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Abstract. Secure multi-party computation has been considered by the
cryptographic community for a number of years. Until recently it has
been a purely theoretical area, with few implementations with which to
test various ideas. This has led to a number of optimisations being pro-
posed which are quite restricted in their application. In this paper we
describe an implementation of the two-party case, using Yao’s garbled
circuits, and present various algorithmic protocol improvements. These
optimisations are analysed both theoretically and empirically, using ex-
periments of various adversarial situations. Our experimental data is
provided for reasonably large circuits, including one which performs an
AES encryption, a problem which we discuss in the context of various
possible applications.

1 Introduction

That secure multi-party computation can be executed at all is considered one
of the main results of the theory of cryptography. Starting with Yao’s seminal
work [30] many authors have looked at various optimisations and extensions to
the basic concept, for both the two-party and the multi-party settings, see for
example [7, 10, 11, 18, 20, 23, 29]. Until recently all work on secure multi-party
computation has been essentially of a theoretical nature, focusing on feasibility
results. However in the last few years a number of practical implementations
have appeared [5, 6, 22, 24, 3].

There are many different protocols for secure multi-party computation. Our
work focuses on implementation of secure computation and therefore we only
mention protocols which have been previously implemented. Secure multi-party
computation essentially comes in two flavours. The first approach is typically



based upon secret sharing and operates on an arithmetic circuit representation
of the computed function, such as in the BGW (Ben-Or, Goldwasser and Wigder-
son) or CCD (Chaum, Crepeau and Damg̊ard) protocols [4, 8]. This approach is
usually applied when there is an honest majority among the participants (which
can only exist if more than two parties participate in the protocol). An alter-
native approach represents the function as a binary circuit. This approach was
used in the original two-party garbled circuit construction of Yao [30], and in
the GMW (Goldreich, Micali and Wigderson) multi-party protocol [11].

The arithmetic circuit method is better at representing addition and mul-
tiplication operations, where parties have additive shares of secret values, but
cannot be used to compute comparisons unless the shares are converted to shares
of the binary representation of the values. This approach has been used to great
effect in the SIMAP project [6], which has resulted in a “real-life” application
of secure multi-party computation to the Danish sugar beet industry [5].

The binary circuit approach handles arithmetic operations, especially mul-
tiplications, less efficiently, but can easily compute binary operations such as
comparisons. This second approach, which forms the basis of Yao’s construction
for the two party case, has been implemented by Malkhi et al. in the Fairplay
system [24]. That system also provides a method to compile a given functionality
from a representation in a high-level language into a circuit, which is then in-
terpreted by a run-time environment that performs the secure evaluation of this
functionality. FairplayMP, an extension of Fairplay to the case of more than two
parties using a modified version of the protocol of Beaver et al. [2] has recently
been released [3]. All these implementations provide security against semi-honest
adversaries only. A major advantage of the binary circuit based systems (Fair-
play and FairplayMP) is that they run in a constant number of communication
rounds, whereas the SIMAP system has the advantage of being able to process
arithmetic operations very efficiently.

Efficient extensions of Yao’s construction to more relevant adversarial models
have been a topic of research interest in the last few years. There are several
constructions which aim to secure the protocol against malicious adversaries
without using generic zero-knowledge protocols. We will focus on the construc-
tion of Lindell and Pinkas [20] which is efficient and provides fully simulatable
security according to the definition of Canetti [7]4. A definition of a weaker class
of corruption, “covert adversaries”, and a protocol secure against this type of
behavior, was provided by Aumann and Lindell [1]. In [22] an implementation
of the basic Lindell–Pinkas protocol was reported upon and experimental data
in various security models was provided.
4 This construction may be preferable over other two-party protocols with secu-

rity against malicious adversaries. The construction of Mohassel and Franklin [23]
only protects privacy and is not fully simulatable. The construction of Jarecki and
Shmatikov [18] requires the use of public-key operations, rather than symmetric key
operations, for any gate of the circuit. The construction of Nielsen and Orlandi [26],
too, uses public key operations, or rather public-key based commitments, for each
key of every wire of the circuit. A precise practical comparison between the different
approaches is beyond the scope of the current paper



In this paper we improve on the implementation of [22] in a number of ways.
The resulting set of quantitative improvements results in qualitative conclu-
sions: (1) We demonstrate that two-party computation, secure against malicious
adversaries, is truly practical, and we experimentally identify the performance
bottlenecks which remain after our optimisations. This result should direct fur-
ther research to the issues which have the largest effect on performance. (2) We
experiment with a secure computation of the AES standard, and show that it
is indeed feasible, even with security against malicious adversaries. There are a
number of applications of such an implementation, some of which we describe be-
low. (3) We provide the first implementation of a protocol with security against
covert adversaries and we compare the performance of all 3 types of protocols:
malicious, covert and semi-honest.

A more detailed summary of our main results is as follows:

– We improve the communication cost for transmitting the circuits between the
parties. In the case when we model the underlying key derivation functions
(KDFs) as correlation robust (see discussion below), using the technique of
[19] we are able to transmit no information for the XOR gates within the
circuit. In this situation we are also able to reduce the data which needs to
be sent by 25% for the other gates. When we are not willing to model the
KDFs as correlation robust, and we only assume they are psuedo-random
functions, we are unable to perform the free XOR optimisation. However we
are able to reduce the communication cost for all gates by 50%. Unlike other
methods used to improve communication, like [13], our improvement makes
a marginal impact on computational costs. We will return to this in a later
section.

– In addition to the theoretical analysis we provide experimental data for eval-
uating “real life” circuits, in both the honest-but-curious, covert and mali-
cious adversary cases; also for the two different methods in the literature that
construct the auxillary circuits in the covert and malicious cases (see [22] and
the full version). The implementation for the malicious setting is based on
the construction of Lindell and Pinkas [20] which provides security in the
sense of full simulatability. Therefore the resulting construction can be used
as a black-box primitive in more complex applications. The use of our opti-
misations results in a considerable performance boost compared to previous
experimental results published in [22].
Our optimisations change the performance bottleneck to a different part of
the computation; namely, the verification of garbled circuits generated by
the circuit constructor. This observation is important for focusing future
research on the issues that affect the overhead the most.

– We experiment with secure evaluation of a circuit which computes an AES
encryption of a single block. The secure computation of AES involves one
party which knows the key, and a different party which has an input block.
The second party learns the encryption of the block, while the first party
learns nothing. We demonstrate the feasibility of computing this function in
the semi-honest, covert and malicious settings.



Secure evaluation of AES has an impact in a number of scenarios which we
will discuss in short here and elaborate on in the full version. The fact that a
secure computation of AES is feasible, and can run in a matter of seconds, is
quite surprising.

Application 1, OPRF: A secure computation of a pseudo-random function,
denoted OPRF for “oblivious prf”, has been defined in [9] for the purpose of
secure keyword based searches, and was subsequently used in different applica-
tions. The OPRF protocol in [9] is based on the Naor-Reingold prf, which is a
number theoretic construction. Our construction has different advantages over
the NR based construction, which we detail in the full version.

Application 2, Side Channel Protection: In [12] the authors introduce
“one-time programs”, which are programs that can only be executed once and
then “self-destruct”. An important advantage of this construction is that the
execution of the program reveals no side-channel information. Most of the com-
putation in that construction is essentially done using a garbled Yao circuit.

One of the main applications of smart cards is to compute symmetric encryp-
tions, and therefore the ability to compute AES encryptions by Yao circuits has
immediate application in the above scenario. It enables smart cards to perform
a one-time computation, secure against side-channel attacks, of AES. This is
particularly interesting since in that setting the circuit evaluation need only be
secure against semi-honest adversaries, while we show below that semi-honest
computation of AES can be run very efficiently, taking only a few seconds.

Application 3, Blind MACs and Blind Encryption: One can think of the
operation of obtaining the AES encryption of a message, under the other party’s
secret key, as a blind MAC or a blind symmetric encryption. These operations
have different applications in secure computation.

Application 4, Third Party Operations on Encrypted Data: We essen-
tially show that encryption and decryption can be implemented using circuits.
This enables secure computation of homomorphic operations on encrypted data.
This operation is done by a circuit which receives two ciphertexts from one party
and a key from the other party, decrypts the ciphertexts, applies some arbitrary
mathematical operation to the plaintexts, and then encrypts the result.

2 Yao’s Garbled Circuit Construction

Two-party secure function evaluation makes use of the famous garbled circuit
construction of Yao [30] which we briefly overview in this section. The basic
idea is to encode the function to be computed via a binary circuit and then to
securely evaluate the circuit on the players’ inputs.

2.1 Garbled Circuits

We consider two parties, denoted as P1 and P2, who wish to compute a function
securely which is represented as a simple binary circuit. First assume the circuit



consists of only a single gate with two input wires and one output wire. We
denote the input wires by w1 and w2, and the output wire by w3. The input to
w1 is denoted by b1 and is known to P1, similarly P2 knows the input to w2 and
this is given by b2. Each gate has a unique identifier Gid; this enables a circuit
fan out of greater than one, i.e., it enables the output wire of one gate to be used
in more than one other gate. We require that P2 evaluates the gate on the two
inputs, without P1 learning anything, and without P2 determining the value b1,
bar what it can deduce from the output of the gate and its own input. We define
the output of the gate by the function G(b1, b2) ∈ {0, 1}.

The construction of Yao works as follows. P1 encodes, or garbles, each wire
wi by selecting two different cryptographic keys k0

i and k1
i of length t. Here t is

a computational security parameter which suffices for the length of a symmetric
encryption scheme. A random permutation πi of {0, 1} is associated to each wire.
The garbled value of wire wi is then represented by kbi

i ‖ci, where ci = πi(bi).
We call the value ci the “external value” of the wire, note that this value is
completely independent of the actual value of the wire bi.

An encryption function Esk1,k2(m) is selected which has as input two keys
of length t, a message m, and some additional information s. The additional
information s must be unique per invocation of the encryption function, i.e., it
is used only once for any choice of keys. The gate itself is then replaced by a
four entry table indexed by the values of c1 and c2, and given by

c1, c2 : EGid‖c1‖c2
k

b1
1 ,k

b2
2

(
k
G(b1,b2)
3 ‖c3

)
,

where c1 = π1(b1), c2 = π2(b2), and c3 = π3(G(b1, b2)). Each entry in the table
corresponds to a combination of the values of the input wires and contains the
encryption of the corresponding garbled output value. The resulting look up
table, or set of look up tables in general, is called the “garbled circuit”.

Player P1 then sends to P2 the garbled circuit, the key corresponding to its
input value kb11 , the value c1 = π1(b1), and the permutation π3. The parties
engage in an oblivious transfer (OT) protocol so that P2 learns the value of
kb22 ‖c2, where c2 = π2(b2). Player P2 can then decrypt the entry in the look up
table indexed by (c1, c2) using kb11 and kb22 ; revealing the value of kG(b1,b2)

3 ‖c3. P2

determines the value of G(b1, b2) by using the mapping π−1
3 from c3 to {0, 1}.

In the general case the circuit consists of multiple gates. Player P1 chooses
random garbled values for all wires and uses them for constructing tables for
all gates. It sends these tables, i.e., the garbled circuit, to P2 and in addition
provides P2 with the garbled values and the c values of P1’s inputs, and with the
permutations π used to encode the output wires of the circuit. Player P2 uses
invocations of oblivious transfer to learn the garbled values and c values of its
own inputs to the circuit. Given these values, P2 can evaluate the gates in the
first level of the circuit, compute the garbled values and the c values of their
output wires. Player P2 can then continue with this process and compute the
garbled values of all wires in the circuit. Finally P2 uses the π permutations of
the output wires of the circuit to compute the real output values of the circuit.



If P1 additionally requires some output from the circuit then this can be dealt
with by standard mechanisms, as described in the full version.

One could use more general gates than 2-to-1 gates, such as n-to-m gates
with 2n entries. However the optimisations we shall present in this paper are
most effective when applied to 2-to-1 gates. While we found that more general
gates can improve the performance of a naive Yao circuit protocol, they actually
decrease the performance of the optimisations. Hence the rest of this paper is
restricted to 2-to-1 gates.

2.2 Required Implementation Details

Having described the basic theoretical description of Yao’s protocol and its ex-
tensions, we now present a number of implementation details which are needed
to understand some of our optimisations. The basic implementation choice of
the underlying encryption scheme to be used is the same as the implementation
described in [22].
Oblivious transfer: Unlike [22] we do not use the OT scheme of Hazay and
Lindell (HL) [15]. Instead we use the OT scheme of Peikert et al. (PVW)[27].
This scheme is UC-secure and hence requires the setup of a Common Reference
String (CRS) of a few hundred bits. For our experiments we assume that this is
given to the parties. (Alternatively, the parties can run a coin-tossing protocol
to generate the CRS, which is possible due to the nature of the CRS used in the
PVW scheme.) The batched method of PVW is more efficient per OT than the
batched method of HL, especially on the receiver’s side. In particular the CRS
can be used for any number of invocations of the OT, whereas the method in HL
requires the maximum number of OT’s being executed to be known before the
setup is performed. (The setup in HL also requires two ZK-proofs as opposed to a
CRS being created in PVW.) The OT stage is not our computational bottleneck,
and is unlikely to be, unless one is in the rare situation of having a circuit with
a large number of inputs for P2 and yet a relatively small number of gates. Thus
we do not consider optimisations of OT schemes which are secure against only
semi-honest or covert adversaries, since the fully secure OT is efficient enough.
Encryption scheme: The only implementation detail we will need from [22]
is that the encryption scheme is implemented via

Esk1,k2(m) = m⊕KDF|m|(k1, k2, s)

where KDF is a key deriviation function, whose |m| bits of output are indepen-
dent of the two input keys in isolation, and which depends on the value of s. We
will instantiate this function as follows5

KDF`(k1, k2, s) = H(k1‖s)1...` ⊕H(k2‖s)1...`.
5 In [22] two instantiations were presented, depending on whether we are working in

the random oracle model (ROM) or standard model, via truncating, or extending,
the output of a suitable hash function H in the standard way as follows

KDF`(k1, k2, s) =

{
H(k1‖k2‖s)1...` H is modeled as an RO,
H(k1‖s)1...` ⊕H(k2‖s)1...` H is modeled as a PRF.



Even if H is a Merkle–Damg̊ard type hash function this will be secure (with the
associated issues of length extension), since we are only applying the function to
fixed length inputs. Indeed, in our experiments we implement H using SHA-256.
Modeling the hash function, and correlation robustness: In this paper
we need to model the underlying hash function H in two ways. In the first we
make the usual assumption that it behaves as a pseudo-random function, namely
that H(k‖s) is an invocation of a pseudo-random function keyed by k, with the
input s. However one of our optimisations requires that we make a stronger
assumption on the hash function, namely that it is correlation robust. This later
property can be stated formaly as follows:

Definition 1 (Correlation robustness [16]). An efficiently computable func-
tion H : {0, 1}∗ → {0, 1}` is correlation robust if the following distribution is
pseudo-random: (t1, . . . , tm, H(t1 ⊕ r), . . . ,H(tm ⊕ r)), where t1, . . . , tm and r
are chosen at random, and m is polynomial in the security parameter.

This can also be stated by saying that the function fr(x) = H(x ⊕ r) is a
weak pseudo-random function. The definition also implies that the distribution
of (H(t1), . . . ,H(tm), H(t1 ⊕ r), . . . ,H(tm ⊕ r)) is pseudo-random.

The correlation-robustness assumption is satisfied by a random oracle (or
rather by a very weak form of it: a non-programmable, non-extractable ran-
dom oracle). However, assuming correlation robustness seems as a much weaker
requirement than assuming the existance of random oracles. This assumption
has been introduced in [16] and was used there for providing security against
malicious adversaries for a method of extending oblivious transfer. The correla-
tion robustness assumption has been recently used in the context of oblivious
transfer [14, 17] and in the context of secure computation [19, 26].

For our construction, as we deal with circuits with arbitrary fan out, we re-
quire a slightly modified definition. Namely that for any set S = {s1, . . . , s|S|}
of size which is of the same order as the number gates, the distribution of
(t1, . . . , tm, 〈H((t1 ⊕ r)‖s1), . . . ,H((tm ⊕ r)‖s1))〉, 〈H((t1 ⊕ r)‖s2), . . . ,H((tm ⊕
r)‖s2))〉, . . . , 〈H((t1 ⊕ r)‖s|S|), . . . ,H((tm ⊕ r)‖s|S|))〉 is pseudo-random, where
t1 . . . , tm and r are chosen at random. In other words, all the pads that are
used for encrypting table entries are pseudo-random. If one is willing to assume
this then our optimisations provide highly efficient protocols. We also provide
optimisations for when the user is unwilling to make such an assumption.

3 Structural Optimisations of the Circuit

Yao’s protocol operates on functions which are described as a boolean circuit, and
its overhead depends on the size of the circuit. A convenient way of generating

The difference is that the security analysis in the ROM works even if we feed related
keys to different invocations of the function. Namely, it is possible to compute, say,
H(k1‖k2), H(k1‖k′

2), H(k′
1‖k2) and H(k′

1‖k′
2) and claim that knowledge of k1, k2 does

not disclose information about any of the values except H(k1‖k2). This is impossible
in the standard model. Therefore if H() is modeled as a prf it must be invoked
separately with each key.



a representation of a function in this form is to use a compiler which translates
a description of a function in a high-level language to a description as a binary
circuit. The Fairplay system provides a compiler for this task which operates on
functions described in a high-level language called Secure Function Description
Language (SFDL) [24, 3]. We use that compiler as the basis of our experiments,
but use our own run-time environment to execute the protocol.

There are a number of general circuit simplifications which can be performed
to the output of the Fairplay compiler. We have implemented a number of these,
based on two basic ideas: (1) identifying component circuits which can be re-
placed by simpler combinations of gates, and (2) identifying complicated compo-
nents whose output must always be zero, or one; this allows for the component to
be removed and other subsequent components to be further simplified. A com-
bination of these techniques is surprisingly effective, and allows us to produce
circuits which are often 60 percent more efficient than the circuit produced by
the Fairplay compiler.

Many of the techniques used are ad-hoc, but the following technique is partic-
ularly effective. First, by a technique akin to common sub-expression elimination,
we identify sets of gates which can be replaced by a single 3-to-1 gate, and then
replace the 3-to-1 gate with a set of 2-to-1 gates which was chosen to minimize
the number of non-XOR gates. This is particularly effective when combined with
our later technique of Section 4, in the case of correlation robust KDFs, to re-
move the cost of any XOR gates; however the technique is also successful in
the more general case as well. We call a gate even if its truth table has an even
number of ‘1’ entries (for example, a XOR gate is even), otherwise it is called
odd (an OR gate, for example, is odd). We show in the full version that it is
possible to replace any 3-to-1 even gate with at most a single 2-to-1 non-XOR
gate and at most three XOR gates. The optimal transformation rules, which we
found by exhaustive search, are listed in the full version.

4 Optimisations with Free XORs, when the KDF is
Correlation Robust

In [19] Kolesnikov and Schneider present an optimisation based on the correlation
robustness assumption, which allows XOR gates to be evaluated for free, thus
doing away with the need to evaluate or transmit the garbled tables for such
gates. The optimisation requires that there is a global random value R of bit
length t, known only to P1, such that for all garbled wires wi it holds that
k1
i = k0

i ⊕R. In other words, the garbling of the 1 value of a wire, is determined
purely from XOR-ing the garbled 0 value with the value R. Note that a similar
property holds for the external values of the wire: πi(1) = πi(0) ⊕ 1. With this
convention we have that a XOR gate can be implemented by simply XOR-ing
together the two garbled input values, and the two external values. Namely, for
a XOR gate mapping wires w1 and w2 to wire w3, it holds that k3 = k1⊕k2 and
c3 = c1 ⊕ c2. For a full proof of this optimisation see [19]. Note that [19] states



the proof in the random oracle model, but it can be easily seen, as noted in [19],
that the proof can be based on the correlation robustness assumption.

Garbled Row Reduction – GRR: The above solution is ideal for XOR gates,
but in addition we would like to reduce the size of the tables of the non-XOR
gates as well. The following simple optimisation (which was pointed out in [25])
provides a 25 percent reduction in the sizes of the tables needed to represent
two-input gates. We can do this in a way which still allows the use of the above
trick for free XOR gates. (In general, this method provides a 1/2n reduction in
the size of n-to-1 gates, but we will only describe it in detail for the two input
case.)

The observation is that instead of defining the two garbled values of the
output wires randomly, we can define one of them as a function of garbled values
of the two input wires which result in this output value. In other words, we choose
an input pair (b1, b2) ∈ {0, 1}2, and define the garbled output value of G(b1, b2)
to be a function of the garbled values of b1 and b2. The gate table therefore need
not store an entry for the input combination (b1, b2). In the evaluation phase,
if the evaluator has the garbled values of the pair (b1, b2) it can compute the
corresponding garbled output directly, without consulting the gate table.

Suppose the gate maps wire w1 and wire w2 to wire w3. As before we let
k0
i and k1

i denote the garbled wire values, G(b1, b2) denote the function being
implemented by the gate, and we set the external value of the wire to be ci =
πi(bi). We then define the garbled output value corresponding to the output
resulting from the external input values (c0, c1) = (0, 0) as

k
G(π−1

1 (0),π−1
2 (0))

3 ‖c3 = KDFt+1
(
k
π−1
1 (0)

1 , k
π−1
2 (0)

2 ,Gid‖0‖0
)
.

In other words, the garbled value is exactly equal to the pseudo-random mask
that was used to hide it in the basic protocol. Note that this operation also
defines the external value c3 of this output value. We therefore define π3 such
that c3 = π3(G(π−1

1 (0), π−1
2 (0))). The other garbled value of the output wire,

k
1−G(π−1

1 (0),π−1
2 (0))

3 is then chosen as in the free XOR method above, to enable the
evaluation of XOR gates for free. The table is then constructed in the standard
way except that we do not store, or transmit, its first entry.

On evaluating the garbled gate the evaluator proceeds as in the standard
algorithm except when it wishes to access the first entry of the table, i.e., when
the external values of both input wires are 0, namely c1 = c2 = 0. In that
case it possesses the garbled values kb11 and kb22 , where b1 = π−1

1 (0) and b2 =
π−1

2 (0). It uses them to compute kG(b1,b2)
3 and c3 = π3(G(b1, b2)), by computing

KDFt+1
(
kb11 , k

b2
2 , 0‖0‖Gid

)
as defined in the equation above.

We will denote this optimisation as Garbled Row Reduction, GRR for short,
in our future discussions.

Security: We sketch why the above optimisation maintains security. Recall
that the proof of security for Yao’s protocol given in [21] shows security against
a corrupt P2 based on a hybrid argument, and on a claim that for each gate it is



infeasible to distinguish between a correct garbled table of this gate and a table
which encrypts the same value in all four entries. In order for this argument to
apply to the GRR optimisation, it is required to show that it is infeasible to find
out if the garbled value assigned to the first table entry, kG(π−1

1 (0),π−1
2 (0))

3 ‖c3 is
equal to the values encrypted in the other entries. However this value is equal to
the mask that is used to encrypt the first entry in Yao’s original protocol, and
we know that if a polynomial adversary is given only a single pair of garbled
input values then the masks that are used for encrypting the other entries of the
table are pseudo-random. Therefore the claim follows.

5 Optimisations without Free Xors, when the KDF is not
Correlation Robust

One may not want to assume the KDF is correlation robust, or perhaps the
proportion of XOR gates in the circuit is so low that making this assumption is
not as effective. In these situations, too, we would like to reduce the overhead
required by the Yao circuit. This section describes an optimisation which reduces
the size of every two-input gate by 50%, but which, unfortunately, cannot be
combined with the free XOR method of Section 4.

The underlying idea is that if we are not using the free XOR trick then the
two values of the output wire can be chosen independently.6 The 50% reduction
in the size of the gate tables is based on Shamir secret sharing [28]. It makes use
of a finite field F2t . Recall that t is the bit length of the keys used to represent the
garbled values of the wires. We can therefore interpret keys as elements of F2t

and vice versa. We also interpret small integers such as 1, 2, 3 etc. as elements
in F2t . For example if we think of F2t as F2[X]/(f(X)), for some polynomial of
degree t, then the integer 3 can be interpreted as x+ 1.

As before we assume a garbled table indexed by the external values, c1 and
c2, and each entry corresponds to the value being output, on input of the values
kb11 and kb22 where bi = π−1

i (ci). We set the rows of the gate table to be numbered
1, . . . , 4, and therefore set r = 2c1 + c2 + 1 to be the row number of table entry
(c1, c2). We define the value used to mask this entry as

Kr||Mr = KDFt+1(kb11 , k
b2
2 , s) (1)

where s = Gid‖c1‖c2, Kr is a bit string of length t bits and Mr is a single bit
used to mask the external value of the output. We use a different method for
optimising odd and even gates. The truth table of each gate, and therefore also
the information whether the gate is odd or even, is known to the circuit evaluator.
Therefore it can compute each gate according to the right method. (The only
information hidden from the evaluator is the values passing on intermediate wires
of the circuit.)
6 This allows for possible extensions of the GRR method, and in the full version we

detail another optimisation method, which we call Garbled Table Reduction (GTR),
which reduces the size for the garbled tables needed to represent odd 2-to-1 gates
by 1/3, and the size of tables of even 2-to-1 gates by 1/2.



5.1 Odd 2-to-1 Gates

Suppose we are implementing an OR-gate, where the external values of c1 = 0
and c2 = 0 correspond to the real input values (0, 0), the other cases will follow
immediately from the following. This means that the values r = 2, 3 and 4
should evaluate to the same output value k1

3, whilst r = 1 should evaluate to the
output value k0

3. We first define over F2t a polynomial P (X) of degree two, by
interpolating the polynomial which intersects the three points (2,K2), (3,K3)
and (4,K4), where each Kr value was defined according to equation (1). (This
is the value which in the other constructions was used to mask entry r of the
table.) The garbled output value k1

3 is defined to be k1
3 = P (0). We also compute

K5 = P (5) and K6 = P (6). We then define a second polynomial Q(X), also of
degree two, by interpolating the polynomial which intersects the three points
(1,K1), (5,K5) and (6,K6), where K1 was defined according to equation (1).
The garbled output value k0

3 is now defined by k0
3 = Q(0). The garbled table is

replaced by the two values (K5,K6). In addition, for each of the four original
rows, the external value for the output wire in the rth row is encrypted using
the bit Mr, defined in equation (1). The total amount of data sent for the gate
is therefore 2t+ 4 bits.

Player P2 then, given two key values kb11 and kb22 plus two external values c1
and c2, computes, using equation (1) the value of Kr and Mr for r = 2c1 +c2 +1.
Recall that the evaluator knows r but not b1 or b2. It then uses the two supplied
values of K5 and K6 to interpolate the polynomial passing through the points
(r,Kr), (5,K5) and (6,K6). The result is either Q(X) or P (X), depending on
whether r = 1 or not. Player P2 then recovers the associated secret value kb33 , by
evaluating the polynomial at the point X = 0. Using Mr the evaluator can also
decrypt the encryption of the external value of the output wire and so obtains
c3. Hence the evaluator recovers the correct value of the output wire.

5.2 Even 2-to-1 Gates

The only non-trivial even 2-to-1 gates are the XOR and NXOR gate, since all
other gates can be replaced by wires. Again let us assume the external input
values c1 = 0 and c2 = 0 correspond to the real input values (0, 0), and assume
we are dealing with a XOR gate. Then the entries 1 and 4 in the standard garbled
table will correspond to the same output key, namely k

π−1
3 (0)

3 . Any other case
will follow from the following description.

Player P1 first creates a linear polynomial P (X) over F2t which interpolates

the two points (1,K1) and (4,K4). The value of kπ
−1
3 (0)

3 is defined to be equal
to P (0). If the external value of this output value is 0 then we store P (5) into
the first row of the new table of this gate, otherwise we store P (5) as the second
entry. Then P1 creates another linear polynomial Q(X) which interpolates the

two points (2,K2) and (3,K3). The value of kπ
−1
3 (1)

3 is then defined to be Q(0),
and the value Q(5) is stored in the remaining row of our new table. The external
values of the output wires are now encrypted and stored, using the Mr values



as before as a seperate sub-table of 4 bits in length. Thus, the total amount of
data required to represent the gate is 2t+ 4 bits.

Player P2 given two key values kb11 and kb22 plus two external values c1 and
c2, computes the value of Kr and Mr. Using Mr it can determine the external
value of the output wire. If this external value is zero then using the first entry
of our garbled table and the value of Kr, the evaluator recovers P (X) and hence

P (0) = k
π−1
3 (0)

3 . If the external value is one then using the second entry of the

table and the value Kr, the evaluator recovers Q(X) and hence Q(0) = k
π−1
3 (1)

3 .

Security: We sketch why the above optimisations maintain security. Given a
pair of garbled values of the input wires, P2 can compute a garbled output
value, but cannot distinguish the other garbled output value from random. This
is because that other garbled value is defined using a linear combination with a
value which is unknown to P2. This fact can be used in a, somewhat modified,
security proof in the spirit of the proof of Yao’s protocol in [21].

6 Some Experimental Results

We now present some experimental results. In our results we separate out pre-
computation time, i.e., generating the required garbled circuits, from the rest
of the computation. This is because it depends on the application whether one
should consider this time as part of the computation time or not.

There are two major conclusions of our experiments. Firstly, assuming the
KDF is correlation robust then the GRR optimisation produces the most efficient
implementation. Secondly we conclude that rather large circuits can be practi-
cally evaluated using the methods described. Thus secure two-party computation
has become more of a reality than one might previously have thought.

Example 1 – Evaluation a Simple Circuit: First we present results for a
simple circuit, where we took the circuit for which each of P1 and P2’s input is
a 32-bit integer. The output for P2 should be the single bit resulting from the
application of the comparison operator on the inputs. The output for P1 will be
a six bit integer resulting from the scalar product of the bits of the two inputs,
i.e. the number of ones in the string obtained from forming the bit-wise “and”
of the two strings.

Applying the Fairplay compiler to this functionality we obtain a circuit with
689 gates. We produce two circuits from this output; the first, denoted C2,3, is
to allow comparison with the existing state of the art, namely the methods of
[22]. This is a circuit which uses 2-to-1 and 3-to-1 gates and has 245 gates. The
second circuit we use, denoted Cxor, replaces, via the techniques of Section 3, all
complex gates with 2-to-1 gates, and tries to minimise the number of non-XOR
gates in the circuit. This circut has 531 gates, 240 of which are non-XOR gates.
An extra six gates are needed in each circuit so as to encode P1’s for tranmission
back to P1, without P2 learning the value.



The above circuit sizes are purely to implement the functionality, they do
not include the extra wires and gates required to transmit P1’s output back
to P1 (for details of how this is done see the full version), nor do they include
the extension of the circuit to cope with P2’s input in the case of Covert and
Malicious adversaries. (We refer to the two methods for encoding P2’s input as
the independent inputs and the random combinations methods. For the details of
these methods see [20] or the full version. These methods add a set of XOR gates
to the circuit, which transform P2’s inputs using a random linear encoding.) The
sizes of the extended circuits, and the resulting run-times are given in Table 1,
which measures the total elapsed wall times in seconds for the various cases.

The calculations were performed on two machines with Intel Core 2 Duo’s
running at 3.0 GHz, with 4GB of RAM connected by a 1GB ethernet. The hash
function H() used in the protocol was implemented as SHA-256.

Table 1. Experimental Results For Example 1 (Times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes

Semi- Base 251 11 0 0 2 0 2 46
Honest PRF-SS 537 55 0 0 1 0 1 34

CoR-GRR 537 55 0 0 1 0 1 22
ROM-GRR 537 55 0 0 1 0 1 22

Covert Indep. Base 419 38 7 1 4 6 18 1188
Inputs PRF-SS 705 61 8 0 2 7 17 969

CoR-GRR 705 61 6 1 3 5 15 682
ROM-GRR 705 61 1 1 2 0 4 629

Covert Random Base 1247 79 9 2 4 7 22 2275
Comb. PRF-SS 1535 82 9 1 3 7 20 1646

CoR-GRR 1555 82 7 1 3 5 16 682
ROM-GRR 1555 82 1 1 3 0 5 629

Malic. Indep. Base 1571 83 171 80 47 54 352 180599
Inputs PRF-SS 1857 85 175 79 39 67 360 173942

CoR-GRR 1857 85 147 78 37 39 301 164323
ROM-GRR 1857 85 141 71 37 38 287 161741

Malic. Random Base 3029 89 163 75 19 64 321 167276
Comb. PRF-SS 2799 90 161 74 16 69 320 158904

CoR-GRR 2781 90 117 75 16 39 247 140265
ROM-GRR 2802 90 117 69 16 37 239 137609

The column of “Total KBytes” contains the total number of kilobytes of data
which were transferred during the run of the protocol. The column “Method”
details the type of computation used, as follows:

– Base: Denotes the optimisations proposed in [22], extended to the case of
Covert and Honest adversaries, which we use for comparison purposes, as
our baseline implementation. This uses the C2,3 circuit mentioned above,



the KDF which is secure in the standard model, and the OT of Hazay-
Lindell [15] as opposed to that of Peikert et al. [27].

– PRF-SS: This denotes using the secret sharing based method of Section 5,
to reduce the size of the garbled tables. For this the KDF is assumed to be
a PRF, but not correlation robust.

– CoR-GRR: This denotes an implementation which is only secure assuming
the KDF is correlation robust. It uses the free XOR trick and the method of
Garbled Row Reduction, from Section 4, to reduce the size of the remaining
garbled tables.

– ROM-GRR: As above for CoR-GRR but all hash functions used are modelled
as random oracles. This means we can implement our KDF via a single hash
function call, based on the method described in Footnote 5.

The column denoted “No. of gates” describes the number of gates, and the
percentage of XOR gates, in the extended circuit (which transfers P1’s outputs
and applies the extension described in the full version, encoding P2’s input).

For the Covert and Malicious cases the “Input Enc.” column denotes whether
we use the Independent Inputs technique or the Random Combinations technique
for the extended circuit construction. See the full version for details. From the
table we can deduce the following conclusions:

– The running time in the semi-honest setting is about 10-20 times faster than
in the covert setting, which is in turn about 15-20 times faster than in the
malicious setting.

– A lot of the extra data needed to be transmitted in the Malicious case is
related to the large number of commitments and decommitments which need
to be transmitted. Thus our optimisation techniques are less effective in
the Malicious case. This points to a clear direction for future research in
optimising the Malicious case.

– If one is not willing to assume that the KDF is correlation robust we see
that using our technique based on secret sharing can reduce the amount of
data being transmitted, compared to the base scheme, without increasing
the computational cost.

– In all cases we see that the correlation robust variant using Garbled-Row-
Reduction is the most efficient variant. The extra efficiency comes from the
free XOR’s which reduce both the number of encryption/decryptions which
need to be performed and also the amount of data needing to be transmitted.

– Note that if we assume the random oracle model, and so could implement our
KDF via a single hash function call then for Covert adversaries the protocols
run significantly faster. That this does not apply as much to the Malicious
case is due to the fact that most of the time in the Malicious case is spent
with creating, sending and verifying the various commitments.

We pause to compare our two optimisations with the optimisation in band-
width suggested in [13]. In our system P1, the circuit constructor, sends com-
mitments to all circuits that it constructs and to its own inputs, and a random
subset of these committed values are checked by P2. In [13] it is suggested that



P1 commits to a random seed, and uses this to generate the circuit. Then only
the commitment to this seed, and eventually its decommitment, need to be trans-
mitted. This means that P2 needs to compute the circuit given the seed. Whilst
this optimisation clearly significantly reduces the consumed bandwidth, it actu-
ally leads to a significant increase in the time needed to perform the protocol.
To see this consider our Covert experiments in Table 1. The optimisation in [13]
would reduce practically to zero, the entry for the “Send Time” column, but P2

would now need to recompute almost all of the calculations in the “Precomp
Time” column. Thus the technique of [13] is only to be compared to ours in the
situation where bandwidth is very expensive and CPU time is very cheap.

Before passing onto our larger example we note the following. If we let p
denote the proportion of XOR gates within a circuit, and we let N denote the
amount of data needed to be sent per circuit in the standard Yao construction,
then the average amount of data needed to be sent per circuit gate when using
the free XOR gates and GRR methods is 3/4 · (1 − p) · N . Whereas if we do
not use the free XOR gate method and instead use the method based on secret
sharing, this value becomes N/2. Hence, if we are willing to assume correlation
robust KDFs, then the method which uses secret sharing and does not use the
free XOR method, will be more efficient as long as the fraction of XOR gates, p,
is smaller than 1/3. However as can be seen from the column entitled “% XOR
Gates”, this proportion is generally much larger than 1/3, especially in the case
of Covert and Malicious adversaries where we have had to extend the circuit
by a large linear component. This expansion is performed to cope with possible
adversarial behaviour related to P2’s input, see the full version for details. One
should note that these theoretical estimates of bandwidth are never achieved
fully in practice due to overheads in the underlying data transmission mechanism
and the fact that they assume a bit-oriented communication mechanism, whereas
practical communication is performed in bytes. Hence the saving we achieve in
gate transmission is about 5-10% less than one would predict purely by theory.

Example 2 - Evaluating AES: As our second example we created a circuit
which computes an AES encryption of a single 128-bit block with respect to
a 128-bit key. Here P1’s input is the secret key, and P2’s input is the message
block. We require that P2 learns the encryption of its message under P1’s secret
key, and that P1 learns nothing. Compiling such a circuit using the Fairplay
compiler, and applying various optimisations, resulted in a circuit, which we
denote by C(1)

2 , with 33880 gates, where each gate is a 2-to-1 gate. This circuit
was derived in a way to try to minimize the number of non-XOR gates. Again,
we stress, the above circuit size purely implements the AES functionality, it
does not include the extension of the circuit to cope with P2’s input in the case
of Covert and Malicious adversaries. Note that the key schedule takes up only
about 15% of the circuit, hence encrypting a sequence of message blocks as in
CBC-Mode encryption will scale almost linearly with respect to our data.

We repeated our experiments from above, but in Table 2 we only present the
times for the most efficient choice for the input encoding.



Table 2. Experimental Results for Example 2 (Again times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes

Semi- Base 28216 56 5 2 4 3 14 3162
Honest PRF-SS 33880 66 5 1 3 3 12 1752

CoR-GRR 33880 66 2 1 2 2 7 503
ROM-GRR 33880 66 1 1 3 2 7 503

Covert Indep. Base 28600 56 96 47 18 45 206 51899
Inputs PRF-SS 34264 67 92 36 13 50 191 29380

CoR-GRR 34264 67 40 21 11 23 95 9078
ROM-GRR 34264 67 22 21 11 6 60 8942

Malic. Random Base 40253 69 1250 448 39 887 2624 987442
Comb. PRF-SS 45944 75 1184 392 34 829 2439 711729

CoR-GRR 45960 75 483 270 34 361 1148 406010
ROM-GRR 45881 75 453 276 35 350 1114 417907

We conclude that performing the Yao protocol is certainly feasible on compli-
cated functionalities such as AES encryption. For the case of honest and covert
adversaries we again see that the computation and bandwidth consumed, when
we use correlation robust KDFs and the GRR method, greatly reduces in com-
parison to the base case. If one is not willing to assume correlation robust KDFs
(or use the ROM) then our secret sharing based optimisation greatly reduces
the bandwidth without affecting the run times. For the malicious case the im-
provement in the secret sharing based version is less pronounced due to the large
number of commitments which need to be transmitted and opened. This clearly
points to the place where future optimisation research needs to be performed,
namely in reducing the number of commitments needed in the situation of ma-
licious adversaries. However even without such future optimisation we note that
performance can be significantly reduced by taking advantage of the inherent
parallelism in the algorithm in the Malicious case (in which P1 generates many
commitments and P2 verifies a subset of them). For web service or cloud com-
puting applications, where server farms are common place, an improvement in
computational time by a factor around s1 could be expected.

We end by noting that many application domains of a secure evaluation of
AES, for example the one-time program example from [12], require only secu-
rity against semi-honest adversaries. Hence, such applications are already within
the reach of practical realisation. Furthermore, this application requires no com-
putation of the OT or data to be sent. Thus the party generating the one-
time-program will take the time needed in our Precomp Time column, and the
evaluator (after querying the one-time-memory) will take the time needed in the
Calc Time column.
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