2) is defined as (gr1+r2 ,m1m2y

r1+r2), which shows the homomorphism of
ElGamal encryption (i.e., Ey(m1) · Ey(m2) = Ey(m1 ·m2)). In addition, encryption
keys are also homomorphic in the sense that given key pairs {(yi = gxi , xi)}i, the pair
(
∏

i yi,
∑

i xi) is a valid key pair. When two ciphertexts encrypt the same message, we
denote c1 ≡ c2.

Zero-Knowledge Proofs of Knowledge (ZK-PoK). A proof of knowledge is a proof
for a relation R, in which the prover convinces the verifier that an instance is in the
language, and also that the prover knows a witness for this instance. We will use
standard notation to denote proofs of knowledge related to discrete log. For example,
PK{b : a = gb} denotes a proof of knowledge where the prover convinces the verifier
that she knows the value of b, such that a = gb, when a is known to both.

In the common reference string (CRS) model, we can use non-interactive zero-
knowledge proofs (NIZK) due to De Santis et al. [SCO+01] (see the discussion in
[CLOS02, Section 6]) which is UC-secure [C01]. In the random oracle model (ROM),
the above proof systems can be efficient NIZK using the standard Fiat-Shamir technique
[FS86] combined with OR proofs of Σ-protocols [CDS94].

Secret Sharing [S79,F87]. A secret sharing scheme allows a secret s ∈ [q] to be shared
among n parties, such that a threshold of t + 1 parties can recover the secret, whereas
any smaller set of parties can not learn anything about the secret. In Shamir’s secret
sharing scheme, the shares are values of a degree-t polynomial, and the secret is the
free coefficient of the polynomial.

We show below how the parties can share and recover the secret s. Moreover, the
parties may choose to recover ds for some d ∈ Gq

g , or an ElGamal encryption of ds

(without learning anything about the secret s).

– Sharing: A dealer chooses at random a degree t polynomialQ(x) := s+a1x+ · · ·+
atx

t, where the free coefficient is the secret s. The share of party Pi is si = Q(i).
– Recovering s: Let T be a set of t+ 1 parties. They evaluate Q′(0) =

∑
i∈T siLi(0)

to recover s, where Li is a Lagrangian on the points in T .5

– Recovering an exponentiation ds: Similar to above, the parties can evaluate ds =
dQ′(0) = d

∑
i∈T siLi(0) =

∏
i∈T d

siLi(0), using only {dsi}i∈T .
– Recovering Ey(ds): Using multiplicative homomorphism of ElGamal, the parties

evaluate Ey(ds) = Ey(dQ′(0)) =
∏

i∈T Ey(dsiLi(0)) =
∏

i∈T Ey(dsi)Li(0), using
only {Ey(dsi)}i∈T .

Multi-party Conditional Oblivious Decryption Exposure (M-CODE). We introduce
Multi-Party Conditional Oblivious Decryption Exposure (M-CODE). M-CODE assumes
a group of parties share a secret key x of a public key y. Three ciphertexts cout, cin, ckey

— all encrypted under y — and a new public key z are given as input. For ` ∈
{out, in, key}, let m` be the plaintext encrypted in c`. If mout equals min, M-CODE
outputsEz(mkey). Otherwise, M-CODE chooses a random value r and outputsEz(r). A
variant of this functionality for the two party case was initially introduced by [CEJ+07].
The intuitive idea is to generate a ciphertext that encryptsmkey multiplied by (mout/min)r

for a random r. If min = mout, then the output would be mkey . We assume party Pi

has xi, all the parties know cout, cin, ckey, z, (y, y1 = gx1 , . . . , yn = gxn), and let
cout = Ey(mout) = (α, β),cin = Ey(min) = (γ, δ), ckey = Ey(mkey) = (λ, µ). The
protocol for M-CODE proceeds as follows:

1. Each party Pi chooses ei ∈R [q], and computes εi = (α/γ)ei , ζi = (β/δ)ei , πi =
PK{ei : εi = (α/γ)ei , and ζi = (β/δ)ei},, and broadcasts (εi, ζi, πi).

2. Let ε =
∏

i∈S1
εi and ζ =

∏
i∈S1

ζi where S1 is the set of parties which sent
valid messages. Each party Pi chooses ri randomly and computes di = (di1, di2) =
Ez ((ελ)xi) and ψi = PK

{
(ri, xi) : di1 = gri , di2 = zri(ελ)xi , yi = gxi

}
,

and broadcasts (di, ψi).
3. Let S2 be the set of parties that sent valid messages in steps 1 & 2. If |S2| ≤ t,

then the protocol aborts. Each party Pi, using the homomorphic multiplication, com-
putes d = (d1, d2) = Ez ((ελ)x) =

∏
j∈S2

d
Lj(0)
j where Lj(·) is a Lagrangian

on the indices in S2. Pi uses homomorphic operations to compute Ez (˜mkey) =
(1/d1, ζµ/d2), which is

Ez (ζµ/(ελ)x) = Ez

((β/αx

δ/γx

)e

· (µ/λx)
)

= Ez

((mout

min

)e

·mkey

)
,

where e =
∑

i∈S1
ei.

5 Lagrangian Li on the points in T is a degree t polynomial such that Li(x) = 1 if x = i
and Li(x) = 0 if x ∈ T and x 6= i. The polynomial Q′(x) =

∑
i∈T siLi(x) is a degree t

polynomial that goes through the points (i, si)i∈T , and thus must be Q(x).

3 Multi-party Computing with Encrypted Data

We assume the circuit C of interest is normalized: all intermediate gates are NAND
gates, and output gates are IDENTITY gates6. We can easily attain this circuit by adding
another layer of IDENTITY gates on top of a circuit that consists of NAND gates.

3.1 First Protocol (P1)

In the first protocol, called P1, each gate is garbled, and then the computing parties
‘connect’ gates by adding wiring information using M-CODE.

Preprocessing Stage. The first step is to establish a global public key y for ElGamal
encryption. The computing parties have shares of the corresponding secret key x. Once
the public key is established, the next step is to generate truth tables for individual gates.
The columns of input, output, and intermediate gates differ slightly, as can be seen in
Figure 2 which shows the structure of truth tables.

1. Input and Output. These are encrypted with the global public key y.
2. Placeholders for the wiring information. This connects a row of the truth table to

matching rows in successor gates.
3. The columns PK and SK contain a random ElGamal key pair, where the private key

is encrypted under the global public key y (and the wiring information is encrypted
using the secret keys in SK).

4. For output gates, ciphertexts in column Final encrypt the same plaintexts as cipher-
texts in column In.

During the preprocessing stage, the parties can generate polynomial number of gar-
bled gates, that can later be used for evaluating circuits. Therefore it suffices to know a
bound on the sizes of circuits to be evaluated later. Preprocessing can be done in con-
stant number of round using general MPC protocols [KOS03,IPS08]. If the number of
computing parties is small, it can be done explicitly in 2n rounds, where n is the number
of computing parties, using the protocol in Appendix A.

Input contribution is performed by publishing a ciphertext c = (c1, c2) = Ey(gb)
for an input b ∈ {0, 1}. This can be done securely by adding PK

{
r : (c1 = gr, c2 =

yr) or (c1 = gr, c2 = gyr)
}
.

Online Stage: Generation of Wires Between Garbled Gates. In Figure 2, Gi is the
left predecessor of Gk. The connection between the two gates should be established
through some “wiring” such that during the computation the output of Gi can be prop-
agated to the left input of Gk. So, rows of Ti with output value b ∈ {0, 1} should be
connected to rows of Tk with left input value b.

Requirements for Wiring. In our protocol, the following conditions are considered in
generating wires.

6 An IDENTITY gate has single input bit (wire) and output bit, and it copies the input bit value
to its output.

T` In PK SK Final

1 E[1] pk`1 Ey(sk`1) Epk`1(g1)
2 E[0] pk`2 Ey(sk`2) Epk`2(g0)

Tk InL InR Out PKL SKL PKR SKR Wires[k→`]

1 E[1] E[1] E[0] pkk1L Ey(skk1L) pkk1R Ey(skk1R) Epkk1L·pkk1R(∗, sk`2)
2 E[1] E[0] E[1] pkk2L Ey(skk2L) pkk2R Ey(skk2R) Epkk2L·pkk2R(sk`1, ∗)
3 E[0] E[1] E[1] pkk3L Ey(skk3L) pkk3R Ey(skk3R) Epkk3L·pkk3R(sk`1, ∗)
4 E[0] E[0] E[1] pkk4L Ey(skk4L) pkk4R Ey(skk4R) Epkk4L·pkk4R(sk`1, ∗)

G`

Gk

Gi

Gj· · ·

6

��7

C
C
C
CO

��7

Ti InL InR Out PKL SKL PKR SKR Wires[i→k]

1 · · · E[1] · · · Epki1(skk1L, skk2L, ∗, ∗)
2 · · · E[0] · · · Epki2(∗, ∗, skk3L, skk4L)
3 · · · E[1] · · · Epki3(skk1L, skk2L, ∗, ∗)
4 · · · E[1] · · · Epki4(skk1L, skk2L, ∗, ∗)

Tj Out Wires[j→k]

1 E[1] (skk1R, ∗, skk3R, ∗)

Fig. 2: Garbled Truth Tables for the Gates (Gi, Gj , Gk, G`). The topology of the gates is
given on the right. Gj is an input gate, G` is an output gate, and Gi, Gk are intermediate gates.
Table Tx is the truth table describing gate Gx. y is the global public key. Each row of an in-
termediate truth table has two sets of (secret, public) keys, and contains the wiring information,
“connecting” it to the next gate, encrypted using these two keys. E[0] and E[1] are Ey(g0) and
Ey(g1) respectively. In table Ti, pki1 = pki1L · pki1R, and pki2, . . . , pki4 are defined similarly.
In the Wires columns, E(a, b, c, d) denotes concatenation of E(a), . . . , E(d).

– (Encrypting the Wiring Information.) The wiring information, except wirings con-
necting an input gate to an intermediate gate, should be encrypted. Public wiring
may help the (even semi-honest) adversary to learn more information than the out-
put of C. Therefore, it is encrypted with the public key stored in columns PKL and
PKR.

– (Conditional Exposure of Wiring Information.) For the computation to proceed, the
protocol should reveal the wiring information for the rows along the computational
path. In the beginning, wirings from input gates is public. Along the computational
path, on each gate, exactly one row should allow decryption of the wiring informa-
tion.

– (Oblivious Generation of Wiring Information.) The wiring information are added to
garbled gates after they are built. It is essential that, even if the truth table is encrypted
and shuffled, the parties should still be able to add the wiring information.

Computation of a Circuit Using Wires. Let Ti[a][b] denote the element located at col-
umn a and row b in Ti. The column Wires contains wiring information, and we de-
note the column Wires from Ti to Tk by Wires[i→k]

7. Looking at the column Wires
alone, Wires(v) denotes the vth row of this column in the plaintext form. For exam-
ple, Wires[i→k](2) = (∗, ∗, skk3L, skk4L) in Figure 2. We also use Wire(v, w) to de-
note the wth element of Wires(v). If Wire[i→k](v, w) 6= ∗, it means that Ti[Out][v] ≡
Tk[In][w]. In Figure 2, for example, we have Wire[i→k](2, 3) 6= ∗ because Ti[Out][2] ≡
Tk[InL][3] ≡ E[0].

This wiring information helps the circuit computation to proceed correctly. The
computation proceeds in order from input gates to output gates. In Figure 2, for exam-

7 If Gi has another outgoing wire, say to Gm, Ti will have another column Wires[i→m].

Connecting the Gates: Fill in Wires Columns.

– For every Wire[i→k](v, w) of an intermediate gate Ti, run M-CODE for cout = Ti[Out][v],
cin = Tk[In][w] and ckey = Tk[SK][w], with the key z = Ti[PKL][v] · Ti[PKR][v].

– For every Wire[j→k](v, w) of an input gate Tj , run M-CODE for cout = Tj [Out][v], cin =
Tk[In][w] and ckey = Tk[SK][w], with the trivial key z = g0.

Depending on the circuit topology, the subscript of a column may differ (e.g., InL, InR, or In).

Local Computation. Each party computes the output of C using the M-CODE transcripts on
the input gates.

Fig. 3: Online Stage of P1.

ple, if row 2 of Ti and row 1 of Tj are on the computation path, then row 3 of Tk is also
on the computation path because w = 3 is the only row where Wire[i→k](2, w) 6= ∗ and
Wire[j→k](1, w) 6= ∗.
Constructing Wires. We implement each Wire[i→k](v, w) using a M-CODE transcript
for cout = Ti[Out][v], cin = Tk[In][w], ckey = Tk[SK][w], and z = Ti[PK][v]8. This
directly satisfies the requirements of encrypted wiring and oblivious wiring generation.
Conditional exposure is achieved by executing M-CODE protocols in the input layer
with a trivial public key z = 1, so that the wiring information in the input layer is
known to every party.

The description of P1 can be found in Figure 3. Running the online stage takes
two rounds. The communication complexity of P1 is O(nk|C|) (plus the NIZK, if we
assume the CRS case) where |C| is the size of the circuit.

3.2 Second Protocol (P2)

The idea of P2 is that in a preprocessing stage, the parties generate a garbled circuit,
using Yao’s technique, of a universal circuit. The garbled circuit has a restriction on
the keys of input wires, that allows the online computation to take only one round in
our model, as opposed to the two-round OT based approach of Yao. The preprocess-
ing stage can be done in constant number of rounds, using general MPC protocols
[KOS03,IPS08].

Preprocessing Stage: Garbling Universal Circuit. The first step is to establish a
global public key y for ElGamal encryption. The computing parties have shares of the
corresponding secret key x. In contrast to protocol P1, however, here, ElGamal encryp-
tion is used only for input layer.

Next, a garbled circuit for universal circuit is generated, using Yao’s garbled circuit
technique [Y82]. In the generation procedure, for each wire i, two random keys, wi

0

and wi
1 are generated. The key wi

0 (resp., wi
1) represents 0 (resp., 1) for wire i. For each

gate Gj , a truth table Tj is generated. In each table, a private key encryption (denoted

8 Depending on the circuit topology, if this is a left input or right input to the gate, the pair
(cin, ckey) may also be (Tb[InL][w], Tb[SKL][w]) or (Tb[InR][w], Tb[SKR][w]).

Tj

1 W j
0 := Ey(wj

0)

Ti

1 Ĕ(·)(Ĕ(·)(w
i
1))

2 Ĕ(·)(Ĕ(·)(w
i
0))

3 Ĕ(·)(Ĕ(·)(w
i
1))

4 Ĕ(·)(Ĕ(·)(w
i
1))

Tk

1 Ĕwi
1
(Ĕ

w
j
1
(wk

0))

2 Ĕwi
1
(Ĕ

w
j
0
(wk

1))

3 Ĕwi
0
(Ĕ

w
j
1
(wk

1))

4 Ĕwi
0
(Ĕ

w
j
0
(wk

1))

T`

1 Ĕwk
1
(1)

2 Ĕwk
0
(0)

G`

Gk

Gi

Gj· · ·

6

��7

C
C
C
CO

��7

Fig. 4: Garbled Truth Tables for the Gates (Gi, Gj , Gk, G`). The topology of the gates is given
on the right. Gj is an input gate, G` is an output gate, and Gi, Gk are intermediate gates. Table
Tx is the truth table describing gate Gx. y is the global public key. Encryption Ĕ is a private key
encryption based on pseudorandom function with efficient verifiable range [LP09].

Ğ, Ĕ, D̆) with efficiently verifiable range (based on pseudorandom function) is used
[LP09]9. Figure 4 shows the structure of the garbled circuit.

– Recall that we assume all output gates are identity gates, with only one incoming
wire and only two rows in the corresponding truth table. Each row encrypts the
Boolean value represented by the corresponding wire, and the rows are randomly
shuffled. An example is given in Figure 4: in the first row of tableG`, the input value
is 1 (the key wk

1 represents 1), and it encrypts 1, which is the output value of this
row.

– For all other gates, each gate has two incoming wires and four rows. Each row en-
crypts a key for the outgoing wire, which represents the appropriate Boolean value
of NAND of the incoming wires’ values, and the rows are randomly shuffled. For
example, in Gk of Figure 4, the first row encrypts wk

0 , representation of 0 for wire
k, since NAND of the values that the keys of the incoming wires represent (i.e., the
value 1 represented by wi

1 in wire i, and the value 1 represented by wj
1 in wire j) is

0.

To construct a secure protocol for MP-CED, we depart from the traditional Yao garbed
circuit technique, by giving restriction on input wires.

– A random element h ∈ Gq
g is chosen, which no party knows, and H = Ey(h) is

published. We emphasize that H is generated once and for all. In other words, every
instance of garbled universal circuit can use the same H .

– For input wire j, two keys wj
0, w

j
1 ∈ Gq

g are randomly generated, conditioned on
wj

1 = h · wj
0. Only the encryption of the first key, W j

0 := Ey(wj
0) is published.

Since we garble a universal circuit, it suffices to know a bound on the sizes of
circuits to be evaluated later. A universal circuit of size O(k log k) can accept circuits
of size k as inputs [KS08].

Input contribution is performed such that for input b ∈ {0, 1}, a ciphertext c =
(c1, c2) = Ey(hb) is published.

– When input is 0, publish Ey(1).
– When input is 1, publish a re-encryption of H (recall H = (H1, H2) = Ey(h)).

9 Roughly speaking, in such an encryption scheme, given a ciphertext and a key, it is efficiently
verifiable whether the given ciphertext was encrypted under the given key. This helps comput-
ing parties to correctly compute the garbled circuit.

A proof of knowledge is added, PK
{
r : (c1 = gr, c2 = yr) or (c1 = H1g

r, c2 =
H2y

r)
}
.

Online Stage: Obtaining keys for input-wires. Computing parties need to obtain a
key, for each wire j, that represents the Boolean value b that the corresponding input
ciphertext encrypts – that is, wj

b . But the key should not leak any information about
the input ciphertext. Our protocol meets such requirement by using homomorphism of
ElGamal encryption10. Let cj be the ciphertext of contributed input b ∈ {0, 1} for input
wire j. Computing parties work as follows:

– For every input wire j, compute W j = W j
0 · cj locally using homomorphism of El-

Gamal encryption. Then, decrypt W j via threshold decryption by computing parties
using their shares for x. This gives wj

b , which matches the input b.
– Each party computes the output of C using the key wj

b locally.

Running the online stage in P2 takes one round. The communication complexity of
P2 is O(nk|C| log |C|) (plus the NIZK, if we assume the CRS case) where |C| is the
size of the circuit.

3.3 Discussion

MP-CED vs. MPC with Preprocessing. General MPC and MP-CED can be reduced to
each other.

– Given a protocol π for MP-CED, we can construct a protocol π′ for MPC with prepro-
cessing, as follows. In the preprocessing stage of π′, the parties share an encryption
key. In the online stage of π′, each party publishes encryption of its input under the
shared key, and the parties follow protocol π. The resulting MPC protocol π′ requires
one more online rounds than the underlying protocol π. This approach is implicitly
used in [FH96,JJ00,CDN01,DN03].

– Given a protocol π′ for MPC, we can construct a protocol π for MP-CED, as follows.
In MP-CED, the parties share a secret key, and the inputs are encrypted. Protocol π
should compute C on these given input ciphertexts. This can be done by the par-
ties running protocol π′ using a circuit C ′ derived from C. Circuit C ′ consists of
two stages: the first stage of C ′ gets shares of the secret key and the ciphertexts,
and decrypts the ciphertexts to give plaintexts. The second stage of C ′ essentially
evaluates C on these plaintext inputs from the first stage. In running the protocol π,
each party’s input is its share for the secret key. Circuit C ′ has more gates than C.
However, if the round complexity of π′ does not depend on the depth of the circuit,
then the round complexity of π is the same as the round complexity of π′.

On Basing MP-CED on Doubly-Homomorphic Encryption. Recently, Gentry con-
structed a doubly homomorphic encryption scheme using ideal lattices [G09], which
solves the CED problem. Since our goal is to give a round-efficient protocol, it is an
interesting question whether doubly-homomorphic encryption allows non-interactive
secure computation. However, this seems unlikely.
10 In fact, any homomorphic encryption can be used. We chose to use ElGamal encryption since

it is already used in P1.

– (Threshold Decryption.) It’s not known whether Gentry’s scheme supports threshold
decryption. Thus, there has to be at least one party which can decrypt ciphertexts by
itself. If this party sees the inputs (which are encrypted and published in the MP-CED
model), it can decrypt private inputs of other parties and break the security. Thus,
there must be a separation between parties who can decrypt and parties who get
access to the input and intermediate ciphertexts.

– (Malicious Parties.) Parties without decryption capability would compute a circuit on
encrypted inputs using double homomorphism. In order for the protocol to compute
output in a plaintext form, they have to submit some ciphertexts to a party with
decryption capability. In the malicious setting, to make sure that they applied doubly
homomorphism correctly, some kind of zero-knowledge proof should be added to the
ciphertexts they submit. However, it is not clear how such a proof can be constructed
when the verifier has the decryption capability – as mentioned above, it must not see
the input ciphertexts.

The above issue also stands against achieving MPC protocols against an active adversary
with doubly homomorphic encryptions.

References

[AIK05] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. In IEEE Conference on Computational Complex-
ity, pages 260–274, 2005.

[B00] D. Beaver. Minimal-latency secure function evaluation. In B. Preneel, editor, Ad-
vances in Cryptology — (EUROCRYPT 2000), volume 1807 of Lecture Notes in Com-
puter Science, pages 335–350. Springer-Verlag, 2000.

[BL96] D. Boneh and R. Lipton. Algorithms for black-box fields and their application to
cryptography. In Advances in Cryptology — (CRYPTO 1996), pages 283–297, 1996.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 503–513, 1990.

[C01] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001.

[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology — (EUROCRYPT 2001), pages
280–299, 2001.

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Y. Desmedt, editor, CRYPTO, volume
839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994.

[CEJ+07] S. G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung. Two-party computing with
encrypted data. In ASIACRYPT, pages 298–314, 2007.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO,
pages 19–40, 2001.

[CKL03] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In EUROCRYPT, pages
68–86, 2003.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In Proc. 34th Annual ACM Symposium on
Theory of Computing (STOC), pages 494–503, 2002.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on
Information Theory, IT-22(6):644–654, November 1976.

[DI05] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Advances in Cryptology — (CRYPTO 2005), pages 378–
394, 2005.

[DI06] I. Damgård and Y. Ishai. Scalable secure multiparty computation. In Advances in
Cryptology — (CRYPTO 2006), pages 501–520, 2006.

[DIK+08] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multiparty
computation with nearly optimal work and resilience. In CRYPTO, pages 241–261,
2008.

[DN03] I. Damgård and J. B. Nielsen. Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.

[E85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In IEEE Transactions on Information Theory, volume 31, pages 469–
472, 1985.

[F87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proc.
28th IEEE Symposium on Foundations of Computer Science (FOCS), pages 427–437,
1987.

[FH96] M. K. Franklin and S. Haber. Joint encryption and message-efficient secure compu-
tation. joc, 9(4):217–232, 1996.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In J. L. Massey, editor, Advances in Cryptology — (EUROCRYPT
1986), volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer-
Verlag, 1986.

[G09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. To
appear.

[GIKR01] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of verifiable
secret sharing and secure multicast. In Proc. 33rd Annual ACM Symposium on Theory
of Computing (STOC), pages 580–589, 2001.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC,
pages 17–32, 2002.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proc. 19th Annual ACM Symposium on Theory of Computing (STOC), pages 218–
229. ACM Press, 1987.

[HK07] O. Horvitz and J. Katz. Universally-composable two-party computation in two
rounds. In CRYPTO, pages 111–129, 2007.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In FOCS, pages 294–304, 2000.

[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with guar-
anteed output delivery in secure multiparty computation. In CRYPTO, pages 483–500,
2006.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer
- efficiently. In CRYPTO, pages 572–591, 2008.

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. In T. Okamoto, editor, Advances in Cryptology — (ASIACRYPT 2000), 2000.

[KO04] J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In CRYPTO,
pages 335–354, 2004.

[KOS03] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation
with a dishonest majority. In EUROCRYPT, pages 578–595, 2003.

[KS08] V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure
evaluation of private functions. In Financial Cryptography, pages 83–97, 2008.

[LP09] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptology, 22(2):161–188, 2009.

[RAD78] R. Rivest, L. Adelman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In R. DeMillo, D. Dobkin, A. Jones, and R. Lipton, editors, Foundations of
Secure Computation, pages 169–17. Academic Press, 1978.

[S79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[SCO+01] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-

interactive zero knowledge. In J. Kilian, editor, Advances in Cryptology — (CRYPTO
2001), volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer,
2001.

[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In
Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages
554–567, 1999.

[TY98] Y. Tsiounis and M. Yung. On the security of ElGamal based encryption. In Public
Key Cryptography, First International Workshop on Practice and Theory in Public
Key Cryptography, PKC ’98, volume 1431 of Lecture Notes in Computer Science,
pages 117–134. Springer-Verlag, February 1998.

[V76] L. G. Valiant. Universal circuits (preliminary report). In Proc. 8th Annual ACM
Symposium on Theory of Computing (STOC), pages 196–203, 1976.

[Y82] A. Yao. Protocols for secure computations (extended abstract). In Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

[Y86] A. Yao. How to generate an exchange secrets. In Proc. 27th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 162–167, 1986.

A Explicit Preprocessing of P1

During the preprocessing stage, the parties can generate polynomial number of garbled
gates, which can later be used for evaluating circuits. Therefore it suffices to know a
bound on the sizes of circuits to be evaluated later. We show how to generate such truth
tables explicitly given y as a global public key.

Throughout, each bit b will be encrypted with plaintext gb. Denote by 〈m〉 a simple
ElGamal ciphertext (with randomness r = 0): (1,m). For an ElGamal ciphertext c for
a bit, its negation ¬c is defined as 〈g1〉/c. For two ElGamal ciphertext a = (a1, a2) and
b = (b1, b2), define ZKeu(a, b) — the proof that b is a re-encryption a with public key
u — as PK{r : b1 = gra1, b2 = ura2}. When public key is not specified, ZKe means
ZKey . The construction details can be found in Appendix A.3.

A.1 Preliminaries: Joint Generation of Garbled Gates

We associate a gate with the truth table for it. The entries of the truth tables are en-
crypted Boolean values, and the rows of each truth table are permuted, such that only
a threshold of the parties can (1) recover any plaintext and (2) learn the permutation of
the rows.

Sampling a Random Encrypted Boolean Value. In this protocol, n parties perform
an oblivious analogue of XORing their respective random bits in n rounds. In our case,
semantic security of ElGamal and the soundness of the attached proof guarantee they
cannot.

1. Each party Pi selects ai ∈R {0, 1} and computes âi = Ey(gai), πi = ZKe(〈g0〉, âi) ∨
ZKe(〈g1〉, âi) and broadcasts (âi, πi). Let S = {j : πj is valid}. Set â ← âmin where
min = minj∈S j.

2. For j = 2, . . . , |S|:

Let i be the j-th smallest element in S. Pi computes an encryption d̂i such that d̂i =
(di1, di2) is a re-encryption of â if ai = 0 or a re-encryption of ¬â otherwise. Then Pi

broadcasts (d̂i, ψi) where

ψi =
(
ZKe(〈g0〉, âi) ∧ ZKe(â, d̂i)

)
∨
(
ZKe(〈g1〉, âi) ∧ ZKe(¬â, d̂i)

)
.

If ψi is valid, then each party sets â← d̂i.

As in computing xor, it is enough that one of the bits is random (or, in our case, that one
party is honest) to guarantee a random output as long as corrupt parties can not have
their bit choices depend on the bits of other parties. The invariant of the protocol is that
at the end of each round the ciphertext â encrypts exclusive-or of ai’s so far.

Generating a Garbled IDENTITY Gate. First, run the procedure of sam-
pling a random encrypted Boolean value. Let the output of the procedure is
â. The first row of an IDENTITY gate is â, and the second row is computed
by negating the value of â.

In Out

â â

¬â ¬â
IDENTITY

Generating a Garbled NAND Gate.
1. Each party Pi selects ai, bi ∈R {0, 1} and computes âi = Ey(gai), b̂i = Ey(gbi), πi =

ZKe(〈g0〉, âi) ∨ ZKe(〈g1〉, âi), and φi = ZKe(〈g0〉, b̂i) ∨ ZKe(〈g1〉, b̂i), and broadcasts
(âi, b̂i, πi, φi).

2. Run the procedure of sampling random encrypted Boolean values with âi’s. Let â be the
output of the procedure. Let S = {j : πj and φj are valid}. Set b̂← 〈g0〉 and âb← 〈g0〉.

3. For j = 1, . . . , |S|: Let i be the j-th smallest element in S. Pi computes encryptions d̂i and
êi such that

– If bi = 0, then d̂i is a re-encryption of b̂ and êi is a re-encryption of âb.
– If bi = 1, then d̂i is a re-encryption of ¬b̂ and êi is a re-encryption of â/âb. Then Pi

broadcasts
(
d̂i, êi, ψi) where ψi = ψ0

i ∨ ψ1
i for ψ0

i = ZKe(〈g0〉, b̂i) ∧ ZKe(̂b, d̂i) ∧
ZKe(âb, êi) and ψ0

i = ZKe(〈g1〉, b̂i)∧ ZKe(¬b̂, d̂i)∧ ZKe(â/âb, êi). If ψi is valid, then
each party sets b̂← d̂i and âb← êi.

The invariant of the loop is that at the end of each round the cipher-
text âb encrypts exclusive-or of abi’s so far. After â, b̂, âb are gener-
ated, each party Pi can complete the truth table, by locally negating
the ciphertexts as described in the table.

InL InR Out

â b̂ ¬âb
â ¬b̂ âb · (¬â)

¬â b̂ âb · (¬b̂)
¬â ¬b̂ â · b̂/âb

NAND

A.2 Preliminaries: Jointly Recoverable Encrypted ElGamal Key Pairs

Verifiable ElGamal Encryption of Discrete Logarithm. To generate a jointly recover-
able encrypted ElGamal key pair, we first introduce the following verifiable encryption
of discrete logarithm.

Let γ := gz . We want to encrypt z in a verifiable manner. Let zi be the i-th rightmost
bit of z for i ∈ [k]. The verifiable encryption is Êy(z) =

(
ẑ0, . . . , ẑk−1, π

)
, where

ẑi = Ey(gzi·2i

) for i ∈ [k]. The proof π is(k−1∧
i=0

(
ZKe

(
〈g0〉, ẑi

)
∨ ZKe

(
〈g2i

〉, ẑi

)))
∧ ZKe

(
〈γ〉,

k−1∏
i=0

ẑi

)
.

When we get (gz0·20
, . . . , gzk−1·2k−1

) by decrypting Êy(z), z can be extracted via ex-
haustive search in polynomial time in k because each zi is a bit.

Note that the encryption scheme is homomorphic if we ignore the proof part. Multi-
plication of two verifiable encryptions Êy(z) = (ẑ1, . . . , ẑk−1) and Êy(w) = (ŵ1, . . . , ŵk−1)
is defined as Êy(z) · Êy(w) = (ẑ1 · ŵ1, . . . , ẑk−1 · ŵk−1) .

Generation of Jointly Recoverable Encrypted ElGamal Key Pairs. For simplicity,
we omit the proof part of the verifiable encryption from the presentation below. Gener-
ation of a key pair can be done as follows:

1. Each partyPj runs ElGamal key generation and obtains (kj , g
kj). It broadcasts (gkj , Êy(kj)).

2. Let S be the set of parties whose encryptions are verified. In the PK column,
∏

j∈S g
kj is set.

In the SK column,
∏

j∈S Êy(kj) is set.

Extraction of the secret key. Let (Y0, . . . , Yk−1) :=
∏

j∈S Êy(kj). Let gzi be the de-
cryption of Yi. Then given (gz0 , . . . , gzk−1), we can extract the secret key

∑
j∈S kj =∑

i zi by finding each zi via exhaustive search, which can be done efficiently since
gzi ∈ {20·2i

, 21·2i

, . . . , 2n·2i}.

A.3 Preprocessing of P1

The preprocessing takes 2n rounds, since step 1.1 and step 1.2 can be executed concur-
rently. This protocol is UC-secure, but for lack of space, we defer the proof of security
to full version.

Step 1.1: Garbled Circuit Generation - Intermediate Gates. For each NAND gate,
run the procedure of joint generation of garbled NAND gate in Appendix A.1 to fill
in In and Out Columns. For each pair of columns PK and SK, run the procedure of
jointly recoverable encrypted ElGamal key pairs in Appendix A.2.11 The above tasks
are executed in parallel.

Step 1.2: Garbled Circuit Generation - Output Gates.
1. Run the procedure of sampling random encrypted Boolean values in Appendix A.1 where

each party Pi selects ai ∈R {0, 1}. Let â be the output of the procedure and let S = {j :
Pj behaved honestly during the procedure}. Fill in In and Out Columns as an IDENTITY
gate.
In addition, run the procedures of jointly recoverable encrypted ElGamal key pairs in Ap-
pendix A.2 to fill the columns PK and SK. Let z1 and z2 be the two keys in the column
PK.

2. In order to fill Final column, each partyPi such that i ∈ S broadcasts (âi,z1 = Ez1(gai), âi,z2 =
Ez2(gai)). Set âz1 ← 〈g0〉, âz2 ← 〈g1〉. Parties jointly computeEz1(g

⊕
i ai) andEz2(g1−

⊕
i ai).

In particular, for i = 1, . . . , |S|:

(a) Let i be the j-th smallest element in S. Pi computes encryptions d̂i, êi such that d̂i (resp.
êi) is a re-encryption of âi,z1 (resp. âi,z2) if ai = 0 or a re-encryption of ¬âi,z1 (resp.
¬âi,z2) otherwise. Then Pi broadcasts

(
d̂i, êi, ψi

)
where ψi = ψ0

i ∨ ψ1
i for

ψbe = ZKe(〈g0〉, âi) ∧ ZKez1(〈g0〉, âi,z1) ∧ ZKez2(〈g0〉, âi,z2) ∧
ZKez1(âz1 , d̂i) ∧ ZKez2(âz2 , êi) and

ψ1
i = ZKe(〈g1〉, âi) ∧ ZKez1(〈g1〉, âi,z1) ∧ ZKez2(〈g1〉, âi,z2) ∧

ZKez1(¬âz1 , d̂i) ∧ ZKez2(¬âz2 , êi).

(b) If ψi is valid, then each party sets âz1 ← d̂i, and âz2 ← êi. Otherwise, in the case of hon-
est majority, parties collectively compute ai from threshold decryption using (y1, . . . , yn)
and compute âz1 , âz2 accordingly. In the case of honest minority, the protocol aborts. Fi-
nally, set âz2 ← ¬âz2 .

11 Now in the online stage, k instances of M-CODE are executed since Tb[SK][w] contains k
ElGamal ciphertexts. The communication complexity blows up by multiplicative factor of k.

