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Abstract. Public-key encryption schemes rely for their IND-CPA secu-
rity on per-message fresh randomness. In practice, randomness may be
of poor quality for a variety of reasons, leading to failure of the schemes.
Expecting the systems to improve is unrealistic. What we show in this
paper is that we can, instead, improve the cryptography to offset the
lack of possible randomness. We provide public-key encryption schemes
that achieve IND-CPA security when the randomness they use is of high
quality, but, when the latter is not the case, rather than breaking com-
pletely, they achieve a weaker but still useful notion of security that we
call IND-CDA. This hedged public-key encryption provides the best pos-
sible security guarantees in the face of bad randomness. We provide sim-
ple RO-based ways to make in-practice IND-CPA schemes hedge secure
with minimal software changes. We also provide non-RO model schemes
relying on lossy trapdoor functions (LTDFs) and techniques from deter-
ministic encryption. They achieve adaptive security by establishing and
exploiting the anonymity of LTDFs which we believe is of independent
interest.

1 Introduction

Cryptography ubiquitously assumes that parties have access to sufficiently good
randomness. In practice this assumption is often violated. This can happen be-
cause of faulty implementations, side-channel attacks, system resets or for a
variety of other reasons. The resulting cryptographic failures can be spectac-
ular [22, 24, 29, 2, 15]. What can we do about this? One answer is that system
designers should build “better” systems, but this is clearly easier said than done.
The reality is that random number generation is a complex and difficult task,
and it is unrealistic to think that failures will never occur. We propose a different
approach: designing schemes in such a way that poor randomness will have as
little as possible impact on the security of the scheme in the following sense.
With good randomness the scheme achieves whatever (strong) security notion



one is targeting, but when the same scheme is fed bad (even adversarially cho-
sen) randomness, rather than breaking completely, it achieves some weaker but
still useful notion of security that is the best possible under the circumstances.
We call this “hedged” cryptography.

Previous work by Rogaway [32], Rogaway and Shrimpton [33], and Kamara
and Katz [27] considers various forms of hedging for the symmetric encryption
setting. In this paper, we initiate a study of hedged public-key encryption. We
address two central foundational questions, namely to find appropriate defini-
tions and to efficiently achieve them. Let us now look at all this in more detail.

The problem. Achieving the standard IND-CPA notion of privacy [23] requires
the encryption algorithm to be randomized. In addition to the public key and
message, it takes as input a random string that needs to be freshly and indepen-
dently created for each and every encryption.

Weak (meaning, low-entropy) randomness does not merely imply a loss of
theoretical security. It can lead to catastrophic attacks. For example, weak-
randomness based encryption is easily seen to allow recovery of the plaintext
from the ciphertext for the quadratic residuosity scheme of [23] as well as the
El Gamal encryption scheme [21]. Brown [15] presents such an attack on RSA-
OAEP [10] with encryption exponent 3. Ouafi and Vaudenay [30] present such
an attack on Rabin-SAEP [13]. We present an alternative attack in [7].

The above would be of little concern if we could guarantee good randomness.
Unfortunately, this fails to be true in practice. Here, an “entropy-gathering”
process is used to get a seed which is then stretched to get “random” bits for
the application. The theory of cryptographically strong pseudorandom number
generators [11] implies that the stretching can in principle be sound, and extrac-
tors further allow us to reduce the requirement on the seed from being uniformly
distributed to having high min-entropy, but we still need a sufficiently good seed.
(No amount of cryptography can create randomness out of nothing!) In prac-
tice, entropy might be gathered from timing-related operating system events or
user keystrokes. As evidence that this process is error-prone, consider the recent
randomness failure in Debian Linux, where a bug in the OpenSSL package led
to insufficient entropy gathering and thence to practical attacks on the SSH [29]
and SSL [2, 36] protocols. Other exploits include [25, 19].

The new notion. The idea is to provide two tiers of security. First, when the
“randomness” is really random, the scheme should meet the standard IND-CPA
notion of security. Otherwise, rather than failing completely, it should gracefully
achieve some weaker but as-good-as-possible notion of security. The first impor-
tant question we then face is to pick and formally define this fallback notion.

Towards this, we begin by suggesting that the message being encrypted may
also have entropy or uncertainty from the point of view of the adversary. (If not,
what privacy is there to be preserved by encryption?) We propose to harvest this.
In this regard, the first requirement that might come to mind is that encryption
with weak (even adversarially-known) randomness should be as secure as deter-
ministic encryption, meaning achieve an analog of the PRIV notion of [6]. But



achieving this would require that the message by itself have high min-entropy.
We can do better. Our new target notion of security, that we call Indistinguisha-
bility under a Chosen Distribution Attack (IND-CDA), asks that security is
guaranteed as long as the joint distribution of the message and randomness has
sufficiently high min-entropy. In this way, we can exploit for security whatever
entropy might be present in the randomness or the message, and in particular
achieve security even if neither taken alone is random enough.

Notice that if the message and randomness together have low min-entropy,
then we cannot hope to achieve security, because an adversary can recover the
message with high probability by trial encryption with all message-randomness
pairs that occur with a noticeable probability. In a nutshell, our new notion
asks that this necessary condition is also sufficient, and in this way is requiring
security that is as good as possible.

We denote by H-IND our notion of hedged security that is satisfied by en-
cryption schemes that are secure both in the sense of IND-CPA and in the sense
of IND-CDA.

Adaptivity. Our IND-CDA definition generalizes the indistinguishability-style
formalizations of PRIV-secure deterministic encryption [8, 12], which in turn ex-
tended entropic security [18]. But we consider a new dimension, namely, adaptiv-
ity. Our adversary is allowed to specify joint message-randomness distributions
on to-be-encrypted challenges. The adversary is said to be adaptive if these
queries depend on the replies to previous ones. Non-adaptive H-IND means IND-
CPA plus non-adaptive IND-CDA and adaptive H-IND means IND-CPA plus
adaptive IND-CDA.

Non-adaptive IND-CDA is a notion of security for randomized schemes that
becomes identical to PRIV in the special case that the scheme is deterministic.
Adaptive IND-CDA, when restricted to deterministic schemes, is an adaptive
strengthening of PRIV that we think is interesting in its own right. As a conse-
quence of the results discussed below, we get the first deterministic encryption
schemes that achieve this stronger notion.

Schemes with random oracles. Our random oracle (RO) model schemes and
their attributes are summarized in the first two rows of the table of Figure 1.
Both REwH1 and REwH2 efficiently transform an arbitrary (randomized) IND-
CPA scheme into a H-IND scheme with the aid of the RO. They are simple ways
to make in-practice encryption schemes H-IND secure with minimal software
changes. REwH1 has the advantage of not changing the public key and thus not
requiring new certificates. It always provides non-adaptive H-IND security. It
provides adaptive H-IND security if the starting scheme has the extra property
of being anonymous in the sense of [4]. Anonymity is possessed by some deployed
schemes like DHIES [1], making REwH1 attractive in this case. But some in-
practice schemes, notably RSA ones, are not anonymous. If one wants adaptive
H-IND security in this case we suggest REwH2, which provides it assuming only
that the starting scheme is IND-CPA. It does this by adding a randomizer to



Non-adaptive H-IND Adaptive H-IND

REwH1 IND-CPA IND-CPA + ANON-CPA

REwH2 IND-CPA IND-CPA

RtD IND-CPA, PRIV IND-CPA, (u-)LTDF

PtD (u-)LTDF (u-)LTDF

Fig. 1. Table entries for the first two rows indicate the assumptions made on the (ran-
domized) encryption scheme that underlies the RO-model hedged schemes in question.
The entries for standard model scheme RtD are the assumptions on the underlying
randomized and deterministic encryption schemes, respectively, and for PtD, on the
underlying deterministic encryption scheme, which is the only primitive it uses.

the public key, so it does require new certificates. The schemes are extensions of
the EwH deterministic encryption scheme of [6] and similar to [20].

Schemes without random oracles. It is easy to see that even the existence
of a non-adaptively secure IND-CDA encryption scheme implies the existence of
a PRIV-secure deterministic encryption (DE) scheme. Achieving PRIV without
ROs is already hard. Indeed, fully PRIV-secure DE without ROs has not yet
been built. Prior work, however, does show how to construct PRIV-secure DE
without ROs for block sources [12]. (Messages being encrypted have high min-
entropy even conditioned on previous messages.) But H-IND introduces three
additional challenges: (1) the min-entropy guarantee is on the joint message-
randomness distribution rather than merely on the message; (2) we want a single
scheme that is not only IND-CDA secure but also IND-CPA-secure; and (3) the
adversary’s queries may be adaptive.

We are able to overcome these challenges to the best extent possible. We
provide schemes that are H-IND-secure in the same setting as the best known
PRIV ones, namely, for block sources, where we suitably extend the latter no-
tion to consider both randomness and messages. Furthermore, we achieve these
results under the same assumptions as previous work.

Our standard model schemes and their attributes are summarized in the last
two rows of the table of Figure 1. RtD is formed by the generic composition
of a deterministic scheme and a randomized scheme and achieves non-adaptive
H-IND security as long as the base schemes meet their regular conditions. (That
is, the former is PRIV-secure for block sources and the latter is IND-CPA.)
Adaptive security requires that the deterministic scheme be a u-LTDF. (A lossy
trapdoor function whose lossy branch is a universal hash function [31, 12].) PtD is
simpler, merely concatenating the message to the randomness and then applying
deterministic encryption. It achieves both non-adaptive and adaptive H-IND
under the assumption that the deterministic scheme is a u-LTDF. For both
schemes, the universality assumption on the LTDF can be dropped by modifying
the scheme and using the crooked leftover hash lemma as per [12]. (This is why
the “u” is parenthesized in the table of Figure 1.)



Anonymous LTDFs. Also of independent interest, we show that any u-LTDF
is anonymous. Here we refer to a new notion of anonymity for trapdoor functions
that we introduce, one that strengthens the notion of [4]. This step exploits an
adaptive variant of the leftover hash lemma of [26].

Why anonymity? It is exploited in our proofs of adaptive security. Our
new notion of anonymity for trapdoor functions is matched by a correspond-
ing one for encryption schemes. We show that any encryption scheme that is
both anonymous and non-adaptive H-IND secure is also adaptively H-IND se-
cure. Anonymity of the u-LTDF, in our encryption schemes based on the latter
primitive, allows us to show that these schemes are anonymous and thereby lift
their non-adaptive security to adaptive.

Related work. In the symmetric setting, several works have recognized and
addressed the problem of security in the face of bad randomness. Concern over
the quality of available randomness is one of Rogaway’s motivations for introduc-
ing nonce-based symmetric encryption [32], where security relies on the nonce
never repeating rather than being random. Rogaway and Shrimpton [33] provide
a symmetric authenticated encryption scheme that defaults to a PRF when the
randomness is known.

Kamara and Katz [27] provide symmetric encryption schemes secure against
chosen-randomness attack (CRA). Here the adversary can obtain encryption un-
der randomness of its choice but privacy is only required for messages encrypted
with perfect, hidden randomness. Entropy in the messages is not considered or
used. We in contrast seek privacy even when the randomness is bad as long as
there is compensating entropy in the message. Also we deal with the public key
setting.

Many works consider achieving strong cryptography given only a “weak
random source” [28, 16, 14]. This is a source that does have high min-entropy
but may not produce truly random bits. They show that many cryptographic
tasks including symmetric encryption [28], commitment, secret-sharing, and zero
knowledge [16] are impossible in this setting. We are not in this setting. We do
assume a small amount of initial good randomness to produce keys. (This makes
sense because it is one-time and because otherwise we can’t hope to achieve any-
thing anyway.) On the other hand our assumption on the randomness available
for encryption is even weaker than in the works mentioned. (We do not even
assume it has high min-entropy.) Our key idea is to exploit the entropy in the
message, which is not done in [28, 16, 14]. This allows us to circumvent their
negative results.

Waters independently proposed hedge security as well as the PtD construc-
tion as a way to achieve it [35].

2 Preliminaries

Notation. Vectors are written in boldface, e.g. x. If x is a vector then |x| denotes
its length and x[i] denotes its ith component for 1 ≤ i ≤ |x|. We say that x is
a vector over D if x[i] ∈ D for all 1 ≤ i ≤ |x|. Throughout, k ∈ N denotes the



security parameter and 1k its unary encoding. Unless otherwise indicated, an
algorithm is randomized. The set of possible outputs of algorithm A on inputs
x1, x2, . . . is denoted [A(x1, x2, . . .)]. “PT” stands for polynomial-time.

Games. Our security definitions and proofs use code-based games [9], and so we
recall some background from [9]. A game (look at Figure 2 for examples) has an
Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. A game G is executed with an adversary A as follows. First,
Initialize executes, and its outputs are the inputs to A. Then A executes, its
oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output
of the latter is called the output of the game, and we let GA ⇒ y denote the
event that this game output takes value y. Our convention is that the running
time of an adversary is the time to execute the adversary with the game that
defines security, so that the running time of all game procedures is included.

Public-key encryption. A public-key encryption (PKE) scheme is a tuple
of PT algorithms AE = (P,K, E ,D) with associated message length parameter
n(·) and randomness length parameter ρ(·). The parameter generation algorithm
P takes as input 1k and outputs a parameter string par. The key generation
algorithm K takes input par and outputs a key pair (pk, sk). The encryption
algorithm E takes inputs pk, message m ∈ {0, 1}n(k) and coins r ∈ {0, 1}ρ(k)
and returns the ciphertext denoted E(pk,m ; r). The deterministic decryption
algorithm D takes input sk and ciphertext c and outputs either ⊥ or a message
in {0, 1}n(k). For vectors m, r with |m| = |r| = v we denote by E(pk,m ; r) the
vector (E(pk,m[1] ; r[1]), . . . , E(pk,m[v] ; r[v])). We say that AE is deterministic
if E is deterministic. (That is, ρ(·) = 0.)

We consider the standard IND-CPA notion of security, captured by the game
INDAE whereAE = (P,K, E ,D) is an encryption scheme. In the game, Initialize
chooses a random bit b, generates parameters par←$ P(1k) and generates a key
pair (pk, sk)←$K(par) before returning pk to the adversary. Procedure LR, on
input messages m0 and m1, returns c←$ E(pk,mb). Lastly, procedure Finalize
takes as input a guess bit b′ and outputs true if b = b′ and false otherwise. An
IND-CPA adversary makes a single query (m0,m1) to LR with |m0| = |m1|.
For IND-CPA adversary A we let Advind-cpa

AE,A (k) = 2·Pr
[

INDA
AE,k ⇒ true

]
−1 .

We say AE is IND-CPA secure if Advind
AE,A(·) is negligible for all PT IND-CPA

adversaries A.

Sources. We generalize the notion of a source to consider a joint distribution on
the messages and the randomness with which they will be encrypted. A t-source
(t ≥ 1) with message length n(·) and randomness length ρ(·) is a probabilistic
algorithm M that on input 1k returns a (t+1)-tuple (m0, . . . ,mt−1, r) of equal-
length vectors, where m0, . . . ,mt−1 are over {0, 1}n(k) and r is over {0, 1}ρ(k).
We say that M has min-entropy µ(·) if

Pr [ (mb[i], r[i]) = (m, r) ] ≤ 2−µ(k)



for all k ∈ N, all b ∈ {0 . . . , t − 1}, all i and all (m, r) ∈ {0, 1}n(k) × {0, 1}ρ(k).
We say it has conditional min-entropy µ(·) if

Pr [ (mb[i], r[i]) = (m, r) | ∀j < i (mb[j], r[j]) = (m′[j], r′[j]) ] ≤ 2−µ(k)

for all k ∈ N, all b ∈ {0 . . . , t − 1}, all i, all (m, r), and all vectors m′, r′. A
t-source with message length n(·), randomness length ρ(·), and min-entropy µ(·)
is referred to as a (µ, n, ρ)-mr-source when t = 1 and ρ(·) > 0; a (µ, n)-m-source
when t = 1 and ρ(·) = 0; a (µ, n, ρ)-mmr-source when t = 2 and ρ(·) > 0;
and (µ, n)-mm-source when t = 2 and ρ(·) = 0. Each “m” indicates the source
outputting one message vector and an “r” indicates a randomness vector. When
the source has conditional min-entropy µ(·) we write block-source instead of
source for each of the above. A v(·)-vector source outputs vectors of size v(k) for
all k.

Universal hash functions. A family of functions is a tuple H = (P,K, F )
with associated message length n(·). It is required that the domain of F (K, ·)
is {0, 1}n for every k, every par ∈ [P(1k)], and every K ∈ [K(par)]. We say
that H is universal if for every k, all par ∈ [P(1k)], and all distinct x1, x2 ∈
{0, 1}n(k), the probability that F (K,x1) = F (K,x2) is at most 1/|R(par)| where
R(par) = {F (K,x) : K ∈ [K(par)] and x ∈ {0, 1}n } and the probability is over
K←$K(par).

Lossy Trapdoor Functions (LTDFs). To a deterministic PKE scheme (re-
call that a family of injective trapdoor functions and a deterministic encryption
scheme are, syntactically, the same object) AE = (Pd,Kd, Ed,Dd) with message
length nd(·) we can associate an (nd, `)-lossy key generator Kl. This is a PT
algorithm that, on input par, outputs a value pk for which the map Ed(pk, ·)
has image size at most 2nd(k)−`(k). The parameter ` is called the lossiness of the
lossy key generator. We associate to AE , lossy key generator Kl, and a LOS ad-
versary A the function Advlos

AE,Kl,A
(k) = 2· Pr

[
LOSAAE,Kl,k

⇒ true
]
− 1, where

game LOSAE,Kl
works as follows. Initialize chooses a random bit b and gener-

ates parameters par←$ Pd(1k), if b = 0 runs (pk, sk)←$Kd(par) and if b = 1
runs pk←$Kl(par). It then returns pk (to the adversary A). When A finishes,
outputting guess b′, Finalize returns true if b = b′. We say Kl is universal-
inducing if H = (Pd,Kl, Ed) is a family of universal hash functions with message
length nd.

A deterministic encryption scheme AE is a (nd, `)-lossy trapdoor function
(LTDF) if there exists a (nd, `)-lossy key generator such that Advlos

AE,Kl,A
(·) is

negligible for all PT A. We say it is a universal (nd, `)-lossy trapdoor function
(u-LTDF) if in addition Kl is universal-inducing.

Lossy trapdoor functions were introduced by Peikert and Waters [31], and
can be based on a variety of number-theoretic assumptions, including the hard-
ness of the decisional Diffie-Hellman problem, the worst-case hardness of lattice
problems, and the hardness of Paillier’s composite residuosity problem [31, 12,
34]. Boldyreva et al. [12] observed that the DDH-based construction is universal.



proc. Initialize(1k):

par←$ P(1k)

(pk, sk)←$K(par)

b←$ {0, 1}
Ret par

proc. LR(M):

If pkout = true then

Ret ⊥
(m0,m1, r)←$ M(1k)

Ret E(pk,mb; r)

proc. RevealPK():

pkout← true

Ret pk

proc. Finalize(b′):

Ret (b = b′)

Fig. 2. Game CDAAE,k

3 Security against Chosen Distribution Attack

Let AE = (P,K, E ,D) be an encryption scheme. A CDA adversary is one whose
LR queries are all mmr-sources. Game CDAAE of Figure 2 provides the adver-
sary with two oracles. The advantage of CDA adversary A is

Advcda
AE,A(k) = 2 · Pr

[
CDAA

AE,k ⇒ true
]
− 1 .

In the random oracle model we allow all algorithms in Game CDA to access the
random oracle; importantly, this includes the mmr-sources.

Discussion. Adversary A can query LR with an mmr-source of its choice, an
output (m0,m1, r) of which represents choices of message vectors to encrypt and
randomness with which to encrypt them. (An alternative formulation might have
CDA adversaries query two mr-sources, and distinguish between the encryption
of samples taken from one of these. But this would mandate that schemes ensure
privacy of messages and randomness.) This allows A to dictate a joint distri-
bution on the messages and randomness. In this way it conservatively models
even adversarially-subverted random number generators. Multiple LR queries
are allowed. In the most general case these queries may be adaptive, meaning
depend on answers to previous queries.

Given that multiple LR queries are allowed, one may ask why an mmr-source
needs to produce message and randomness vectors rather than simply a single
pair of messages and a single choice of randomness. The reason is that the
coordinates in a vector all depend on the same coins underlying an execution of
M, but the coins underlying the execution of the sources in different queries are
independent.

Note that Initialize does not return the public key pk to A. A can get it
at any time by calling RevealPK but once it does this, LR will return ⊥.
The reason is that we inherit from deterministic encryption the unavoidable
limitation that encryption cannot hide public-key related information about the
plaintexts [6]. (When the randomness has low entropy, the ciphertext itself is
such information.)

As we saw in the previous section, no encryption scheme is secure when
both messages and randomness are predictable. Formally, this means chosen-
distribution attacks are trivial when adversaries can query mmr-sources of low



min-entropy. Our notions (below) will therefore require security only for sources
that have high min-entropy or high conditional min-entropy.

Equality patterns. Suppose Amakes a query M which returns (m0,m1, r) =
((a, a), (a, a′), (r, r)) for some a 6= a′ and random r. Then it can win trivially be-
cause the (two) components of the returned vector c are equal if b = 0 and
unequal otherwise. This limitation, again inherited from deterministic encryp-
tion [6], is inherent. To capture it we associate to an mmr-source M an equality-
pattern probability

ζ(k) = Pr
[

eq
(
(m0, r), (m1, r)

)
= 0 : (m0,m1, r)←$ M(1k)

]
where eq

(
(x1,x2), (y1,y2)

)
is 1 if for all i, j

(x1[i],x2[i]) = (x1[j],x2[j]) iff (y1[i],y2[i]) = (y1[j],y2[j]) ,

and 0 otherwise. We point out that LR queries that are mmr-block-sources
(and not, just, mmr-sources) with high conditional min-entropy have negligible
equality-pattern probability.

Notions. We can assume (without loss of generality) that a CDA adversary
makes a single RevealPK query and then no further LR queries. We say A is
a (µ, n, ρ)-adversary if all of its LR queries are (µ, n, ρ)-mmr-sources. We say
that a PKE scheme AE with message length n(·) and randomness length ρ(·) is
IND-CDA secure for (µ, n, ρ)-mmr-sources if for all PT (µ, n, ρ) adversaries A the
function Advcda

AE,A(·) is negligible. Scheme AE is H-IND secure for (µ, n, ρ)-mmr-
sources if it is IND-CPA secure and IND-CDA secure for (µ, n, ρ)-mmr-sources.
We can extend these notions to mmr-block-sources by restricting to adversaries
that query mmr-block-sources.

On adaptivity. We can consider non-adaptive IND-CDA security by restrict-
ing attention in the notions above to adversaries that only make a single LR
query. Why do we not focus solely on this (simpler) security goal? The standard
IND-CPA setting (implicitly) provides security against multiple, adaptive LR
queries. This is true because in that setting a straightforward hybrid argument
shows that security against multiple adaptive LR queries is implied by secu-
rity against a single LR query [5, 3]. We wish to maintain the same standard
of adaptive security in the IND-CDA setting. Unfortunately, in the IND-CDA
setting, unlike the IND-CPA setting, adaptive security is not implied by non-
adaptive security. In short this is because a CDA adversary necessarily cannot
learn the public key before (or while) making LR queries. To see the separation,
consider a PKE scheme that appends to every ciphertext the public key used.
This will not affect the security of the scheme when an adversary can only make
a single query. However, an adaptive CDA adversary can query an mmr-source,
learn the public key, and craft a second source that uses the public key to ensure
ciphertexts which leak the challenge bit.

Given this, our primary goal is the stronger notion of adaptive security.
That said, non-adaptive hedge security is also relevant because in practice adap-
tive adversaries might be rare and (as we will see in Section 5) one can find



non-adaptively-secure schemes that are more efficient and/or have proofs under
weaker assumptions.

Adaptive PRIV. A special case of our framework occurs when the PKE scheme
AE being considered has randomness length ρ(k) = 0 for all k (meaning also that
adversaries query mm-sources, instead of mmr-sources). In this case we are con-
sidering deterministic encryption, and the IND-CDA definition and notions give
a strengthening (by way of adaptivity) of the PRIV security notion from [6, 8,
12]. (For non-adaptive adversaries the definitions are equivalent.) For clarity we
will use PRIV to refer to this special case, and let Advpriv

AE,A(k) = Advcda
AE,A(k).

Resource usage. Recall that by our convention, the running time of a CDA
adversary is the time for the execution of the adversary with game CDAAE,k.
Thus, A being PT implies that the mmr-sources that comprise A’s LR queries
are also PT. This is a distinction from [12] which will be important in our results.
Note that in practice we do not expect to see sources that are not PT, so our
definition is not restrictive. Non-PT sources were needed in [12] for showing
that single-message security implied (non-adaptive) multi-message security for
deterministic encryption of block sources.

4 Constructions

Here we present several constructions for hedged encryption. The first scheme
uses a random oracle and an IND-CPA secure probabilistic encryption scheme.
The next two schemes derive from composing a randomized encryption scheme
with a deterministic one (there are two ways of ordering composition). Interest-
ingly, only one ordering will end up providing security. The final scheme con-
verts a deterministic encryption scheme to a hedged one by padding the message
with random bits. For the following, let AEr = (Pr,Kr, Er,Dr) be a (random-
ized) PKE scheme with message length nr(·) and randomness length ρ(·). Let
AEd = (Pd,Kd, Ed,Dd) be a (deterministic) PKE scheme with message length
nd(·) and randomness length always 0. Associate to AEc for c ∈ {d, r} the func-
tion maxclenc(k) mapping any k to the maximum length (over all possible public
keys, messages, and if applicable, randomness) of a ciphertext output by Ec.

Randomized-encrypt-with-hash. Let R : {0, 1}∗ → {0, 1}∗ be a random
oracle. Let REwH[AEr] = (P,K, E ,D) be the scheme parameterized by random-
izer length κ that works as follows. Parameter generation, and decryption are
the same as in AEr. Key generation runs Kr(parr) to get (pkr, skr), chooses
K ←$ {0, 1}κ(k), and lets pk = (pkr ‖ K) and sk = skr. Algorithm ER, on
input (pk,m) where pk = (pkr ‖ K), chooses r←$ {0, 1}ρ(k) and computes
r′ ← R(pkr ‖K ‖r‖m) (where here we take R’s output to be of length ρ(k)) and
outputs Er(pkr,m ; r′). Intuitively, the random oracle provides perfect and (as
long as m and r are hard to predict) private randomness. When the key length
κ(k) = 0 for all k, we refer to the scheme as REwH1, while when κ(k) > 0 for all
k we refer to the scheme as REwH2. The scheme extends the Encrypt-with-Hash
deterministic encryption scheme from [6], which is a special case of REwH1 when



r has length 0, and is also reminiscent of constructions in the symmetric setting
that utilize a PRF to ensure good randomness [27, 33], as well as schemes using
the Fujisaki-Okamoto transform [20].

Deterministic-then-randomized. Our first standard model attempt is to
perform hedged encryption via first applying deterministic encryption and then
randomized. More formally let DtR[AEr,AEd] = (P,K, E ,D) be the scheme that
works as follows. The parameter generation algorithm P runs parr←$ Pr(1k)
and pard←$ Pd(1k) and outputs par = (parr,pard). Key generation K just runs
(pkr, skr)←$Kr(parr) and (pkd, skd)←$Kd(pard) and outputs pk = (pkr,pkd)
and sk = (skr, skd). We define encryption by

E((pkr,pkd),m ; r) = Er(pkr, c ‖ 10` ; r) ,

where c = Ed(pkd,m) and ` = nr−|c|−1. Here we need that nr(k) > maxclend(k)
for all k. Decryption is defined in the natural way. The scheme will clearly inherit
IND-CPA security from the application of Er. If the deterministic encryption
scheme is PRIV secure for min-entropy µ, then the composition will also be
secure if the message has min-entropy at least µ. However, our strong notion of
IND-CDA security requires that schemes be secure if the joint distribution on the
message and randomness has high min-entropy. If the entropy is unfortuitously
split between both the randomness and the message, then there is no guarantee
that the composition will be secure. In fact, many choices for instantiating AEr

and AEd lead to a composition for which attacks can be exhibited (even when
the schemes are, separately, secure).

Randomized-then-deterministic. We can instead apply randomized encryp-
tion first, and then apply deterministic encryption. Define RtD[AEr,AEd] =
(P,K, E ,D) to work as follows. The parameter and key generation algorithms
are as for scheme DtR. Encryption is defined by

E((pkr,pkd),m ; r) = Ed(pkd, c ‖ 10`) .

where c = Er(pkr,m ; r) and ` = nd − |c| − 1. Here we need that nd(k) >
maxclenr(k) for all k. The decryption algorithm D works in the natural way. As
we will see, this construction avoids the security issues of the previous, as long
as the randomized encryption scheme preserves the min-entropy of its inputs.
(For example, if for all k, all parr ∈ [Pr(1k)], and all (pkr, skr) ∈ [Kr(parr)],
Er(pkr, ·) is injective in (m, r).) Many encryption schemes have this property; El
Gamal [21] is one example.

Pad-then-Deterministic. Our final construction dispenses entirely with the
need for a dedicated randomized encryption scheme, instead using simple padding
to directly construct a (randomized) encryption scheme from a deterministic one.
Let PtD[AEd] = (Pd,Kd, E ,D) work as follows. Parameter and key generation
are inherited form the underlying (deterministic) encryption scheme. Encryption
is defined by

E(pkd,m ; r) = Ed(pkd, r ‖m) .

Decryption proceeds by applying Dd, to retrieve r ‖m, and then returning m.



5 Non-adaptive Hedge Security

In this section we investigate the non-adaptive hedge security of REwH, RtD and
PtD, leaving adaptive security to future sections.

Randomized-encrypt-with-hash. Intuitively, the security of REwH[AEr] fol-
lows from the IND-CPA security of AEr and the random oracle providing “per-
fect” randomness. Following [6], for any k let maxpkAE(k) be the maximum of
Pr [ pk = w : (pk, sk)←$K(par) ], where the maximum is taken over all w ∈
{0, 1}∗ and all par ∈ [P(1k)].

Theorem 1. [REwH is non-adaptive H-IND secure] Let AEr = (Pr,Kr,
Er,Dr) be a PKE scheme with message length n(·) and randomness length ρ and
let AE = REwH[AEr] = (Pr,Kr, E ,Dr) be the PKE scheme constructed from it.

• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-
CPA adversary B such that for all k

Advind-cpa
AE,A (k) = Advind-cpa

AEr,B
(k)

where B runs in time that of A and makes the same number of queries.

• (IND-CDA) Let A be an adversary that makes a single LR query consisting
of a v(·)-vector (µ, n, ρ)-mmr-source with equality-pattern probability ζ(·)
and making at most h(·) random oracle queries. Then there exists an IND-
CPA adversary B such that for all k

Advcda
AE,A(k) ≤ v(k)

(
Advind-cpa

AEr,B
(k) +

2 ·h(k)
2µ(k)

+ 8 ·maxpkAEr
(k)
)

+ ζ(k)

Adversary B runs in time that of A and maxpkAEr
is the maximum public

key probability of AEr �

The first part of the theorem is straightforward to prove. The second follows
from an adaptation of the proof of security for the similar Encrypt-with-Hash
deterministic encryption scheme in [6]. Notice that the theorem holds for both
REwH1 and REwH2; the only difference is that with the latter the maxpkAE(k)
term improves depending on the length κ.

Randomized-then-deterministic. Intuitively, the non-adaptive hedged se-
curity of the RtD construction is inherited from the IND-CPA security of the
underlying randomized scheme AEr and the (non-adaptive) PRIV security of
the underlying deterministic scheme AEd. As alluded to before, we have one
technical requirement on AEr for the IND-CDA proof to work. We say AEr =
(Pr,Kr, Er,Dr) with message length nr(·) and randomness length ρ(·) is min-
entropy preserving if for any k, any parr ∈ [Pr(1k)], any (pkr, skr) ∈ [Kr(parr)],
and for all c ∈ {0, 1}∗ it is the case for any (µ, nr, ρ)-mr-source M outputting
vectors of size one that Pr

[
c = Er(pkr,m ; r) : (m, r)←$ M(1k)

]
≤ 2−µ. In

words, encryption preserves the min-entropy of the input message and random-
ness. We have the following theorem.



Theorem 2. [RtD is non-adaptive H-IND secure] Let AEr = (Pr,Kr, Er,
Dr) be a min-entropy preserving PKE scheme with message length nr(·) and
randomness length ρ(·). Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) en-
cryption scheme with message length nd(·) so that nd(·) ≥ maxclenr(·). Let
AE = RtD[AEr,AEd] = (P,K, E ,D) be the PKE scheme defined in Section 4.

• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-
CPA adversary B such that for any k

Advind-cpa
AE,A (k) = Advind-cpa

AEr,B
(k)

where B runs in time that of A plus the time to run Ed once.

• (IND-CDA) Let A be a CDA adversary that makes one LR query consisting
of a v(·)-vector (µ, nr, ρ)-mmr-source (resp. block-source). Then there exists
a PRIV adversary B such that for any k

Advcda
AE,A(k) ≤ Advpriv

AEd,B
(k)

where B runs in time that of A plus the time to run v(k) executions of Er
and makes one LR query consisting of a v(·)-vector (µ,maxclenr)-mm-source
(resp. block-source). �

Note that the second part of the theorem states the result for either sources or
just block-sources. We briefly sketch the proof. The first part of the theorem is
immediate from the IND-CPA security of AEr. For the second part, any mmr-
source M queried by A is converted into an mm-source M′ to be queried by B.
This is done by having M′ run M to get (m0,m1, r) and then outputting the
pair of vectors (Er(pk,m0; r), Er(pk,m1; r)). (The ciphertexts are the “messages”
for Ed.) BecauseAEr is min-entropy preserving, M′ is a source of the appropriate
type.

Pad-then-deterministic. The security of the PtD scheme is more difficult to
establish. The IND-CDA security is inherited immediately from the PRIV secu-
rity of the AEd scheme. Here the challenge is, in fact, proving IND-CPA security.
For this we will need a stronger assumption on the underlying deterministic en-
cryption scheme — that it is a u-LTDF.

Theorem 3. [PtD is non-adaptive H-IND secure] Let AEd = (Pd,Kd, Ed,
Dd) be a deterministic encryption scheme with message length nd(·). Let AE =
PtD[AEd] = (P,K, E ,D) be the PKE scheme defined in Section 4 with message
length n(·) and randomness length ρ(·) such that n(k) = nd(k)− ρ(k) for all k.

• (IND-CPA) Let Kl be a universal-inducing (nd, `)-lossy key generation algo-
rithm for AEd. Let A be an IND-CPA adversary. Then there exists a LOS
adversary B such that for all k

Advind-cpa
AE,A (k) ≤ Advlos

AEd,Kl,B
(k) +

√
23n(k)−`(k)+2 .

B runs in time that of A.

• (IND-CDA) Let A be a CDA adversary that makes one LR query consisting
of a v(·)-vector (µ, n, ρ)-mmr-source (resp. block-source). Then there exists



a PRIV adversary B such that for all k

Advcda
AE,A(k) ≤ Advpriv

AEd,B
(k)

where B runs in time that of A and makes one LR query consisting of a
v(·)-vector (µ, nd)-mm-source (resp. block-source). �

One might think that concluding IND-CPA can be based just on PtD being
IND-CDA secure, since the padded randomness provides high min-entropy. How-
ever, this approach does not work because an IND-CPA adversary expects knowl-
edge of the public-key before making any LR queries, while a CDA adversary
only learns the public-key after making its LR queries. This issue is discussed
in more detail in [8]. We use a different approach (which may be of independent
interest) to prove this part of Theorem 3; the details are given in the full ver-
sion [7]. Our proof strategy, intuitively, corresponds to using the standard LHL
2n(k) times, once for each possible message the IND-CPA adversary might query.

6 Anonymity for Chosen Distribution Attacks

In the previous section we proved non-adaptive security for the RtD and PtD con-
structions. But, as established in Section 3, we actually want to meet the stronger
goal of adaptive security. In the adaptive setting, adversaries can make multiple
LR queries, specifying sources that are generated as a function of previously-seen
ciphertexts. Recall that one reason adaptivity is difficult to achieve is because ci-
phertexts might leak information about the public key. In turn, knowledge of the
public key leads to trivial IND-CDA attacks. This suggests a natural relationship
with key privacy, also called anonymity [4]. Anonymity requires (informally) that
ciphertexts leak no information about the public key used to perform encryp-
tion. In this section we formalize a notion of anonymity for chosen-distribution
attacks. In the next section we’ll use this definition as a step towards adaptive
IND-CDA security.

Definitions. Let AE = (P,K, E ,D) be an encryption scheme. Game ANONAE
shown in Figure 3 provides the adversary with two oracles. An ANON adversary
A is one whose queries are all mr-sources. The advantage of ANON adversary A
is

Advanon
AE,A(k) = 2 · Pr

[
ANONA

AE,k ⇒ true
]
− 1 .

We say that a PKE scheme AE with message length n(·) and randomness length
ρ(·) is ANON secure for (µ, n, ρ)-mr-sources if for all PT adversaries A that
only query (µ, n, ρ)-mr-sources the function Advanon

AE,A(·) is negligible. We can
extend this notion to mr-block-sources in the obvious way. In the special case
that the randomness length of AE is always zero, the ANON definition formal-
izes anonymity for deterministic encryption or, equivalently, trapdoor functions,
generalizing a definition from [4].

Discussion. Anonymity for PKE in the sense of key privacy was first formal-
ized by Bellare et al. [4], but their notion (analogously to traditional semantic



proc. Initialize(k):

par←$ P(1k)

(pk0, sk0)←$K(par)

(pk1, sk1)←$K(par)

a←$ {0, 1}
Ret par

proc. Enc(M):

If pkout = true

Ret ⊥
(m, r)←$ M(1k)

Ret E(pk0,m; r)

proc. LR(M):

(m, r)←$ M(1k)

c← E(pka,m; r)

pkout← true

Ret (pk0, pk1, c)

proc. Finalize(a′):

Ret (a = a′)

Fig. 3. Game ANONAE,k.

security) only works in the context of good randomness. The ANON notion,
akin to IND-CDA, formalizes key privacy in the face of bad randomness. While
we will use it mainly as a technical tool to simplify showing that schemes meet
adaptive IND-CDA, it is also of independent interest as a new security target
for PKE schemes when key privacy is important. (That is, one might want to
hedge against bad randomness for anonymity as well as message privacy.)

7 Adaptive Hedge Security

The following theorem, whose proof appears in the full version [7], shows that
achieving ANON security and non-adaptive IND-CDA security are sufficient for
achieving adaptive IND-CDA security.

Theorem 4. Let AE = (P,K, E ,D) be an encryption scheme with message
length n(·) and randomness length ρ(·). Let A be a IND-CDA adversary mak-
ing q(·) LR queries, each being a v(·)-vector (µ, n, ρ)-mmr-source (resp. block-
source). Then there exist IND-CDA adversary B and ANON adversary C such
that for all k

Advcda
AE,A(k) ≤ 2q(k) ·Advcda

AE,B(k) + 4q(k) ·Advanon
AE,C(k) .

B makes one LR query consisting of a v(·)-vector (µ, n, ρ)-mmr-source (resp. block-
source). C makes at most q(k) − 1 Enc queries and one LR query, all these
consisting of v(·)-vector (µ, n, ρ)-mr-sources (resp. block-sources). Both B and C
run in the same time as A. �

Given a non-adaptively IND-CDA secure scheme, Theorem 4 reduces the task of
showing it adaptively secure to that of showing it meets the ANON definition.
Of course, ANON is still an adaptive notion. (Adversaries can formulate their
LR query to be a source that’s a function of previously seen ciphertexts.) Nev-
ertheless, it formalizes a sufficient condition for adaptive CDA security of any
PKE scheme and captures the relationship between adaptivity and anonymity.
We believe this is an interesting (and novel) application of anonymity.

We can show that our random oracle scheme REwH is ANON secure when the
underlying randomized scheme meets the traditional notions of anonymity for
PKE [4]. We also want to show that the RtD and PtD schemes are ANON secure.



We first show something more general: that any u-LTDF is anonymous. Then,
that RtD and PtD are anonymous follows when using deterministic schemes that
are also u-LTDFs.

Universal LTDFs are anonymous. Intuitively u-LTDFs are anonymous be-
cause the lossy mode admits a universal hash, implying that no information
about the public key is leaked by outputs (generated from sources with high con-
ditional min-entropy). One might expect that formalizing this intuition would
follow from straightforward application of the Leftover Hash Lemma (LHL) [26].
However our anonymity definitions are adaptive, so one cannot apply the LHL
(or even the generalized LHL [17]) directly. Rather, we first show an adaptive
variant of the LHL is implied by the standard LHL via a hybrid argument. See
the full version for details. Here we use it to prove the following theorem; details
appear in the full version [7].

Theorem 5. Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) encryption scheme
with message length n(·) and an associated universal-inducing (n, `)-lossy key
generator Kl. Let A be an ANON adversary making q(·) Enc queries and a sin-
gle LR query, all of these being v(·)-vector (µ, n)-m-block-sources. Then there
exists LOS adversary B such that for all k

Advanon
AEd,A

(k) ≤ 2 ·Advlos
AEd,B

(k) + 3 ·q(k) ·v(k) ·
√

2n(k)−`(k)−µ(k) .

B runs in time that of A. �

Consider RtD and PtD when instantiated with a deterministic encryption scheme
that is a u-LTDF. We can apply Theorem 5 to conclude ANON security for
both schemes. Combining this with Theorems 2 and 4 yields proof of adaptive
hedge security for RtD. Likewise, combining it with Theorems 3 and 4 yields
proof of adaptive hedge security for PtD. Also Theorems 4 and 5 combine with
[12, Th. 5.1] to give the first adaptively-secure deterministic encryption scheme
(based on u-LTDFs).

REwH2 is adaptively secure. As we show above, we can get adaptive security
from REwH when the underlying IND-CPA randomized scheme is anonymous
in the sense of [4]. We observe that scheme REwH2 is adaptively secure when
instantiated with any IND-CPA randomized scheme (not just anonymous ones).
To show this, we give a direct proof in the full version [7]. Since popular encryp-
tion schemes such as RSA are not anonymous, we believe scheme REwH2 could
be relevant in practice. That being said, we still think REwH1 is important since
non-adaptive security is still a strong notion, and the scheme does not require
any changes to the structure of the public key.

Extensions. In the full version [7] we discuss extensions and variants of RtD
and PtD, where we improve the (adaptive) concrete security and show how to
securely use LTDFs that are not necessarily universal.
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