MD5 is Weaker than Weak:
Attacks on Concatenated Combiners

Florian Mendel, Christian Rechberger, and Martin Schléffer

Institute for Applied Information Processing and Communications (TAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

christian.rechberger@iaik.tugraz.at

Abstract. We consider a long standing problem in cryptanalysis: at-
tacks on hash function combiners. In this paper, we propose the first
attack that allows collision attacks on combiners with a runtime below
the birthday-bound of the smaller compression function. This answers
an open question by Joux posed in 2004.

As a concrete example we give such an attack on combiners with the
widely used hash function MD5. The cryptanalytic technique we use
combines a partial birthday phase with a differential inside-out tech-
nique, and may be of independent interest. This potentially reduces the
effort for a collision attack on a combiner like MD5||SHA-1 for the first
time.
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1 Introduction

The recent spur of cryptanalytic results on popular hash functions like MD5
and SHA-1 [28)30I31] suggests that they are (much) weaker than originally an-
ticipated, especially with respect to collision resistance. It seems non-trivial to
propose a concrete hash function which inspires long term confidence. Even more
so as we seem unable to construct collision resistant primitives from potentially
simpler primitives [27]. Hence constructions that allow to hedge bets, like con-
catenated combiners, are of great interest. Before we give a preview of our results
in the following, we will first review work on combiners.

Review of work on combiners. The goal of combiners is to have at least some
bound on the expected security even if (some of the) hash functions get broken,
for various definitions of “security” and “broken”. Joux [12] showed (by using
multi-collisions) that the collision resistance of a combiner can not be expected
to be much higher than the birthday bound of the component (=hash function)
with the largest output size.

On the other hand, combiners seem to be very robust when it comes to
collision security up to the birthday bound (of the component with the smallest
output size): By using techniques similar to Coron et al. [3], Hoch and Shamir [I1]
showed that only very mild assumptions on a compression function are needed to



achieve a collision resistance of at least 0(2"/ 2). In fact, using a model proposed
by Liskov [15], they show that none of the compression functions need to be
collision, nor preimage resistant in the usual sense.

Motivation: cryptanalysis of combiners. Concatenating the output of hash
function is often used by implementors to “hedge bets” on hash functions. A
combiner of the form MD5||SHA-1 as used in SSL 3.0/TLS 1.0 and TLS 1.1 [78]
is an example of such a strategy. Let’s assume we are given a combiner of the
form MD5||SHA-1. Let’s further assume that a breakthrough in cryptanalysis of
SHA-1 brings down the complexity of a collision search attack to 2°2. We know
that the best collision search attacks on MD5 are as fast as 215 [29]. So what is
the best collision attack on the combiner? The best known method due to Joux
is only as good as a birthday attack on the smaller of the two hash functions in
the combiner. There is no known method which would allow to reduce the total
effort below this bound, 4.e. 264

Currently, the best solution at our disposal is to combine the (hypothetic)
SHA-1 attack with Joux’s multicollision approach. Find a 2%4-multicollision for
SHA-1 with effort 2°2 .64 = 2°% and then perform a birthday-type search in
this 264 collision to single out a collision which also collides for MD5. The total
effort will be 264, In fact, reductions of the effort for SHA-1 collision search will
only marginally improve the attack on the combiner. How to improve upon this?
Analyzing the combiner as a whole may by prohibitively complicated. The resis-
tance of two-pipe designs with sufficiently different pipes like RIPEMD-160 [10]
against recent collision search attacks also gives hints in this direction.

Preview of our results: We propose a new method that allows a cryptanalyst
to focus on the hash functions individually while still potentially allowing attacks
on combiners with a runtime below the birthday-bound of the smaller compres-
sion function. This also answers an open question by Joux posed in 2004 [12].
For this, we start with definitions in Section 2} In Section [3] we give a high-level
description of our attack strategy on a concatenation combiner without going
into the details of a particular compression function. Next, we consider as a
concrete cryptanalytic example combiners that use MD5. We first give an alter-
native description of MD5 in Section [4], which will turn out to be beneficial (and
in fact as our experiments suggest necessary) in Section |5, where we describe
the cryptanalytic techniques we need, to be able to use the high-level attack
description.

For the cryptanalysis, we employ a combination of a birthday-style attack and
a differential inside-out technique that uses different parts of a collision charac-
teristic at different stages of an attack, both before and after a birthday phase.
The differential technique may be of independent interest, also for improving
known types of collision attacks on MDS5, or for finding one-block collisions. In
Section [6] we give practical results which allow us to estimate the actual secu-
rity MD5 is able to give in a combiner. Finally, we conclude and discuss open
problem in Section [7]



2 Definitions

In the reminder of the paper we give a few definitions. We give a classification
of collision attacks on compression functions and hash functions. Let an iterated
hash function F' be built by iterating a compression function f : {0,1}™ x
{0,1}" — {0,1}™ as follows:

Split the message M of arbitrary length into k blocks x; of size m.
— Set hg to a pre-specified IV

Compute Vz; : h; = f(hi—1, ;)

Output F(M) = hy,

Classification for compression function collision attacks. Higher numbers mean
less degrees of freedom for an attacker and are hence more difficult to obtain
cryptanalytically.

— Compression collision attacks of type 0:
Compute h;—1, hi_ 1, m; and m! s. t. f(h;—1,m;) = f(hi_;,m}). Note that
early attacks by den Boer and Bosselaers [I], and Dobbertin [9] on MD5 are
of this type.
— Compression collision attacks of type 1:
Given h;_1, compute m; and m; s. t. f(hi—_1,m;) = f(h]_1,m}).
— Compression collision attacks of type 2:
Given h;_; and h}_;, compute m; and m} s. t. f(h;—1,m;) = f(hi_y,m})
— Compression collision attacks of type 3:
Given h;_; and h}_;, compute m; s. t. f(hi—1,m;) = f(hi_;,m;)

Later in the paper, it will be useful to have a weakened version of the collision
attack on the compression function of type 3.

— Compression collision attacks of type 3w:
Given h;—1 and h!_; from an efficiently enumerable subset s (of size |s| =
27"72) of all 22" possible pairs (h;_1,h}_;), compute m; s. t. f(hi—1,m;) =
f(h;—l’ ml)

Complementing types 1-3 of the compression function attacks, one may define
similar attack settings for the hash function as well. For sake of concreteness, we
also give examples related to MD5.

— Hash collision attacks of type 1: Given mg, compute m; and mj such
that F(mg|lm1) = F(mg||m?). This is the most simple way to violate the
collision resistance of a hash function. For MD5, see Wang et al. [3I]. The
prefix mg may be the string of length 0, or any other message block.

— Hash collision attacks of type 2: Given my and mg, compute m; and
mj such that F(mg|lm1) = F(mf||m7). This type of attack is much more
demanding from a cryptanalytic view as it needs to cope with arbitrary
prefixes and hence arbitrary chaining input differences (Stevens et al. [28]).
In turn it allows much more powerful attacks, as can be seen by the recent
attacks on certificate authorities using MD5 [29].



— Hash collision attacks of type 3 (new, in this paper): Given mg and
mg, compute my such that F(mg|lmi) = F(mg|/m1). This type of attack
is in turn much more difficult than type 2, as it halves the degrees of free-
dom available to an attacker. The message difference is fixed (to zero), this
means that for each MD5 compression function, instead of 1024 degrees of
freedom, only 512 degrees of freedom via the message input are available to
an attacker.

This leads us to the informal definition of a weak hash function, complement-
ing the concept of a weak compression function from [I5]. A weak hash function
may be modeled as a random oracle, but offers additionally oracles that allow
collision attacks on the hash function of type 1 and type 2, but not of type 3.
The purpose of this introduction of a weak hash function is to show that MD5
can not even meet the requirements of a weak hash function, even though no
type 3 collision attack on the MD5 compression function are known.

We may define the security of a hash function as a component in a con-
catenated combiner against collision attacks (concatenated combiner collision
security, or simply C3 security) of an n-bit hash function as the effort to find
a collision attack of type 3. For MD5, despite all cryptanalytic advances in re-
cent years, this is 264, In this paper, we show an attack suggesting that the C?
security of MD5 is less.

3 Outline of attack strategies

In the following we assume it is possible to devise collision attacks of type 3w
on the compression function below the birthday bound. These collision attacks
will need a suitable differential path, and a method to find message pair which
conforms to such a differential path. We will discuss this problem for the case of
MD?5 in Section [5} This alone is not enough for our attack to work, but based
on such a result we propose to continue as follows. We first show how to devise
a collision attack of type 3 on a hash function using a combination of birthday
techniques and differential shortcut techniques. Then we continue and apply such
an attack on a combiner.

3.1 Collision attack of type 3

The attack we propose (see Fig. |1|for an illustration) consists of three phases. A
preparation phase that computes target differences (1), a birthday phase (using
M) (2) and a differential phase (using M) that performs a type 3w collision
attack (3), and is executed in this order. Before the birthday phase (2), the
differential phase needs to be “prepared” as follows (1). We generate a number
of 2% distinct characteristics (also called paths) through the compression function
on a heap with the following property: no message difference, an arbitrary input
difference (d2), and no output difference (62 H d5 = 0). Let’s assume each of
them, when given a suitable chaining input pair, results in an effort of 2% (or
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Fig. 1. Outline of attack strategy.

less) to find a conforming message pair. Let 2¥ be the cost of this path generation
in terms of equivalent compression function computations. Let’s further assume
that each of these paths has an average number of z independent conditions on
the chaining input (CI).

A single path with z conditions on the CI in fact can be used for 2% possible
pairs of CIs. Since there exist 22" pairs, 2"** randomly generated pairs would
be needed before one matches the CI described by the path (6; matches d2, and
the conditions are fulfilled). Using birthday techniques, this is expected to take
2(n+2)/2 time. Given all 2% paths, only 2"t*~% randomly generated pairs are
needed, which in turn is expected to take 2("=#%2)/2 time. Hence, if z > z, the
runtime is expected to be below the birthday bound.

For obtaining a single hash collision of type 3, the overall method may be
seen as a successful cryptanalytic attack, if the sum of the runtimes for the path
generation, the birthday phase, and the work to find a conforming message pair
using a particular path is below the birthday bound, i.e. if 2¥ 4 2(n—2+2)/2 4
2 < 2"/2_ For obtaining many hash collisions of type 3, the effort to generate

the heap of paths (1) may be negligible, hence to goal would be reduced to
2(n—r+z)/2 4w < 2n/2

3.2 Attack on the combiner Fy(M)||F2(M)

We now discuss how to use a type 3 collision attack on a hash to devise an
attack on a combiner of two hash functions using it, where the first of two hash
functions suffers from a type 1 collision attack.

The setting: Let Fy(-) and Fy(-) be two hash functions with output size ny
and no. For the sake of simplicity we assume in the following that ny = no = n.
Let’s further assume that F} suffers from a type 1 collision attack, i.e. given
mo, let the effort to find a m; and m7 such that Fy(mg||m1) = Fi(mg|lm7) be
2¢1 < 2"/2_ Furthermore, assume that Fy suffers from a type 3 collision attack,
i.e. given my and mj, compute mg such that Fy(ms||ms) = Fo(mj||ms) be
2¢2 < 2™/2 In more detail, as noted above, 2"t*~% randomly generated pairs
(ma, m3) are needed. The introduced symbols are summarized in Table



Table 1. Symbols used in the description of the attack.

symbol|description
n |output size
w |logz of the cost of finding a conforming message pair
x logz of the number of distinct characteristics
y  |logz of the cost of the preparatory path generation
Z number of conditions on the chaining input
c1 |loga of the cost of type 1 collision attack on the first hash function
c2  |loga of the cost of type 3 collision attack on the second hash function

F(M) I F(M) Fi(M) |l F(M)
1 mi* type 1 .
i m collision mi [mi c(t)y"piii(lm
20 20 type 1 .
m | i collision m | c:))II:)i:iin
birthday attack birthday part of
i ’ type 3 collision
il mi* type 1
§ v collision
i type 1 type 3
M| m Q co)llriiion m3 c);neisi:\;
(a) The known approach due to (b) New collision construction using
Joux does not allow to exploit short- type 3 collisions allows to exploit
cut collision attacks on both hash shortcuts attacks in both hash func-
functions. The lower bound is hence tions without considering the inter-
a birthday attack on the “smaller” action in the cryptanalysis.

hash function.

Fig. 2. Comparison of collision attack on a combiner.



We are now ready to formulate the new collision attack on the combiner
Fi(M)||Fo(M) that combines both attacks. It is also illustrated in Fig.

1. Let mg be the string of size zero and perform the type 1 collision attack on
Fy and obtain a (m},mi*) such that Fy(m}) = Fi(mi*). Note that Fy(m})
does not collide with Fy(mi*).

2. Repeat the step above While replacing mg with the concatenation of all
previously found messages (n + z — x)/2 — 1 times. This means, for the i-th
step (fori =2...(n+z—1x)/2), let mg = mi||...||m! and obtain a (m},m?*)
such that Fy(m}) = Fy(mi*).

3. Note that by using Joux’s multicollision method, we have produced a 2("+2=#)/2_
collision for Fj.

4. Perform the type 3 attack of Fy as follows. For the birthday-part of the type
3 attacks, use the (n+z-x)/2 collisions in Fy to obtain the required 2"+*=%
pairs of prefixes mo and mj3.

5. Continue with the differential shortcut part of the type 3 attack as outlined
in the previous subsection, i.e. find a suffix m3 such that there is a collision

between
n+z—x)/2
By(mi|m3]] ... [[m{"** % |my)
and
n+zfm 2)%x
By(mi*|m3*|...|Im 27 Ims)
6. Also, the collision in F} remains.
n+z—x)/2
Fy(mi|m3]] .. [[m{" =" jmg)
collides with
n+z—x)/2)*
Fy(mi*[[m3]] . [Jm{ "2 ),

as after the multicollision the message block m3 without a difference is added.

7. As the same message constitutes a collision for both F; and Fy, this in turn
results in a collision for the combiner.

The computational complexity of this procedure is as follows. The type 1
collision search on Fj in step 1 is repeated (n + z — x)/2 times, which sums up
to an effort of (n + z — x)/2 - 2°. Afterwards the type 3 collision search in F»
is performed using the obtained multicollision. This consists of a birthday part
and a type 3w compression function attack, in total costing 22 computations.
Hence, the total complexity is (n+z—x)-2% =1 +2° and reusing the calculation
for ¢o from Section [3] we arrive at

(n+4z—x) 2071 4 2¥ 4 on—a42)/2 4 gu (1)



4 Alternative description of MD5

MD?5 is an iterative hash function based on the Merkle-Damgard design princi-
ple [A19]. It processes 512-bit input message blocks and produces a 128-bit hash
value. If the message length is not a multiple of 512, an unambiguous padding
method is applied. For the description of the padding method we refer to [24].
The design of MD5 is similar to the design principles of MD4 [23]. In the follow-
ing, we briefly describe the compression function of MD5. It basically consists
of two parts: message expansion and state update transformation. A detailed
description of the MD5 hash function is given in [24].

4.1 Message expansion

The message expansion of MD5 is a permutation of the 16 message words m;
in each round. For each of the four rounds, a permutation of these 16 message
words is used, resulting in 64 32-bit words, denoted by W;, with 0 < ¢ < 63. For
the permutation defining the ordering of message words we refer to [24].

4.2 State update transformation

The state update transformation of MD5 starts from a (fixed) initial value IV
(A_y,A_5,A o, A1) of four 32-bit registers and updates them in 4 rounds of
16 steps each. The state update transformation of MD5 works on four state
variables. The state update transformation can be written to update one variable
only:

A=A i+ (Aica+ f(Aim1, A0, A 3) + Wi+ K;) K s;

However, in our case it turned out that a description which updates 2 state
variables A; and B; is beneficial. In this case, one step is computed as follows
(see also Fig. [3):

Bi = (Ai—a+ f(Aic1, A0, Ai 3) + Wi + K;) K 55
A, =A,_1+ B;.

In each step of MD5, different step constants Kj;, rotation values s; and
Boolean functions f are used. For the definition of the constants and the rotation
values we refer to [24]. The Boolean function f differs for each round of MD5:
IF is used in the first round, IF3 is used in round 2, and XOR is used in round 3
and ONX is used in the last round:

IF(z,y,2) = 2y © ~xz
IF3(z,y,2) = zx ® —zy
XO0R(z,y,2) =2 Dy Dz
ONX(z,y,2) =y ® (xzV —z)
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Fig. 3. Alternative description of the step update transformation of MD5 using
two state variables A; and B;.

After the last step of the state update transformation, the initial value and
the output values of the last four step are combined, resulting in the final value
of one iteration known as Davies-Meyer hash construction (feed forward). The
result is the final hash value or the initial value for the next message block.

5 Path search technique for MD5 type 3 collisions

We now tackle the problem of finding collision attacks on the compression func-
tion of MD5 of type 3w. Various automated path search techniques for MD4-like
hash functions have been proposed in the past.In this section, we describe the
new path search technique we developed to solve the problem. In fact it can be
seen as a variation of the fine grained condition propagation originally proposed
in [6].

5.1 Overview

As illustrated in Fig. [4] the MSB-path of [I] is a building block of our technique.
Starting from this MSB-path in the middle of the compression function we will
study and search for many characteristics which propagate through the ONX
round in the forward direction, and through the IF round in the backward direc-
tion in a non-linear way. The constraint is that, despite different rotation values
and Boolean functions, resulting differences in both ends of the state update will
cancel out after the feed-forward operation.

5.2 Reviewing the path search of De Canniére/Rechberger

In 2006, De Canniere/Rechberger [6] propose the concept of generalized condi-
tions. The generalized conditions on a particular pair of words will be denoted
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Fig. 4. The outline of the type 3w collision search with IF-path, MSB-path and
ONX path.

by VX. VX represents as a set the values for which the conditions are satisfied.
In order to write this in a compact way, we will reuse the notation listed in

Table 21

Table 2. Notation for generalized conditions, possible conditions on a pair of
bits. The right half is for completeness only, and will not be used in the paper.

(zi,2:")[(0,0) (1,0) (0, 1) (1, V)| |(=s, 21)|(0,0) (1,0) (0,1) (1, 1)
7 v 7Y 3 [V v - -
- v -V 5 | v - v -
x - T v v v -
0 v - - A R
u - v - B | v v - v
n v - c - vV
1 - - D | v - v v
# - - - E v Y

In [6], the authors describe a heuristic method to find complex nonlinear
characteristics for SHA-1 in an efficient way. Follow-up work directly applied
this method in various settings in the context of SHA-0 and SHA-1 [513/T16J32].
The approach may be described as follows.

1. The starting point is a number of constraints (on the message difference and
some target differences in the state) for the characteristic.

2. The basic idea of the algorithm is to randomly pick a bit position which is
not restricted yet (i.e. , a ‘?’-bit), impose a zero-difference at this position (a
‘=’-bit), and calculate how the condition propagates. This is repeated until all
unrestricted bits have been eliminated, or until it runs into an inconsistency,
in which case it starts again.

3. The basic idea was improved by also sometimes picking ‘x’-bits once they
start to appear, guessing the sign of their differences (‘u’ or ‘n’), and doing
a backtracking if this does not lead to a solution.

5.3 The path search for MD5

We found that a direct mapping of this strategy to the case of MD5 did not
lead to satisfactory results. It was not possible, with significant computational
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resources, to find a non-linear characteristic for the given setting. There are
two main reasons for this difficulty. The first problem is caused by having two
modular additions (separated by a rotation operation) within one state update.
Fig. [3|shows the iterative step function of MD5 with variables A; and B;. Hence,
two different carry expansions may occur and by guessing only bits of the state
A;, conditions propagate slowly and contradictions are detected at a very late
stage. Table [3[shows an example with many free (‘?’) bits in B; due to guessing
bits only on A;.

The second problem are the reduced starting constraints with only a few bit
differences set in the chaining input. In the case of the type 3w collision search,
there are no input difference in the message and only very few differences in
the chaining input and at the chaining output. By guessing even more zero-
differences (‘-’-bits), the found characteristics tend to get very sparse. In fact,
these sparse characteristics are impossible, which is not detected early enough by
the path search algorithm. Hence, most of the time is spent with paths whose im-
possibility should be detected earlier. An example for a sparse (in state variable
A;), but impossible characteristic is given in Table

To avoid these problems, the new MD5 path search strategy works as follows:

1. The starting point are only a small number of constraints (the chaining input
difference, no message difference and the MSB path) for the characteristic.

2. Instead of just picking bits of A;, randomly pick non-restricted bits of the
state B; as well.

3. Immediately guess the sign of any unrestricted difference (‘x’-bits), as soon
as it occurs and do a backtracking if the guess leads to a contradiction.

4. If all ‘x’-bits have been determined, continue with randomly guessing zero-
differences until the next ‘x’-bit occurs.

Whenever a contradiction occurs, a simple backtracking strategy (depth first
search) is applied. Using this improved strategy, global contradictions (impossi-
ble characteristics) are found at an earlier stage and impossible paths are less
likely. The disadvantage of this strategy is that long carry expansions are more
likely to occur and the resulting characteristic are less sparse. However, since we
apply the path search mostly in the first round of MD5, even a high number of
conditions can be fulfilled using simple message modification techniques [31].

6 Practical realization and results

We now describe implementations of several parts of the attack. This illustrates
and details the method, and also serves are a validity check of the attack. To
recapitulate our earlier description, the practical implementation of a type 3
collision is divided into three steps:

— Preparatory phase. Many special paths are searched and put on a heap.
— Birthday phase. Looking through possible pairs of prefixes, a pair needs
to be found that matches one of the paths on the heap.

11



Table 3. A sparse but impossible characteristic due to guessing too many zero-
differences in A;. Further, conditions do not quickly propagate into B; and con-
tradictions are detected at a very late stage.

i VB;,VA; VWi
-4|A: n u-----
-3|A: n0 n-----
-2|A: nl---—-------m—mo n-7-7-7-7n-----
-1|A: un--------------- 07x——===7x-—===

B: 7777777777777 707777 —————— X——--=
O|A: -n 0 u- W
B:

1|A: 7n--x-70----------Du------| 0----- W
B: X X

2|A: -B-77--n W:
B: X

3|A: —- #u W
B:

4/A: I W:
B: X

5|A: W:
B:

6(A: O W:
B: #

T|A: O W: #
B: x

8|A: n W:

— Differential attack phase. Search for a conforming message pair using one
of the characteristics generated earlier.

An optimization that is important in practice, is as follows. Starting form the
MSB path in the middle of the MD5 compression function, it suffices to compute
many paths through the last round (ONX part). The last steps of this path will
impose conditions (of type 'n’ and 'u’) on the chaining input. This information
is enough for the birthday phase. The result of the birthday phase is a prefix
pair that is compatible with a particular path on the heap. It remains to finish
the characteristic, the IF part, to connect to the MSB part in the middle (see
Fig. 4] for an illustration of the different parts). Having to deal with an actual
chaining input pair in this phase of the attack imposes more constraints on the
path search. However, as we detail in Section [6.1] and also illustrate with the
characteristic in the table in Appendix[A] these constraints can be dealt with in
practice and do not impose any limitation on the attack.

6.1 Runtime for IF path search

In experiments involving the equivalent of about 2000 hours on a single core, we
have verified the average runtime to find a single IF path is about 36 hours on a
single core, which is about 2!7 seconds in which about 2% MD5 computationd]]
could be done. For these experiments, we not only generated paths for a partic-
ular starting point, as the choice of a particular starting point has unpredictable

! Each of our 2.0 GHz AMD Opteron(tm) cores performs about 22* MD5 computations
per second using OpenSSL 0.9.8g.
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consequences for a particular heuristic (this was also observed in [6]). Instead
we generated many (about 30) starting points (i.e. different sets of conditions
on the chaining input) in a random way to derive meaningful average runtime
estimates. This suggests that, using the proposed strategy, we can expect to find
a path for every set of constraints, albeit with somewhat varying runtime. In
turn, this allows us to estimate the workfactor for a type 3w collision attack on
MD5.

We found that the runtime for the search for IF-path does not depend on the
number of differences in the CVﬂ The generation of the corresponding IF-paths
can be delayed until after the birthday phase, contributes to the final search
complexity only in an additive way, and is hence negligible.

6.2 A type 3 collision attack based on actually generated paths

For the practical generation of type 3w collision attacks on the compression
function of MD5, that in turn lead to a type 3 collision attack on the MDb5
hash, we constrain ourselves to differential paths which result in runtimes for
finding a colliding message pair below 2°%. For the preparatory step, it suffices
to generate useful ONX paths. An ONX path is useful if it has a high probability, as
the probability of a collision characteristic in the last round affects the resulting
effort for finding a conforming message pair in a direct way. In order to give
a bound on the allowable probability for the ONX path, we argue as follows.
Among the four rounds (consisting of 16 steps each) the first round can easily
be dealt with via simple message modification. The second round is an MSB-path
and contains 16 conditions (the Boolean function needs to behave as expected
at every step once, see also [I]), the third round contains no conditions as the
Boolean function is an XOR, and the fourth round contains the more complex
ONX-path. Improvements upon the original type 1 collision attack on MD5 by
Wang et al. concentrated on fulfilling more conditions in round 2. In a work from
2005 [25], 14 conditions could already be fulfilled. Subsequent work by Klima [14]
and Stevens et al. [29] significantly improved upon this. Conservatively assuming
to be able to only fulfill 14 conditions suggests that round number four should
not have more than 58 — 16 4+ 14 = 56 conditions. In Section we give several
reasons why this is a very conservative assumption.

Another important parameter of ONX paths is the number and position of
differences it has in the last four steps, as this determines (except for carries via
the feed-forward operation) the uniqueness of the set of allowed pairs of chaining
inputs that can be canceled.

Inhere, we report on empirical findings using an actual implementation of
parts of the attack. In total we spent an equivalent of about 15000 hours on
a single core. The number of distinct paths for type 3w compression function
attacks on MD5 we found together with their number of conditions on the IV is
as follows:

2 We tested a range between 1 and 20.
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Not all found paths may be of use. Let p; be the number of distinct paths
with i conditions on the IV, we want to find a j such that (37_, p;) — 27 is
maximal. Using the actually generated paths as described above, we found about
21734 paths with distinct constraints (with at most 9 relevant conditions) on the
chaining input. Including also all found paths with 10 conditions would only
improves the attack only if more than 2734 paths would be added, which is not
the case.

Using the notation of Section[3] this means x=17.3, w < 58, and z < 8. Based
on this, a type 3 collision has a runtime of 2(128=17-34+9)/2(4 958) — 960-19 " whjch
is faster than the expected 204 for an ideal hash function of this size. Hence,
MDS5 offers a C? security of no more than 60 bits.

Note however, that in this calculation, there is a gross imbalance between
time spent on generating paths (15000 CPU hours are about 27 MD5 computa-
tions) and the total runtime of the attack. Assuming to spend e.g. 27 times more
computational resources in the path generation might well lead to an increase.
from x = 17 to 24, which in turn would decrease the runtime of the overall type
3 collision attack on MD5 to 2°7, and would lead to an attack on the combiner
MD5||SHA-1 with complexity less than 2°9 (assuming the type 1 collision attack
on SHA-1 is fast enough).

6.3 On memory requirements

Both, the generic method due to Joux and the new approach using a type 3
collision attack, can be implemented without requiring access to large memory.
For both cases, this results in a runtime loss of about a factor n/2, hence the
relativ advantage of the new approach over the generic method remains. Memory
requirements of the attack (birthday phase and differential shortcut phase) are
as follows.

Birthday phase. A naive implementation of the birthday phase would require
a table of size 2("~#+2)/2 in order to generate enough pairs to find a match with
one of the 2% paths. However, distinguished point methods may be used on a
truncated version of the output of the compression functionﬁ

Let ¢ be the size of the subset of bits that is needed to represent all 2%
paths. A lower bound for ¢ is 2x/3, since every bit that is truncated leaves three
possibilities for a path ('n’, "u’, or ’-’). In practice, ¢ is higher. A memory-less
method will find a partially suitable pair in time 2("~%/2_ which would need to be
repeated 2(:=*12) times if done independently (and hence impose the additional
condition z — z > t/2 on the attack to be more efficient than a generic attack).

3 We will use the term “memoryless” to refer to these techniques, although they do in
fact require some memory, albeit much less than a naive table-based approach.
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However, as described in [21122], the distinguished points method can be
used to take advantage of the birthday effect also for generating more collisions
(or suitable pairs), by keeping the entries in the list of each of the distinguished
points. A parallelizable version with linear speed gain is described in [20]. Hence
the search needs to be repeated only 2(:=2)/2 times. As a result, a “memory-
less” version of the birthday phase for the dedicated combiner attack behaves
to a large extend as a “memoryless” version of a generic birthday attack. What
is needed is memory to store 2% candidate pairs which are the outcome of the
birthday phase. In all practical settings, z is small.

Differential shortcut phase. Storing the precomputed paths for the shortcut
attacks: in the order of a kilobyte per path. For practical values of x between
10 and 20, storage costs are negligible and access to this memory is only needed
once.

6.4 On conservative estimates
There are several reasons our estimates can be considered to be very conservative:

— Basing assumption on speed-up methods (message modification, tunnels) is
very conservative for the following reason. The lack of message differences,
and the very simple MSB path in round 2 gives more freedom to apply speed-
up methods as is the case in type 1 collision search attacks in earlier work.

— Also, early stop methods which further speed-up collision search are not
considered.

— Runtime of various path search scenarios are measurements of actual imple-
mentations, whose runtime may be optimized by some constant factor.

— For our calculations, we use the highest possible allowed value for w (worst
case). The expected value is in fact lower.

7 Conclusions and open problems

We proposed a new attack that allows collision attacks on combiners with a
runtime below the birthday-bound of the smaller compression function when
the smaller compression function is MD5, potentially reducing a collision attack
on a combiner like MD5||SHA-1 for the first time. This also answers an open
question by Joux posed in 2004. The cryptanalytic technique we proposed for
this is a combination of a birthday-style attack and a differential inside-out tech-
nique that uses different parts of a collision characteristic at different stages of
an attack, both before and after a birthday phase. This technique may be of
independent interest. Based on only the characteristics we generated in practi-
cal experiments with limited computational resources, a collision attack on the
combiner with MD5 would already be around 2°° (if the “normal” collision at-
tack on the other hash functions is fast enough), however we argued that such
an estimate is very conservative for various reasons.
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This illustrates that the MD5 hash function can not meet the requirements
of a “weak hash function” as informally defined in this paper. Various open
questions arise from this work: In a vein similar to concatenated combiners, or the
Zipper construction [I5], is it possible to come up with other collision resistant
constructions that can use MD5, even though our results can be interpreted as
showing that MD5 is “weaker than weak”? Another open problem is related to
the application of our new cryptanalytic method to hash function constructions
that use two or more parallel streams, like RIPEMD-160 [10], as well as several
SHA-3 candidatesﬂ So far it proved difficult to obtain results on RIPEMD-160,
even for interesting reduced variants [17].
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A Supplementary material for obtained results

A particular low-weight input chaining difference becomes the MSB-path in the
course of 10 steps. The following table contains the full characteristics illustrating
a candidates for a type 3w compression function attack. As a proof-of-concept,
we provide a representative example of a conforming message pair in Table [4]

i VA; VW;
-4/ A: uw u
-3| A: u
-2| A: n 0
-1 A: 1 0
0| A: 0-———————————- 0u111110000000010-|W:
1] A: ——mmmmmm o 1u000000000000000- |W:
2| A - unnnnnnnnnnnnnnnnnl {W:
3| A: -0110001011100000000|W:
4| A: --000000---n-u11u00000000110111~|W: --—==—==—==—-= 1----00001000111--
5| A: --011111---0-n11n0 W: 0000----- 1100-----
6| A: nuuuuuL W:
7| A: 0110000 W:
8| A: O 1101101 W:
9l A: O W:
10| A: u W:
11} A: n W:
12| A: n W:
13| A: n W:
54| A: n W:
55| A: n () W:
56| A: u 1 W:
57| A: n On: W:
58| A: u n: W:
59 A: n nu W:
60| A: n n: W:
61| A: n 11 W:
62| A: n () W:
63| A: W:
FF:
FF:
FF:
FF:

Table 4. A conforming message pair for the first 16 steps.

[ H.[Cc4F12702 D25873C9 5B88CE47 9ABEBBID |
| H744F12502 525873C9 DBBBCE47 9ASEBBID |
[[AH,]80000200 80000000 80000000 00000000

D830883A AA2456AA 24B9260C D2F17AES FB93211E 08F4298C BAOC7756 3492552F
C7CB7DID 7FB68OAC 9336A183 44256E0D 6DO9SFCF 08DS8DYEA 5D79COBA OF2CD7C5
D830883A AA2456AA 24B9260C D2F17AES F893211E O08F4298C 8AOC7756 3492552F
C7CB7D9D 7FB6SOAC 9336A183 44256E0D 6DO9SFCF 08DSDIEA 5D79COBA OF2CD7C5
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

My

M;

‘Al\rh

[ H,[156733C4 4A05644B 20E6A26E 7718EBAL ]
| H3|956733C4 CA05644B AOE6A26E F718EBA4 |

‘AHg‘SOOOOOOO 80000000 80000000 80000000
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