
Group Encryption: Non-Interactive Realization

in the Standard Model

Julien Cathalo1 ⋆, Benôıt Libert1 ⋆⋆, and Moti Yung2

1 Université catholique de Louvain, Crypto Group (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. Group encryption (GE) schemes, introduced at Asiacrypt’07,
are an encryption analogue of group signatures with a number of inter-
esting applications. They allow a sender to encrypt a message (in the
CCA2 security sense) for some member of a PKI group concealing that
member’s identity (in a CCA2 security sense, as well); the sender is able
to convince a verifier that, among other things, the ciphertext is valid
and some anonymous certified group member will be able to decrypt the
message. As in group signatures, an opening authority has the power of
pinning down the receiver’s identity. The initial GE construction uses in-
teractive proofs as part of the design (which can be made non-interactive
using the random oracle model) and the design of a fully non-interactive
group encryption system is still an open problem. In this paper, we give
the first GE scheme, which is a pure encryption scheme in the standard
model, i.e., a scheme where the ciphertext is a single message and proofs
are non-interactive (and do not employ the random oracle heuristic). As
a building block, we use a new public key certification scheme which in-
curs the smallest amount of interaction, as well.

Keywords. Group encryption, anonymity, provable security.

1 Introduction

Group encryption (GE) schemes, introduced by Kiayias, Tsiounis and Yung [29],
are the encryption analogue of group signatures [16]. The latter primitives ba-
sically allow a group member to sign messages in the name of a group without
revealing his identity. In a similar spirit, GE systems aim to hide the identity of
a ciphertext’s recipient and still guarantee that he belongs to a population of
registered members in a group administered by a group manager (GM). A sender
can generate an anonymous encryption of some plaintext m intended for a re-
ceiver holding a public key that was certified by the GM (message security and
receiver anonymity being both in the CCA2 sense). The ciphertext is prepared
while leaving an opening authority (OA) the ability to “open” the ciphertext

⋆ This author’s research was supported by the Belgian Walloon Region project
ALAWN (Programme Wist 2).

⋆⋆ This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-
F.N.R.S.) for their financial support.

(analogously to the opening operation in group signatures) and uncover the re-
ceiver’s name. At the same time, the sender should be able to convince a verifier
that (1) the ciphertext is a valid encryption under the public key of some group
member holding a valid certificate; (2) if necessary, the opening authority will
be able to find out who the receiver is; (3) (optionally) the plaintext is a witness
satisfying some public relation.

Motivations. The GE primitive was motivated by various privacy applications
such as anonymous trusted third parties or oblivious retriever storage. Many
cryptographic protocols such as fair exchange, fair encryption or escrow encryp-
tion, involve trusted third parties that remain offline most of the time and are
only involved to resolve problems. Group encryption allows one to verifiably
encrypt some message to such a trusted third party while hiding his identity
among a set of possible trustees. For instance, a user can encrypt a key (e.g., in
an “international key escrow system”) to his own national trusted representative
without letting the ciphertext reveal the latter’s identity, which could leak infor-
mation on the user’s citizenship. At the same time, everyone can be convinced
that the ciphertext is heading for an authorized trustee.

Group encryption also finds applications in ubiquitous computing, where
anonymous credentials must be transferred between peer devices belonging to
the same group. Asynchronous transfers may require to involve an untrusted
storage server to temporarily store encrypted credentials. In such a situation,
GE schemes may be used to simultaneously guarantee that (1) the server retains
properly encrypted valid credentials that it cannot read; (2) credentials have
a legitimate anonymous retriever; (3) if necessary, an authority will be able to
determine who the retriever is.

By combining cascaded group encryptions using multiple trustees and accord-
ing to a sequence of identity discoveries and transfers, one can also implement
group signatures where signers can flexibly specify how a set of trustees should
operate to open their signatures.

Prior Works. Kiayias, Tsiounis and Yung (KTY) [29] formalized the concept
of group encryption and provided a suitable security modeling. They presented
a modular design of GE system and proved that, beyond zero-knowledge proofs,
anonymous public key encryption schemes with CCA2 security, digital signa-
tures, and equivocal commitments are necessary to realize the primitive. They
also showed how to efficiently instantiate their general construction using Pail-
lier’s cryptosystem [35] (or, more precisely, a modification of the Camenisch-
Shoup [13] variant of Paillier). While efficient, their scheme is not a single mes-
sage encryption, since it requires the sender to interact with the verifier in a
Σ-protocol to convince him that the aforementioned properties are satisfied. In-
teraction can be removed using the Fiat-Shamir paradigm [20] (and thus the
random oracle model [4]), but only heuristic arguments [22] (see also [14]) are
then possible in terms of security.

Independently, Qin et al. [36] considered a closely related primitive with
non-interactive proofs and short ciphertexts. However, they avoid interaction by
explicitly employing a random oracle and also rely on strong interactive assump-

tions. As we can see, none of these schemes is a truly non-interactive encryption
scheme without the random oracle idealization.

Our Contribution. As already noted in various contexts such as anonymous
credentials [2], rounds of interaction are expensive and even impossible at times
as, in some applications, proofs should be verifiable by third parties that are
not present when provers are available. In the setting of group encryption, this
last concern is even more constraining as it requires the sender, who may be
required to repeat proofs with many verifiers, to maintain a state and remember
the random coins that he uses to encrypt every single ciphertext. In the frequent
situation where many encryptions have to be generated using independent ran-
dom coins, this becomes a definite bottleneck.

This paper solves the above problems and describes the first realization of
group encryption which is a fully non-interactive encryption scheme with CCA2-
security and anonymity in the standard model. In our scheme, senders do not
need to maintain a state: thanks to the Groth-Sahai [27] non-interactive proof
systems, the proof of a ciphertext can be generated once-and-for-all at the same
time as the ciphertext itself. Furthermore, using suitable parameters and for a
comparable security level, we can also shorten ciphertexts by a factor of 2 in
comparison with the KTY scheme. As far as communication goes, the size of
proofs allows decreasing by more than 75% the number of transmitted bits be-
tween the sender and the verifier.

Since our goal is to avoid interaction, we also design a joining protocol (i.e.,
a protocol whereby the user effectively becomes a group member and gets his
public key certified by the GM) which requires the smallest amount of interac-
tion: as in the Kiayias-Yung group signature [30], only two messages have to be
exchanged between the GM and the user and the latter need not to prove any-
thing about his public key. In particular, rewinding is not necessary in security
proofs and the join protocol can be safely executed in a concurrent environment,
when many users want to register at the same time. The join protocol uses a non-
interactive public key certification scheme where discrete-logarithm-type public
keys can be signed as if they were ordinary messages (and without knowing the
matching private key) while leaving the ability to efficiently prove knowledge
of the certificate/public key using the Groth-Sahai techniques. To certify users
without having to rewind3 in security proofs, the KTY scheme uses groups of
hidden order (and more precisely, Camenisch-Lysyanskaya signatures [12]). In
public order groups, to the best of our knowledge, our construction is the first
certification method that does not require any form of proof of knowledge of
private keys. We believe it to be of independent interest as it can be used to
construct group signatures (in the standard model) where the joining mecha-
nism tolerates concurrency in the model of [30] without demanding more than
two moves of interaction.

3 Although the simulator does not need to rewind proofs of knowledge in [29], users
still have to interactively prove the validity of their public key.

Organization. In section 2, we describe the intractability assumptions that
we need and recall the KTY model of group encryption. Section 3 explains
the building blocks of our construction and notably describes our certification
scheme. Our GE system is depicted in section 4.

2 Background

In the paper, when S is a set, x
$

← S denotes the action of choosing x at random
in S. By a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says
that b is a negligible function of λ. When a and b are two binary strings, a||b
stands for their concatenation.

2.1 Complexity Assumptions

We use groups (G,GT) of prime order p with an efficiently computable map
e : G × G→ GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z

and e(g, h) 6= 1GT whenever g, h 6= 1G.
In this setting, we rely on an assumption introduced in [7] that allows con-

structing efficient non-interactive proofs as pointed out in [27].

Definition 1. The Decision Linear Problem (DLIN) in G, is to distinguish

the distribution D1 = {(g, ga, gb, gac, gbd, gc+d)|a, b, c, d
$

← Z∗
p} from the distri-

bution D2 = {(g, ga, gb, gac, gbd, gz)|a, b, c, d, z
$

← Z∗
p}. The Decision Linear

Assumption is the intractability of DLIN for any PPT algorithm D.

This problem amounts to deciding whether vectors ~g1 = (ga, 1, g), ~g2 = (1, gb, g)
and ~g3 are linearly dependent or not. We also consider a related computational
problem which bears similarities with simultaneous pairing problems [26, 25].

Definition 2. The Simultaneous Double Pairing problem (S2P) in G is,
given (g1, g2, g1,c, g2,d) ∈ G4, to find a triple (u, v, w) ∈ G3\{(1G, 1G, 1G)} such
that e(g1, u) = e(g1,c, w) and e(g2, v) = e(g2,d, w).

Like the simultaneous triple pairing assumption [25], the hardness of this prob-

lem is implied by the DLIN assumption: given (g, g1, g2, g
c
1, g

d
2 , η

?
= gc+d) any

algorithm that, on input of (g1, g2, g
c
1, g

d
2), outputs a non-trivial (u, v, w) such

that e(g1, u) = e(gc1, w), e(g2, v) = e(gd2 , w) allows telling whether η = gc+d by
testing if e(g, u · v) = e(η, w) (since u = wc and v = wd).

We also use the Hidden Strong Diffie-Hellman (HSDH) assumption intro-
duced in [10] as a strengthening of the Strong Diffie-Hellman assumption [6].

Definition 3. The ℓ-Hidden Strong Diffie-Hellman problem (ℓ-HSDH) in

G is, given (g,Ω = gω, u)
$

← G3 and triples (g1/(ω+si), gci , uci) with c1, . . . , cℓ
$

←
Z
∗
p, to find another triple (g1/(ω+c), gc, uc) such that c 6= ci for i = 1, . . . , ℓ.

We finally need the following variant of the Diffie-Hellman assumption.

Definition 4. The Flexible Diffie-Hellman problem (FlexDH) is, given

(g, ga, gb) ∈ G3, where a, b
$

← Z∗
p, to find a triple (C,Ca, Cab) such that C 6= 1G.

A potentially easier problem considered in [33] only requires to output (C,Cab)
on input of the same values. The latter problem was proved generically hard in
prime order groups [33]. In bilinear groups, any algorithm solving either of these
two problems would make it easy to recognize gabc on input of (g, ga, gb, gc),
which is a problem suggested for the first time in [8, Section 8].

2.2 Model and Security Notions

Group encryption schemes involve a sender, a verifier, a group manager (GM)
that manages the group of receivers and an opening authority (OA) that is
able to uncover the identity of ciphertext receivers. A group encryption system
is formally specified by the description of a relation R as well as a collection
GE =

(

SETUP, JOIN, 〈Gr ,R, sampleR〉,ENC,DEC,OPEN, 〈P ,V〉
)

of algorithms
or protocols. Among these, SETUP is a set of initialization procedures that all
take (explicitly or implicitly) a security parameter λ as input. They can be split
into one that generates a set of public parameters param (a common reference
string), one for the GM and another one for the OA. We call them SETUPinit(λ),
SETUPGM(param) and SETUPOA(param), respectively. The latter two procedures
are used to produce key pairs (pkGM, skGM), (pkOA, skOA) for the GM and the OA.
In the following, param is incorporated in the inputs of all algorithms although
we sometimes omit to explicitly write it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the
prospective user. As in [30], we will restrict this protocol to have minimal inter-
action and consist of only two messages: the first one is the user’s public key pk

sent by Juser to JGM and the latter’s response is a certificate certpk for pk that
makes the user’s group membership effective. We do not require the user to prove
knowledge of his private key sk or anything else about it. In our construction,
valid keys will be publicly recognizable and users do not need to prove their
validity. After the execution of JOIN, the GM stores the public key pk and its
certificate certpk in a public directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (made of a public value
x and a witness w) using keys (pkR, skR) produced by Gr . Depending on the
relation, skR may be the empty string (as will be the case in our scheme). The
testing procedure R(x,w) returns 1 whenever (x,w) ∈ R. To encrypt a witness
w such that (x,w) ∈ R for some public x, the sender fetches the pair (pk, certpk)
from database and runs the randomized encryption algorithm. The latter takes
as input w, a label L, the receiver’s pair (pk, certpk) as well as public keys pkGM

and pkOA. Its output is a ciphertext ψ ← ENC(pkGM, pkOA, pk, certpk, w, L). On
input of the same elements, the certificate certpk, the ciphertext ψ and the ran-
dom coins coinsψ that were used to produce it, the non-interactive algorithm
P generates a proof πψ that there exists a certified receiver whose public key
was registered in database and that is able to decrypt ψ and obtain a witness w
such that (x,w) ∈ R. The verification algorithm V takes as input ψ, pkGM, pkOA,
πψ and the description of R and outputs 0 or 1. Given ψ, L and the receiver’s
private key sk, the output of DEC is either a witness w such that (x,w) ∈ R or a
rejection symbol ⊥. Finally, OPEN takes as input a ciphertext/label pair (ψ,L)

and the OA’s secret key skOA and returns a receiver’s public key pk.
The security model considers four properties termed correctness, message

security, anonymity and soundness. In the following, we sometimes denote by
〈outputA|outputB〉 ← 〈A(inputA), B(inputB)〉(common-input) the execution of a
protocol between A and B obtaining their own outputs from their inputs.

Correctness. The correctness property requires that the following experiment
returns 1 with overwhelming probability.

Experiment Exptcorrectness(λ)
param← SETUPinit(λ); (pkR, skR)← Gr(λ); (x,w)← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pk, sk, certpk|pk, certpk〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pk, certpk, w, L);
πψ ← P(pkGM, pkOA, pk, cert, w, L, ψ, coinsψ);
If

(

(w 6= DEC(sk, ψ, L)) ∨ (pk 6= OPEN(skOA, ψ, L))
∨(V(ψ,L, πψ, pkGM, pkOA) = 0)

)

return 0 else return 1;

Message Security. The message secrecy property is defined by an experiment
where the adversary has access to oracles that may be stateful (and maintain a
state across queries) or stateless:

- DEC(sk): is a stateless oracle for the user decryption function DEC. When
this oracle is restricted not to decrypt a ciphertext-label pair (ψ,L), we

denote it by DEC¬〈ψ,L〉.
- CHbror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried

once. It returns (ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L)
if b = 1 whereas, if b = 0, ψ ← ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a
random plaintext uniformly chosen in the space of plaintexts of length O(λ).
In either case, coinsψ are the random coins used to generate ψ.

- PROVEbP,P′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ, L, coinsψ): is a stateful ora-
cle that the adversary can query on multiple occasions. If b = 1, it runs the
real prover P on the inputs to produce an actual proof πψ. If b = 0, the
oracle runs a simulator P ′ that uses the same inputs as P except witness
w, coinsψ and generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM,
the OA and all members but the honest receiver. The adversary A is the dishon-
est GM that certifies the honest receiver in an execution of JOIN. She has oracle
access to the decryption function DEC of that receiver. At the challenge phase,
she probes the challenge oracle for a label and a pair (x,w) ∈ R of her choice.
After the challenge phase, she can also invoke the PROVE oracle on multiple
occasions and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [29], designing an efficient simulator P ′ (for executing
PROVEbP,P′(.) when b = 0) is part of the security proof and might require a
simulated common reference string.

Definition 5. A GE scheme satisfies message security if, for any PPT adver-
sary A, the experiment below returns 1 with probability at most 1/2 + negl(λ).

Experiment Exptsec
A (λ)

param← SETUPinit(λ); (aux, pkGM, pkOA)← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);

(aux, x, w, L, pkR)← ADEC(sk,.)(aux); If (x,w) 6∈ R return 0;

b
$

← {0, 1}; (ψ, coinsψ)← CHbror(λ, pk, w, L);

b′ ← APROVEb
P,P′(pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.)(aux, ψ);

If b = b′ return 1 else return 0;

Anonymity. In anonymity attacks, the adversary controls the whole system but
the opening authority and performs a kind of chosen-ciphertext attack on the
encryption scheme of the OA. She registers two keys pk0, pk1 in database and, for
a pair (x,w) ∈ R of her choosing, obtains an encryption of w under pkb for some
b ∈ {0, 1} chosen by the challenger. She is granted access to decryption oracles
w.r.t. both keys pk0, pk1. In addition, she may invoke the following oracles:

- CHbanon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that is only queried
once by the adversary. It returns a pair (ψ, coinsψ) consisting of a ciphertext
ψ ← ENC(pkGM, pkOA, pkb, certpkb

, w, L) and the coin tosses coinsψ that were
used to generate ψ.

- USER(pkGM): is a stateful oracle simulating two executions of Juser to intro-
duce two honest users in the group. It uses a string keys where the outputs
of the two executions are written.

- OPEN(skOA, .): is a stateless oracle that simulates the opening algorithm on
behalf of the OA and, on input of a GE ciphertext, returns the receiver’s
public key.

Definition 6. A GE scheme satisfies anonymity if, for any PPT adversary A,
the experiment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment Exptanon
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);

(aux, pkGM)← A(param, pkOA); aux← AUSER(pkGM),OPEN(skOA,.)(aux);
If keys 6= (pk0, sk0, certpk0

, pk1, sk1, certpk1
)(aux) return 0;

(aux, x, w, L, pkR)← AOPEN(skOA,.),DEC(sk0,.),DEC(sk1,.)(aux);
If (x,w) 6∈ R return 0;

b
$

← {0, 1}; (ψ, coinsψ)← CHbanon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AP(pkGM,pkOA,pkb,certpkb
,x,w,ψ,L,coinsψ,

OPEN¬〈ψ,L〉(skOA,.),DEC¬〈ψ,L〉(sk0,.),DEC¬〈ψ,L〉(sk1,.))(aux, ψ);
If b = b′ return 1 else return 0;

As shown in [29], GE schemes satisfying the above notion necessarily subsume a
key-private (a.k.a. receiver anonymous) [3, 28] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers
by interacting with the honest GM. Her goal is to produce a ciphertext ψ and a
convincing proof that ψ is valid w.r.t. a relation R of her choice but either (1)
the opening reveals a receiver’s public key pk that does not belong to any group
member; (2) the output pk of OPEN is not a valid public key (i.e., pk 6∈ PK,

where PK is the space of valid public keys); (3) the ciphertext C is not in the
space Cx,L,pkR,pkGM,pkOA,pk of valid ciphertexts. This notion is formalized by a game
where the adversary is given access to a user registration oracle REG(skGM, .)
that simulates JGM. This oracle maintains a repository database where registered
public keys and their certificates are stored.

Definition 7. A GE scheme is sound if, for any PPT adversary A, the experi-
ment below returns 1 with negligible probability.

Experiment Exptsoundness
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(pkGM, skGM)← SETUPGM(param);
(pkR, x, ψ, πψ , L, aux)← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ, pkGM, pkOA) = 0 return 0;
pk← OPEN(skOA, ψ, L);
If

(

(pk 6∈ database) ∨ (pk 6∈ PK) ∨ (ψ 6∈ Cx,L,pkR,pkGM,pkOA,pk)
)

then return 1 else return 0;

2.3 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors ~A and ~B containing group
elements, ~A⊙ ~B stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems
[27] use a common reference string comprising vectors ~g1, ~g2, ~g3 ∈ G3, where
~g1 = (g1, 1, g), ~g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to X ∈ G, one

sets ~C = (1, 1, X)⊙ ~g1
r ⊙ ~g2

s ⊙ ~g3
t with r, s, t

$

← Z∗
p. When the proof system is

configured to give perfectly sound proofs, ~g3 is chosen as ~g3 = ~g1
ξ1 ⊙ ~g2

ξ2 with
ξ1, ξ2

$

← Z∗
p. Commitments ~C = (gr+ξ1t1 , gs+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) are then Boneh-

Boyen-Shacham (BBS) ciphertexts that can be decrypted using α1 = logg(g1),
α2 = logg(g2). In the witness indistinguishability (WI) setting, vectors ~g1, ~g2, ~g3

are linearly independent and ~C is a perfectly hiding commitment. Under the
DLIN assumption, the two kinds of CRS are indistinguishable.

To commit to an exponent x ∈ Zp, one computes ~C = ~ϕx ⊙ ~g1
r ⊙ ~g2

s,

with r, s
$

← Z∗
p, using a CRS comprising vectors ~ϕ, ~g1, ~g2. In the soundness

setting ~ϕ, ~g1, ~g2 are linearly independent vectors (typically ~ϕ = ~g3 ⊙ (1, 1, g)

where ~ϕ = ~g1
ξ1 ⊙ ~g2

ξ2) whereas, in the WI setting, choosing ~ϕ = ~g1
ξ1 ⊙ ~g2

ξ2

gives a perfectly hiding commitment since ~C is always a BBS encryption of 1G.
To prove that committed variables satisfy a set of relations, the GS techniques

replace variables by the corresponding commitments in each relation. The whole
proof consists of one commitment per variable and one proof element (made of
a constant number of group elements) per relation.

Such proofs are available for pairing-product relations, which are of the type

n
∏

i=1

e(Ai,Xi) ·

n
∏

i=1

·

n
∏

j=1

e(Xi,Xj)
aij = tT ,

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m
∏

i=1

Ayii ·

n
∏

j=1

X
bj
j ·

m
∏

i=1

·

n
∏

j=1

X
yiγij
j = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional
cost. On a simulated CRS (prepared for the WI setting), a trapdoor makes it is
possible to simulate proofs without knowing witnesses and simulated proofs are
perfectly indistinguishable from real proofs. As for pairing-product equations,
zero-knowledge proofs are often possible but usually come at some expense. In
the paper, we only resort to such NIZK simulators in one occasion.

In both cases, proofs for quadratic equations cost 9 group elements. Linear
pairing-product equations (when aij = 0 for all i, j) take 3 group elements

each. Linear multi-exponentiation equations of the type
∏n
j=1 X

bj
j = T (resp.

∏m
i=1A

yi
i = T) demand 3 (resp. 2) group elements.

3 Building Blocks

Our certification scheme uses a trapdoor commitment to group elements as an
important ingredient to dispense with proofs of knowledge of users’ private keys.

3.1 A Trapdoor Commitment to Group Elements

We need a trapdoor commitment scheme that allows committing to elements of
a group G where bilinear map arguments are taken. Commitments will have to
be themselves elements of G, which prevents us from using Groth’s scheme [25]
where commitments lie in the range GT of the pairing.

Such commitments can be obtained using the perfectly hiding Groth-Sahai
commitment based on the linear assumption recalled in section 2.3. This com-
mitment uses a common reference string describing a prime order group G and
a generator f ∈ G. The commitment key consists of vectors (~f1, ~f2, ~f3) chosen as

~f1 = (f1, 1, f), ~f2 = (1, f2, f) and ~f3 = ~f1
ξ1
⊙ ~f2

ξ2
⊙ (1, 1, f)ξ3, with f1, f2

$

← G,

ξ1, ξ2, ξ3
$

← Z∗
p. To commit to X , the sender picks φ1, φ2, φ3

$

← Z∗
p and sets

~CX = (1, 1, X)⊙ ~f1
φ1

⊙ ~f2
φ2

⊙ ~f3
φ3

, which, if ~f3 is parsed as (f3,1, f3,2, f3,3), can

be written ~CX = (fφ1

1 ·f
φ3

3,1, f
φ2

2 ·f
φ3

3,2, X ·f
φ1+φ2 ·fφ3

3,3). Due to the use of GS proofs,
commitment openings need to only consist of group elements (and no scalar). To

open ~CX = (C1, C2, C3), the sender reveals (D1, D2, D3) = (fφ1 , fφ2 , fφ3) and
X . The receiver is convinced that the committed value was X by checking that

e(C1, f) = e(f1, D1) · e(f3,1, D3)
e(C2, f) = e(f2, D2) · e(f3,2, D3)
e(C3, f) = e(X ·D1 ·D2, f) · e(f3,3, D3).

If a cheating sender can come up with distinct openings of ~CX , we can easily
solve a S2P instance (g1, g2, g1,c, g2,d). Namely, the commitment key is set as
(f1, f2, f3,1, f3,2) = (g1, g2, g1,c, g2,d) and f, f3,3 are chosen at random. When
the adversary outputs (X, (D1, D2, D3)) and (X ′, (D′

1, D
′
2, D

′
3)), we must simul-

taneously have e(f1, D1/D
′
1) = e(f3,1, D

′
3/D3), e(f2, D2/D

′
2) = e(f3,2, D

′
3/D3)

and e((XD1D2)/(X
′D′

1D
′
2), f) = e(f3,3, D

′
3/D3). Hence, setting u = D1/D

′
1,

v = D2/D
′
2 and w = D′

3/D3 solves the S2P problem as (u, v, w) can only be
trivial if X ′ = X .

Using the trapdoor (ξ1, ξ2, ξ3), the receiver can equivocate commitments.

Given a commitment ~CX and its opening (X, (D1, D2, D3)), one can trapdoor

open ~CX to any other X ′ ∈ G (and without knowing logg(X
′)) by computing

D′
1 = D1 · (X

′/X)ξ1/ξ3 , D′
2 = D2 · (X

′/X)ξ2/ξ3 , D′
3 = (X/X ′)1/ξ3 ·D3.

3.2 A Public Key Certification Scheme

We use a primitive that we call non-interactive certification scheme, which can
be viewed as a signature scheme that only allows signing public keys from a
specific public key space PK. These keys should be signed while retaining alge-
braic properties that make it possible to prove knowledge of a public key and its
corresponding certificate in an efficient way. In particular, signing hashed public
keys is proscribed. In the interactive setting, several papers (e.g., [5, 24]) describe
efficient interactive protocols where a public key is jointly generated by a user
and a certification authority in such a way that the user eventually obtains a
certified public key and no one else learns the underlying private key. In this pa-
per, we aim at minimizing the amount of interaction and let users generate their
public key entirely on their own before requesting their certification. Ideally, we
would like to be able to sign public keys without even requiring users to prove
knowledge of their private key and, in particular, without having to first rewind
a proof of knowledge so as to extract the user’s private key in the security proof.

A certification scheme consists of algorithms (Setup,Certify,CertVerify). The
first one is run by a certification authority (CA) that, on input of global param-
eters cp, generates a key pair (SK,PK)← Setup(cp). On input of cp, SK and
a user’s public key pk, Certify generates a certificate certpk. The procedure Verify

takes as input cp, PK, pk and certpk and outputs either 0 or 1.
Correctness mandates that CertVerify(cp, PK, pk, certpk) = 1 when certpk ←

Certify(cp, SK, pk). The (strong) unforgeability [1] requirement is the same as in
signature schemes. The adversary is supplied with a CA’s public key PK and
access to a certification oracle Certify(SK, .) that can be queried for arbitrary
public keys pk ∈ PK. Her goal is to produce a new pair (pk∗, cert∗pk∗) (i.e., if pk∗

was queried to Certify(SK, .), the output must have been different from cert∗pk∗).
In the description hereafter, we assume common public parameters cp consist-

ing of of bilinear groups (G,GT) of prime order p > 2λ, for a security parameter

λ, and a generator g
$

← G. We also assume that certified public keys always
consist of a fixed number n of group elements (i.e., PK = Gn).

Intuition. The scheme borrows from the Boyen-Waters group signature [10]
in the use of the HSDH assumption. A simplified version involves a CA that
holds a public key PK = (Ω = gω, A = (g, g)α, u, u0, u1 = gβ1, . . . , un = gβn),
for private elements SK = (ω, α, β1, . . . , βn), where n denotes the number of
groups elements that certified public keys consist of. To certify a public key
pk = (X1 = gx1, . . . , Xn = gxn), the CA chooses an exponent cID

$

← Z∗
p and

computes S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID , S4 = (u0 ·
∏n
i=1X

βi
i)cID

and S5 = (S5,1, . . . , S5,n) = (XcID

1 , . . . , XcID
n). Verification then checks whether

e(S1, Ω · S2) = A and e(S2, u) = e(g, S3) as in [10]. It must also be checked that
e(S4, g) = e(u0, S2) ·

∏n
i=1 e(ui, S5,i) and e(S5,i, g) = e(Xi, S2) for i = 1, . . . , n.

The security of this simplified scheme can only be proven if, when answering
certification queries, the simulator can control the private keys (x1, . . . , xn) and
force them to be random values of its choice. To allow the simulator to sign ar-
bitrary public keys without knowing the private keys, we modify the scheme so
that the CA rather signs commitments (calculated as in the trapdoor commit-
ment of section 3.1) to public key elements X1, . . . , Xn. In the security proof, the

simulator first generates a signature on n commitments ~Ci = (Ci,1, Ci,2, Ci,3) to
1G that are all generated in such a way that it knows logg(Ci,j) for i = 1, . . . , n
and j = 1, 2, 3. Using the trapdoor of the commitment scheme, it can then open
~Ci to any arbitrary public key element Xi without knowing logg(Xi).

This use of the trapdoor commitment is reminiscent of a technique (no-
tably used in [18]) to construct signature schemes in the standard model using
chameleon hash functions [32]: the simulator first signs messages of its choice
using a basic signature scheme and then “equivocates” the chameleon hashes to
make them correspond to adversarially-chosen messages.

Setup(cp): given common public parameters cp = {g,G,GT}, select u, u0
$

←

G, α, ω
$

← Z∗
p and set A = e(g, g)α, Ω = gω. Pick βi,1, βi,2, βi,3

$

← Z∗
p

and set ui = (ui,1, ui,2, ui,3) = (gβi,1 , gβi,2 , gβi,3) for i = 1, . . . , n. Choose

f, f1, f2, f3,1, f3,2, f3,3
$

← G that define a commitment key consisting of vec-

tors ~f1 = (f1, 1, f), ~f2 = (1, f2, f) and ~f3 = (f3,1, f3,2, f3,3). Define the
private/public key pair as SK =

(

α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,n

)

and

PK =
(

f = (~f1, ~f2, ~f3), A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,n

)

.

Certify(cp, SK, pk): parse SK as
(

α, ω, {βi}i=1,...,n

)

, pk as (X1, . . . , Xn) and do
the following.

1. For each i ∈ {1, . . . , n}, pick φi,1, φi,2, φi,3
$

← Z
∗
p and compute a commit-

ment Ci = (Ci,1, Ci,2, Ci,3) = (f
φi,1
1 ·f

φi,3
3,1 , f

φi,2
2 ·f

φi,3
3,2 , Xi·f

φi,1+φi,2 ·f
φi,3
3,3)

and the matching de-commitment (Di,1, Di,2, Di,3) = (fφi,1 , fφi,2 , fφi,3).

2. Choose cID
$

← Z∗
p, compute S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID and

S4 =
(

u0 ·

n
∏

i=1

(C
βi,1
i,1 · C

βi,2
i,2 · C

βi,3
i,3)

)cID

S5 = {(S5,i,1, S5,i,2, S5,i,3)}i=1,...,n = {(CcID

i,1 , C
cID

i,2 , C
cID

i,3)}i=1,...,n

Return certpk =
(

{(Ci,1, Ci,2, Ci,3), (Di,1, Di,2, Di,3)}i=1,...,n, S1, S2, S3, S4, S5

)

.

CertVerify(cp, PK, pk, certpk): parse pk as (X1, . . . , Xn) and certpk as above. Re-
turn 1 if, for i = 1, . . . , n, it holds that Xi ∈ G and

e(Ci,1, f) = e(f1, Di,1) · e(f3,1, Di,3) (1)

e(Ci,2, f) = e(f2, Di,2) · e(f3,2, Di,3) (2)

e(Ci,3, f) = e(Xi ·Di,1 ·Di,2, f) · e(f3,3, Di,3), (3)

and if the following checks are also satisfied. Otherwise, return 0.

e(S1, Ω · S2) = A (4)

e(S2, u) = e(g, S3) (5)

e(S4, g) = e(u0, S2) ·
n

∏

i=1

(

e(ui,1, S5,i,1) · e(ui,2, S5,i,2) · e(ui,3, S5,i,3)
)

, (6)

e(S5,i,j , g) = e(Ci,j , S2) for i = 1, . . . , n, j = 1, 2, 3 (7)

A certificate comprises 9n+ 4 group elements. It would be interesting to avoid
this linear dependency on n without destroying the algebraic properties that
render the scheme compatible with Groth-Sahai proofs.

Regarding the security of this scheme, the idea of the proof of the following
theorem is sketched in appendix A. Due to space limitation, the complete proof
is detailed in the full version of the paper.

Theorem 1. The scheme is a secure non-interactive certification system if the
HSDH, FlexDH and S2P problems are all hard in G.

We believe that the above certification scheme is of interest in its own right.
For instance, it can be used to construct non-frameable group signatures that
are secure in the concurrent join model of [30] without resorting to random
oracles. To the best of our knowledge, the Kiayias-Yung construction [30] has
remained the only scalable group signature where joining supports concurrency
at both ends while requiring the smallest amount of interaction. In the standard
model, our certification scheme thus appears to provide the first4 way to achieve
the same result. In this case, we have n = 1 (since prospective group members
only need to certify one group element if non-frameability is ensured by signing
messages as in Groth’s group signature [24]) so that membership certificates
comprise 13 group elements and their shape is fully compatible with GS proofs.

4 Non-frameable group signatures described in [19, 9] achieve concurrent security by
having the prospective user generate an extractable commitment to some secret
exponent (which the simulator can extract without rewinding using the trapdoor of
the commitment) and prove that the committed value is the discrete log. of a public
value. In the standard model, this technique requires interaction and the proof should
be simulatable in zero-knowledge when proving security against framing attacks.
Another technique [21] requires users to prove knowledge of their secret exponent
using Groth-Sahai non-interactive proofs. It is nevertheless space-demanding as each
bit of committed exponent requires its own extractable GS commitment.

3.3 Public Key Encryption Schemes Based on the Linear Problem

We need cryptosystems based on the DLIN assumption. The first one is Shacham’s
variant [37] of Cramer-Shoup [17] and, since it is key-private [3], we use it to
encrypt witnesses. We also use Kiltz’s tag-based encryption (TBE) scheme [31],
where the validity of ciphertexts is publicly verifiable, to encrypt receivers’ pub-
lic keys under the public key of the opening authority.

Shacham’s Linear Cramer-Shoup. If we assume public generators g1, g2, g
that are parts of public parameters, each receiver’s public key is made of n = 6
group elements

X1 = gx1

1 gx X3 = gx3

1 gy X5 = gx5

1 gz

X2 = gx2

2 gx X4 = gx4

2 gy X6 = gx6

2 gz.

To encrypt m ∈ G under the label L, the sender picks r, s
$

← Z
∗
p and computes

ψCS =
(

U1, U2, U3, U4, U5

)

=
(

gr1, g
s
2, g

r+s, m ·Xr
5X

s
6 , (X1X

α
3)r · (X2X

α
4)s

)

,

where α = H(U1, U2, U3, U4, L) ∈ Z∗
p is a collision-resistant hash5. Given (ψCS, L),

the receiver computes α. He returns ⊥ if U5 6= Ux1+αx3

1 Ux2+αx4

2 Ux+αy3 and
m = U4/(U

x5

1 Ux6

2 Uz3) otherwise.

Kiltz’s Tag-Based Encryption Scheme. In [31], Kiltz described a TBE
scheme based on the same assumption. The public key is (Y1, Y2, Y3, Y4) =
(gy1 , gy2 , gy3 , gy4) if g ∈ G is part of public parameters. To encrypt m ∈ G

under a tag t ∈ Z∗
p, the sender picks w1, w2

$

← Z∗
p and computes

ψK = (V1, V2, V3, V4, V5) =
(

Y w1

1 , Y w2

2 , (gtY3)
w1 , (gtY4)

w2 , m · gw1+w2

)

To decrypt ψK, the receiver checks that V3 = V
(t+y3)/y1
1 , V4 = V

(t+y4)/y2
2 . If so,

it outputs the plaintext m = V5/(V
1/y1
1 V

1/y2
2). Unlike ψCS, the well-formedness

of ψK is publicly verifiable in bilinear groups. The Canetti-Halevi-Katz [15]
paradigm turns this scheme into a full-fledged CCA2 scheme by deriving the
tag t from the verification key VK of a one-time signature, the private key SK of
which is used to sign (V1, V2, V3, V4, V5).

4 A GE Scheme with Non-Interactive Proofs

We build a non-interactive group encryption scheme for the Diffie-Hellman re-
lation R = {(X,Y),W} where e(g,W) = e(X,Y), for which the keys are
pkR = {G,GT , g} and skR = ε.

The construction slightly departs from the modular design of [29] in that
commitments to the receiver’s public key and certificate are part of the proof
(instead of the ciphertext), which simplifies the proof of message-security. The
security of the scheme eventually relies on the HSDH, FlexDH and DLIN as-
sumptions. All security proofs are available in the full version of the paper.

5 The proof of CCA2-security [17, 37] only requires a universal one-way hash function
(UOWHF) [34] but collision-resistance is required by the proof of key-privacy in [3].

SETUPinit(λ): choose bilinear groups (G,GT) of order p > 2λ, g
$

← G and

g1 = gα1 , g2 = gα2 with α1, α2
$

← Z∗
p. Define ~g1 = (g1, 1, g), ~g2 = (1, g2, g)

and ~g3 = ~g1
ξ1 ⊙ ~g2

ξ2 with ξ1, ξ2
$

← Z∗
p, which form a CRS g = (~g1, ~g2, ~g3)

for the perfect soundness setting. Select a strongly unforgeable (as defined
in [1]) one time signature scheme Σ = (G,S,V) and a random member
H : {0, 1}∗ → Zp of a collision-resistant hash family. Public parameters
consists of param = {λ,G,GT , g,g, Σ,H}.

SETUPGM(param): runs the setup algorithm of the certification scheme de-
scribed in section 3.2 with n = 6. The obtained public key consists of

pkGM =
(

f , A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,6

)

and the match-

ing private key is skGM =
(

α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,6

)

.

SETUPOA(param): generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2, gy3 , gy4), as a
public key for Kiltz’s tag-based encryption scheme [31], and the correspond-
ing private key as skOA = (y1, y2, y3, y4).

JOIN: the user sends a linear Cramer-Shoup public key pk = (X1, . . . , X6) ∈ G
6

to the GM and obtains a certificate

certpk =
(

{(Ci,1, Ci,2, Ci,3), (Di,1, Di,2, Di,3)}i=1,...,6, S1, S2, S3, S4, S5

)

.

ENC(pkGM, pkOA, pk, certpk,W,L): to encryptW ∈ G such that ((X,Y),W) ∈ R
(for public elements X,Y ∈ G), parse pkGM, pkOA and pk as above and do
the following.

1. Generate a one-time signature key pair (SK,VK)← G(λ).

2. Choose r, s
$

← Z∗
p and compute a linear CS encryption of W , the result

of which is denoted by ψCS, under the label L1 = L||VK as per section
3.3 (and using the collision-resistant hash function specified by param).

3. For i = 1, . . . , 6, choose wi,1, wi,2
$

← Z
∗
p and encrypt Xi under pkOA using

Kiltz’s TBE with the tag VK as described in section 3.3 . Let ψKi be the
ciphertexts.

4. Set the ciphertext ψ as ψ = VK||ψCS||ψK1
|| · · · ||ψK6

||σ where σ is ob-
tained as σ = S(SK, (ψCS||ψK1

|| · · · ||ψK6
||L)).

Return (ψ,L) and coinsψ consist of {(wi,1, wi,2)}i=1,...,6, (r, s). If the one-
time signature of [23] is used, VK and σ take 3 and 2 group elements, re-
spectively, so that ψ comprises 40 group elements.

P(pkGM, pkOA, pk, certpk, (X,Y),W, ψ, L, coinsψ): parse pkGM, pkOA, pk and ψ
as above. Conduct the following steps.

1. Generate commitments (as explained in section 2.3) to the 9n+ 4 = 58
group elements that certpk consists of. The resulting overall commitment
comcertpk

contains 184 group elements.
2. Generate commitments to the public key elements pk = (X1, . . . , X6) and

obtain compk = {comXi}i=1,...,6, which consists of 18 group elements.
3. Generate a proof πcertpk

that comcertpk
is a commitment to a valid cer-

tificate for the public key contained in compk. For each i = 1, . . . , 6,

relations (1)-(3) cost 9 elements to prove (and thus 54 elements alto-
gether). The quadratic equation (4) takes 9 elements and linear ones
(5)-(6) both require 3 elements. Finally, (7) is a set of 18 linear equa-
tions which demand 54 elements altogether. The whole proof πcertpk

thus
takes 123 group elements.

4. For i = 1, . . . , 6, generate a NIZK proof πeq-key,i that comXi (which
is part of compk) and ψKi are encryptions of the same Xi. If ψKi com-
prises (Vi,1, Vi,2, Vi,5) = (Y

wi,1
1 , Y

wi,2
2 , Xi ·g

wi,1+wi,2) and comXi is parsed

as (cXi1 , cXi2 , cXi3) = (gθi11 · gθi33,1 , g
θi2
2 · gθi33,2, Xi · g

θi1+θi2 · gθi33,3), where
wi,1, wi,2 ∈ coinsψ, θi1, θi2, θi3 ∈ Z∗

p and ~g3 = (g3,1, g3,2, g3,3), this
amounts to prove knowledge of values wi,1, wi,2, θi1, θi2, θi3 such that

(Vi,1
cXi1

,
Vi,2
cXi2

,
Vi,3
cXi3

)

=
(

Y
wi,1
1 · g−θi11 · g−θi33,1 ,

Y
wi,2
2 · g−θi22 · g−θi33,2 , gwi,1+wi,2−θi1−θi2 · g−θi33,3

)

.

Committing to wi,1, wi,2, θi1, θi2, θi3 introduces 90 group elements whereas
the above relations only require two elements each. Overall, proof ele-
ments πeq-key,1, . . . , πeq-key,6 incur 126 elements.

5. Generate a NIZK proof πval-enc that ψCS = (U1, U2, U3, U4, U5) is a valid
CS encryption. This requires to commit to underlying encryption ex-
ponents r, s ∈ coinsψ and prove that U1 = gr1, U2 = gs2, U3 = gr+s

(which only takes 3 times 2 elements as base elements are public) and
U5 = (X1X

α
3)r(X2X

α
4)s (which takes 9 elements since base elements are

themselves variables). Including commitments comr and coms to expo-
nents r and s, πval-enc demands 21 group elements overall.

6. Generate a NIZK proof πR that ψCS encrypts a group element W ∈ G

such that ((X,Y),W) ∈ R. To this end, generate a commitment comW =
(cW,1, cW,2, cW,3) = (gθ11 ·g

θ3
3,1, g

θ2
2 ·g

θ3
3,2,W ·g

θ1+θ2gθ33,3) and prove that the
underlying W is the same as the one for which U4 = W ·Xr

5X
s
6 in ψCS.

In other words, prove knowledge of r, s, θ1, θ2, θ3 such that

(U1

cW,1
,
U2

cW,2
,
U4

cW,3

)

=
(

gr−θ11 · g−θ33,1 ,

gs−θ22 · g−θ33,2 , g
−θ1−θ2 · g−θ33,3 ·X

r
5 ·X

s
6

)

. (8)

Commitments to r, s are already part of πval-enc. Committing to θ1, θ2, θ3
takes 9 elements. Proving the first two relations of (8) requires 4 elements
whereas the third one is quadratic and its proof is 9 elements. Proving
the linear pairing-product relation e(g,W) = e(X,Y) in NIZK6 demands
9 elements. Since πR includes comW , it entails a total of 34 elements.

6 It requires to introduce an auxiliary variable X and prove that e(g,W) = e(X , Y)
and X = X, for variables W,X and constants g,X, Y . The two proofs take 3 elements
each and 3 elements are needed to commit to X .

The proof πψ = comcertpk
||compk||πcertpk

||πeq-key,1|| · · · ||πeq-key,6||πval-enc||πR
eventually takes 516 elements.

V(param, ψ, L, πψ, pkGM, pkOA): parse pkGM, pkOA, pk, ψ and πψ as above. Re-
turn 1 if and only if V(VK, σ, (ψCS||ψK1

|| · · · ||ψK6
||L)) = 1, all proofs verify

and if ψK1
, . . . , ψK6

are all valid tag-based encryptions w.r.t. the tag VK.

DEC(sk, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1
|| · · · ||ψK6

||σ. Return ⊥ if
V(VK, σ, (ψCS||ψK1

|| · · · ||ψK6
||L)) = 0. Otherwise, use sk to decrypt (ψCS, L).

OPEN(skOA, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1
|| · · · ||ψK6

||σ. Return
⊥ if ψK1

, . . . , ψK6
are not all valid TBE ciphertexts w.r.t. the tag VK or if

V(VK, σ, (ψCS||ψK1
|| · · · ||ψK6

||L)) = 0. Otherwise, decrypt ψK1
, . . . , ψK6

using
skOA and return the resulting pk = (X1, . . . , X6).

From an efficiency standpoint, the length of ciphertexts is about 1.25 kB in
an implementation using symmetric pairings with a 256-bit group order, which is
more compact than in the Paillier-based scheme of [29] where ciphertexts take 2.5
kB using 1024-bit moduli. Moreover, our proofs only require 16.125 kB, which
is significantly cheaper than in the original GE scheme [29], where interactive
proofs reach a communication cost of 70 kB to achieve a 2−50 knowledge error.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Eurocrypt’02, LNCS 2332, pages 83–107, 2002.

2. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In TCC’08, LNCS 4948, pages 356–374,
2008.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In Asiacrypt’01, LNCS 2248, pages 566–582, 2001.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS’93, pages 62–73, 1993.

5. A. Boldyreva, M. Fischlin, A. Palacio, and B. Warinschi. A closer look at PKI:
Security and efficiency. In PKC’07, LNCS 4450, pages 458–475, 2007.

6. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt’04,
LNCS 3027, pages 56–73, 2004.

7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Crypto’04,
LNCS 3152, pages 41–55, 2004.

8. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM

J. of Computing, 32(3):586–615, 2003. Extended abstract in Crypto’01, LNCS
2139, pages 213–229, 2001.

9. X. Boyen and C. Delerablée. Expressive subgroup signatures. In SCN’08, LNCS
5229, pages 185–200, 2008.

10. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group
signatures. In PKC’07 , LNCS 4450, pages 1–15, 2007.

11. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In
Eurocrypt 2009, LNCS 5479, pages 351–368, 2009.

12. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols.
In SCN’02, LNCS 2576, pages 268–289, 2003.

13. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Crypto’03, LNCS 2729, pages 126–144, 2003.

14. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
Journal of the ACM, 51(4):557–594, 2004.

15. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Eurocrypt’04, LNCS 3027, pages 207–222, 2004.

16. D. Chaum and E. van Heyst. Group signatures. In Eurocrypt’91, LNCS 547, pages
257–265, 1991.

17. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Crypto’98, LNCS 1462, pages 13–25,
1998.

18. R. Cramer and V. Shoup. Signature schemes based on the strong rsa assumption.
In ACM CCS’99, pages 46–51, 1999.

19. C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signa-
tures. In Viecrypt 2006, LNCS 4341, pages 193–210, 2006.

20. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto’86, LNCS 263, pages 186–194, 1986.

21. G. Fuchsbauer and D. Pointcheval. Encrypting Proofs on Pairings and Its Appli-
cation to Anonymity for Signatures. In Pairing’09, LNCS series, 2009.

22. S. Goldwasser and Y. Tauman-Kalai. On the (In)security of the Fiat-Shamir
Paradigm In FOCS’03, pages 102–115, 2003.

23. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Asiacrypt’06, LNCS 4284, pages 444–459, 2006.

24. J. Groth. Fully anonymous group signatures without random oracles. In Asi-

acrypt’07, LNCS 4833, pages 164–180, 2007.
25. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology

ePrint Archive: Report 2009/007, 2009.
26. J. Groth and S. Lu. A non-interactive shuffle with pairing based verifiability. In

Asiacrypt’07, LNCS 4833, pages 51–67, 2007.
27. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

In Eurocrypt’08, LNCS 4965, pages 415–432, 2008.
28. S. Halevi. A Sufficient Condition for Key-Privacy. Cryptology ePrint Archive:

Report 2005/005, 2005.
29. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In Asiacrypt’07, LNCS

4833, pages 181–199, 2007.
30. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In

Eurocrypt’05, LNCS 3494, pages 198–214, 2005.
31. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06, LNCS

3876, pages 581–600, 2006.
32. H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS’00, 2000.
33. S. Kunz-Jacques and D. Pointcheval. About the security of MTI/C0 and MQV.

In SCN’06, LNCS 4116, pages 156–172, 2006.
34. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic

applications. In STOC’89, pages 33–43, 1989.
35. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In Eurocrypt’99, LNCS 1592, pages 223–238, 1999.
36. B. Qin, Q. Wu, W. Susilo, Y. Mu, Y. Wang. Publicly Verifiable Privacy-Preserving

Group Decryption. In Inscrypt’08, LNCS 5487, pages 72–83, 2008.

37. H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive: Report
2007/074, 2007.

38. V. Shoup. A proposal for the ISO standard for public-key encryption (version 2.1).
manuscript, 2001. http://shoup.net/.

A Sketch of the Proof of Theorem 1

The security proof of the certification scheme considers three kinds of forgeries
in the attack game.

- Type I forgeries: are such that the fake certificate cert⋆pk⋆ contains a tuple of
elements (S⋆1 , S

⋆
2 , S

⋆
3) that never appeared in outputs of certification queries.

- Type II forgeries: are such that cert⋆pk⋆ contains a triple (S⋆1 , S
⋆
2 , S

⋆
3) that

appeared in the output of some query but cert⋆pk⋆ also contains commitments
{(C⋆i,1, C

⋆
i,2, C

⋆
i,3)}i=1,...,n that do not match those in the output of that query.

- Type III forgeries: are such that (S⋆1 , S
⋆
2 , S

⋆
3) and {(C⋆i,1, C

⋆
i,2, C

⋆
i,3)}i=1,...,n

are identical in cert⋆pk⋆ and in the output of some certification query. On
the other hand, the public key pk⋆ = (X⋆

1 , . . . , X
⋆
n) is not the one that was

certified in that query.

Type I forgeries are easily seen to break the HSDH assumption whereas Type
II and Type III forgeries give rise to algorithms solving the FlexDH and S2P
problems, respectively. Due to space limitations, the details are deferred to the
full version of the paper. ⊓⊔

