
Security Bounds for the Design of Code-based
Cryptosystems

Matthieu Finiasz1 and Nicolas Sendrier2

1 ENSTA
2 INRIA, team-project SECRET

Abstract. Code-based cryptography is often viewed as an interesting
“Post-Quantum” alternative to the classical number theory cryptogra-
phy. Unlike many other such alternatives, it has the convenient advan-
tage of having only a few, well identified, attack algorithms. However,
improvements to these algorithms have made their effective complexity
quite complex to compute. We give here some lower bounds on the work
factor of idealized versions of these algorithms, taking into account all
possible tweaks which could improve their practical complexity. The aim
of this article is to help designers select durably secure parameters.
Keywords : computational syndrome decoding, information set decod-
ing, generalized birthday algorithm.

Introduction

Code-based cryptography has received renewed attention with the recent interest
for “Post-Quantum Cryptography” (see for instance [5]). Several new interesting
proposals have been published in the last few months [20,18,3]. For those new
constructions as well as for previously known code-based cryptosystems, precise
parameters selection is always a sensitive issue. Most of the time the most threat-
ening attacks are based on decoding algorithms for generic linear codes. There
are two main families of algorithms, Information Set Decoding (ISD), and Gen-
eralized Birthday Algorithm (GBA). Each family being suited for some different
parameter ranges.

ISD is part of the folklore of algorithmic coding theory and is among the
most efficient techniques for decoding errors in an arbitrary linear code. One
major step in the development of ISD for the cryptanalysis of the McEliece en-
cryption scheme is Stern’s variant [22] which mixes birthday attack with the
traditional approach. A first implementation description [10], with several im-
provements, led to an attack of 264.2 binary operations for the original McEliece
parameters, that is decoding 50 errors in a code of length 1024 and dimension
524. More recently [6], a new implementation was proposed with several new im-
provements, with a binary workfactor of 260.5. Furthermore, the authors report
a real attack (with the original parameters) with a computational effort of about
258 CPU cycles. The above numbers are accurate estimates of the real cost of a
decoding attack. They involve several parameters that have to be optimized and
furthermore, no close formula exists, making a precise evaluation rather difficult.



GBA was introduced by Wagner in 2002 [25] but was not specifically designed
for decoding. Less generic version of this algorithm had already been used in
the past for various cryptanalytic applications [9,11]. Its first successful use to
cryptanalyse a code-based system is due to Coron and Joux [12]. In particular,
this work had a significant impact for selecting the parameters of the FSB hash
function [1].

Most previous papers on decoding attacks were written from the point of
view of the attacker and were looking for upper bounds on the work factor of
some specific implementation. One exception is the asymptotic analysis for ISD
that has been recently presented in [8]. Here we propose a designer approach
and we aim at providing tools to easily select secure parameters.

For both families, we present new idealized version of the algorithms, which
encompass all variants and improvements known in cryptology as well as some
new optimizations. This allows us to give easy to compute lower bounds for
decoding attacks up to the state of the art.

We successively study three families of algorithms, first the “standard” birth-
day attack, then two evolutions of this technique, namely Stern’s variant of infor-
mation set decoding and Wagner’s generalized birthday algorithm. In each case
we propose very generic lower bounds on their complexity. Finally, we illustrate
our work with case studies of some of the main code-based cryptosystems.

1 The Decoding Problem in Cryptology

Problem 1 (Computational Syndrome Decoding - CSD) Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r and an integer w > 0, find a word e ∈ {0, 1}n

of Hamming weight ≤ w such that eHT = s.

We will denote CSD(H, s,w) an instance of that problem. It is equivalent to
decoding w errors in a code with parity check matrix H. The decision problem
associated with computational syndrome decoding, namely, Syndrome Decoding,
is NP-complete [4].

This problem appears in code-based cryptography and for most systems it is
the most threatening known attack (sometimes the security can be reduced to
CSD alone [23,1]). Throughout the paper we will denote

Wn,w = {e ∈ {0, 1}n | wt(e) = w}

the set of all binary words of length n and Hamming weight w. The instances
of CSD coming from cryptology usually have solutions. Most of the time, this
solution is unique. This is the case for public-key encryption schemes [17,21] or
for identification schemes [23,24]. However, if the number w of errors is larger
than the Gilbert-Varshamov distance3 we may have a few, or even a large num-
ber, of solutions. Obtaining one of them is enough. This is the case for digital
signatures [13] or for hashing [2,1].

3 The Gilbert-Varshamov distance is the smallest integer d0 such that
ą

n
d0

ć ≥ 2r.

2



2 The Birthday Attack for Decoding

We consider an instance CSD(H, s, w) of the computational syndrome decoding.
If the weight w is even, we partition the columns of H in two subsets (a priori
of equal size). For instance, let H = (H1 | H2) and let us consider the sets
L1 = {e1H

T
1 | e1 ∈ Wn/2,w/2} and L2 = {s + e2H

T
2 | e2 ∈ Wn/2,w/2}. Any

element of L1∩L2 provides a pair (e1, e2) such that e1H1 = s+e2H2 and e1 +e2

is a solution to CSD(H, s, w). This collision search has to be repeated 1/Prn,w

times on average where Prn,w is the probability that one of the solutions splits
evenly between the left and right parts of H. Let Cn,r,w denote the total number
of columns sums we have to compute. If the solution is unique, we have4

Prn,w =

(
n/2
w/2

)2

(
n
w

) and Cn,r,w =
|L1|+ |L2|

Prn,w
=

2
(

n
w

)
(

n/2
w/2

) ≈ 2

√(
n

w

)
4

√
πw

2

This number is close to the improvement expected when the birthday paradox
can be applied (i.e. replacing an enumeration of N elements by an enumeration
of 2

√
N elements). In this section, we will show that the factor 4

√
πw/2 can be

removed and that the formula often applies when w is odd. We will also provide
cost estimations and bounds.

2.1 A Decoding Algorithm Using the Birthday Paradox

The algorithm presented in Table 1 generalizes the birthday attack for decoding
presented above. For any fixed values of n, r and w this algorithm uses three
parameters (to be optimized): an integer ` and two sets of constant weight words
W1 and W2. The idea is to operate as much as possible with partial syndromes
of size ` < r and to make the full comparison on r bits only when we have a
partial match. Increasing the size of W1 (and W2) will lead to a better trade-off,
ideally with a single execution of (main loop).

Definition 1. For any fixed value of n, r and w, we denote WFBA(n, r, w) the
minimal binary work factor (average cost in binary operations) of the algorithm
of Table 1 to produce a solution to CSD, for any choices of parameters W1, W2

and `.

An Estimation of the Cost. We will use the following assumptions (discussed
in appendix):

(B1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are
uniformly and independently distributed in Wn,w.

4 We use Stirling’s formula to approximate factorials. The approximation we give is
valid because w ¿ n.

3



Table 1. Birthday decoding algorithm

For any fixed values of n, r and w, the following algorithm uses three param-
eters: an integer ` > 0, W1 ⊂ Wn,bw/2c and W2 ⊂ Wn,dw/2e. We denote by
h`(x) the first ` bits of any x ∈ {0, 1}r.

procedure BirthdayDecoding
input: H0 ∈ {0, 1}r×n, s ∈ {0, 1}r

repeat (main loop)
P ← random n× n permutation matrix
H ← H0P
for all e ∈W1

i← h`(eH
T ) (ba 1)

write(e, i) // store e in some data structure at index i
for all e2 ∈W2

i← h`(s + e2H
T ) (ba 2)

S ← read(i) // extract the elements stored at index i
for all e1 ∈ S

if e1H
T = s + e2H

T (ba 3)
return (e1 + e2)P

T (success)

(B2) The cost of the execution of the algorithm is approximatively equal to

` · ](ba 1) + ` · ](ba 2) + K0 · ](ba 3), (1)

where K0 is the cost for testing e1H
T = s+ e2H

T given that h`(e1H
T ) =

h`(s + e2H
T ) and ](ba i) is the expected number of execution of the

instruction (ba i) before we meet the (success) condition.

Proposition 1. Under assumptions (B1) and (B2). We have5

WFBA(n, r, w) ≈ 2L log (K0L) with L = min
(√(

n
w

)
, 2r/2

)

and K0 is the cost for executing the instruction (ba 3) ( i.e. testing eHT = s).

Remarks.

1. When
(

n
w

)
> 2r, the cost will depend of the number of syndromes 2r instead

of the number of words of weight w. This corresponds to the case where w is
larger than the Gilbert-Varshamov distance and we have multiple solutions.
We only need one of those solutions and thus the size of the search space is
reduced.

2. It is interesting to note the relatively low impact of K0, the cost of the
test in (ba 3). Between an extremely conservative lower bound of K0 = 2,
an extremely conservative upper bound of K0 = wr and a more realistic
K0 = 2w the differences are very small.

5 Here and after, “log” denotes the base 2 logarithm (and “ln” the Neperian loga-
rithm).

4



3. In the case where w is odd and
(

n
bw/2c

)
< L, the formula of Proposition 1 is

only a lower bound. A better estimate would be

WFBA(n, r, w) ≈ 2L′ log
(

K0
L2

L′

)
with L′ =

(
n

bw/2c
)2 + L2

2
(

n
bw/2c

) . (2)

4. Increasing the size of |W1| (and |W2|) can be easily and efficiently achieved
by “overlapping” H1 and H2 (see the introduction of this section). More
precisely, we take for W1 all words of weight w/2 using only the n′ first
coordinates (with n/2 < n′ < n). Similarly, W2 will use the n′ (or more) last
coordinates.

2.2 Lower Bounds

As the attacker can make a clever choice of W1 and W2 which may contradict as-
sumption (B1), we do not want to use it for the lower bound. The result remains
very close to the estimate of the previous sections except for the multiplicative
constant which is

√
2 instead of 2.

Theorem 1. For any fixed value of n, r and w, we have

WFBA(n, r, w) ≥
√

2L log(K0L) with L = min
(√(

n
w

)
, 2r/2

)
.

where K0 is the cost for executing the instruction (ba 3).

3 Information Set Decoding (ISD)

We will consider here Stern’s algorithm [22], which is the best known decoder
for cryptographic purposes, and some of its implemented variants by Canteaut-
Chabaud [10] and Bernstein-Lange-Peters [6]. Our purpose is to present a lower
bound which takes all known improvements into account.

3.1 A New Variant of Stern’s Algorithm

Following other works [15,16], J. Stern describes in [22] an algorithm to find
a word of weight w in a binary linear code of length n and dimension k (and
codimension r = n− k). The algorithm uses two additional parameters p and `
(both positive integers). We present here a generalized version which acts on the
parity check matrix H0 of the code (instead of the generator matrix). Table 2
describes the algorithm. The partial Gaussian elimination of H0P consists in

5



Table 2. Generalized ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four pa-
rameters: two integers p > 0 and ` > 0 and two sets W1 ⊂ Wk+`,bp/2c and
W2 ⊂Wk+`,dp/2e. We denote by h`(x) the last ` bits of any x ∈ {0, 1}r.

procedure ISDecoding
input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat (main loop)
P ← random n× n permutation matrix
(H ′, U)← PGElim(H0P ) // partial elimination as in (3)
s← s0U

T

for all e ∈W1

i← h`(eH
′T ) (isd 1)

write(e, i) // store e in some data structure at index i
for all e2 ∈W2

i← h`(s + e2H
′T ) (isd 2)

S ← read(i) // extract the elements stored at index i
for all e1 ∈ S

if wt
ą
s + (e1 + e2)H

′T ć
= w − p (isd 3)

return (P, e1 + e2) (success)

finding U (r × r and non-singular) and H (and H ′) such that6

r − ` k + `
1

. . .
UH0P = H = 1 H ′

` 0

(3)

where U is a non-singular r × r matrix. Let s = s0U
T . If e is a solution of

CSD(H, s, w) then ePT is a solution of CSD(H0, s0, w). Let (P, e′) be the output
of the algorithm, i.e., wt(s + e′H ′T ) = w− p, and let e′′ be the first r− ` bits of
s + e′H ′T , the word e = (e′′ | e′) is a solution of CSD(H, s, w).

Definition 2. For any fixed value of n, r and w, we denote WFISD(n, r, w) the
minimal binary work factor (average cost in binary operations) of the algorithm
of Table 1 to produce a solution to CSD, for any choices of parameters `, p, W1

and W2.

3.2 Estimation of the Cost of the New Variant

To evaluate the cost of the algorithm we will assume that only the instructions
(isd i) are significant. This assumption is stronger than for the birthday attack,
6 In the very unlikely event that the first r− ` columns are linearly dependent, we can

change P .

6



because it means that the Gaussian elimination at the beginning of every (main
loop) costs nothing. It is a valid assumption as we only want a lower bound.
Moreover, most of the improvements introduced in [10,6] are meant to reduce
the relative cost of the Gaussian elimination. We claim that within this “free
Gaussian elimination” assumption any lower bound on the algorithm of Table 2
will apply on all the variants of [10,6]. Our estimations will use the following
assumptions:

(I1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are uni-
formly and independently distributed in Wk+`,p.

(I2) The cost of the execution of the algorithm is approximatively equal to

` · ](isd 1) + ` · ](isd 2) + Kw−p · ](isd 3), (4)

where Kw−p is the average cost for checking wt
(
s + (e1 + e2)H ′T )

= w−p
and ](isd i) is the expected number of executions of the instruction (isd
i) before we meet the (success) condition.

Proposition 2. Under assumptions (I1) and (I2). If
(

n
w

)
< 2r (single solution)

or if
(

n
w

)
> 2r (multiple solutions) and

(
r

w−p

)(
k
p

) ¿ 2r, we have (we recall that
k = n− r)

WFISD(n, r, w) ≈ min
p

2` min
((

n
w

)
, 2r

)

λ
(

r−`
w−p

)√(
k+`

p

) with ` = log
(
Kw−p

√(
k
p

))

with λ = 1− e−1 ≈ 0.63. If
(

n
w

)
> 2r (multiple solutions) and

(
r

w−p

)(
k
p

) ≥ 2r, we
have

WFISD(n, r, w) ≈ min
p

2` 2r/2

√(
r−`
w−p

) with ` = log
(
Kw−p

2r/2q
( r

w−p)

)
.

Remarks.

1. For a given set of parameters the expected number of execution of (main
loop) is N = 1/(1− exp(−X)) where X =

(
r+`
w−p

)(
k+`

p

)
/ min(2r,

(
n
w

)
).

2. The second formula applies when X > 1, that is when the expected number
of execution of (main loop) is (not much more than) one. In that case, as
for the birthday attack, the best strategy is to use W2 = Wk+`,dp/2e (i.e. as
large as possible) and W1 is as small as possible but large enough to have
only one execution of (main loop) with probability close to 1.

3. When X ¿ 1, we have N = 1/(1 − exp(−X)) ≈ 1/X and the first formula
applies.

4. When X < 1, the first formula still gives a good lower bound. But it is less
tight when X gets closer to 1.

5. When p is small and odd the above estimates for WFISD are not always
accurate. The adjustment is similar to what we have in (2) (see the remarks

following the birthday decoder estimation). In practice, if
(

k+`
bp/2c

)
<

√(
k+`

p

)

it is probably advisable to discard this odd value of p.

7



6. We use the expression ` = log (Kw−pLp(0)) for the optimal value of ` (where

Lp(`) =
√(

k+`
p

)
or Lp(`) = 2r/2/

√(
r−`
w−p

)
respectively in the first case or in

the second case of the Proposition). In fact a better value would be a fixpoint
of the mapping ` 7→ Lp(`). In practice Lp(0) is a very good approximation.

3.3 Gain Compared with Stern’s Algorithm

Stern’s algorithm corresponds to a complete Gaussian elimination and to a par-
ticular choice of W1 and W2 in the algorithm of Table 2. A full Gaussian elimi-
nation is applied to the permuted matrix H0P and we get U and H ′ such that:

r k
1

H ′

UH0P = H =
.. .

1 H1 H2 `

(5)

The `-bit collision search is performed on k columns, moreover p is always even
and W1 and W2 will use p/2 columns of H1 and H2. The variants presented
in [10,6] consist in reducing the cost of the Gaussian elimination, or, for the
same H ′, to use different “slices” (H1 | H2) of ` rows. All other improvements
lead to an operation count which is close to what we have in (4). The following
formula, obtained with the techniques of the previous section, gives a tight lower
bound all those variants.

WFStern(n, r, w) ≈ min
p

2`
(

n
w

)
(

r−`
w−p

)(
k/2
p/2

) with ` = log
(
Kw−p

(
k/2
p/2

))
.

The gain of the new version of ISD is ≈ λ 4
√

πp/2 which is rather small in
practice and correspond to the improvement of the “birthday paradox” part of
the algorithm.

4 Generalized Birthday Algorithm (GBA)

4.1 General Principle

The generalized birthday technique is particularly efficient for solving Syndrome
Decoding-like problems with a large number of solutions. Suppose one has to
solve the following problem:

Problem 2 Given a function f : N 7→ {0, 1}r and an integer a, find a set of 2a

indexes xi such that:
2a−1⊕

i=0

f(xi) = 0.

8



In this problem, f will typically return the xi-th column of a binary matrix H.
Note that, here, f is defined upon an infinite set, meaning that there are an
infinity of solutions. To solve this problem, the Generalized Birthday Algorithm
(GBA) does the following:

– build 2a lists L0, . . . , L2a−1, each containing 2
r

a+1 different vectors f(xi)
– pairwise merge lists L2j and L2j+1 to obtain 2a−1 lists L′j of XORs of 2

vectors f(xi). Only keep XORs of 2 vectors starting with r
a+1 zeros. On

average, the lists L′j will contain 2
r

a+1 elements.
– pairwise merge the new lists L′2j and L′2j+1 to obtain 2a−2 lists L′′j of XORs

of 4 vectors f(xi). Only keep XORs of 4 vectors starting with 2 r
a+1 zeros.

On average, the lists L′′j will still contain 2
r

a+1 elements.
– continue these merges until only 2 lists remain. These 2 lists will be composed

of 2
r

a+1 XORs of 2a−1 vectors f(xi) starting with (a− 1) r
a+1 zeros.

– as only 2 r
a+1 bits of the previous vectors are non-zero, a simple application of

the standard birthday technique is enough to obtain 1 solution (on average).

As all the lists manipulated in this algorithm are of the same size, the com-
plexity of the algorithm is easy to compute: 2a − 1 merge operations have to
be performed, each of them requiring to sort a list of size 2

r
a+1 . The complexity

is thus O(2a r
a2

r
a+1 ). For simplicity we will only consider a lower bound of the

effective complexity of the algorithm: if we denote by L the size of the largest
list in the algorithm, the complexity is lower-bounded by O(L log L). this gives
a complexity of O( r

a+12
r

a+1 )

Minimal Memory Requirements. The minimal memory requirements for
this algorithm are not as easy to compute. If all the lists are chosen to be of the
same size (as in the description of the algorithm we give), then it is possible to
compute the solution by storing at most a lists at a time in memory. This gives
us a memory complexity of O(a2

r
a+1 ). However, the starting lists can also be

chosen of different sizes so as to store only smaller lists.
In practice, for each merge operation, only one of the two lists has to be stored

in memory, the second one can always be computed on the fly. As a consequence,
looking at the tree of all merge operations (see Fig. 1), half the lists of the tree
can be computed on the fly (the lists in dashed line circles). Let L = 2

r
a+1 and

suppose one wants to use the Generalized Birthday Algorithm storing only lists
of size L

λ for a given λ. Then, in order to get, on average, a single solution in the
end, the lists computed on the fly should be larger. For instance, in the example
of Fig. 1 one should have:

– |L′′1 | = λL, |L′3| = λ2L, and |L7| = λ3L,
– |L′1| = L and |L3| = λL,
– |L1| = L and |L5| = L.

In the general case this gives us a time/memory tradeoff when using GBA:
one can divide the memory complexity by λ at the cost of an increase in time
complexity by a factor λa. However, many other combinations are also possible
depending on the particular problem one has to deal with.

9



L1 L2 L3 L4 L5 L6 L7L0

L0́

L0̋ L1̋

L1́ L2́ L3́

solution

Fig. 1. Merge operations in the Generalized Birthday Algorithm. All lists in dashed
line circles can be computed on the fly.

4.2 GBA Under Constraints

In the previous section, we presented a version of GBA where the number of
vectors available was unbounded and where the number of vectors to XOR was
a power of 2. In practice, when using GBA to solve instances of the CSD problem
only n different r-bit vectors are available and w can be any number. We thus
consider an idealized version of GBA so as to bound the complexity of “real
world” GBA. The bounds we give are not always very tight. See for instance [7]
for the analysis of a running implementation of GBA under realistic constraints.

If w is not a power of 2, some of the starting lists Lj should contain vectors
f(xi) and others XORs of 2 or more vectors f(xi). We consider that the starting
lists all contain XORs of w

2a vectors f(xi), even if this is not an integer. This
will give the most time efficient algorithm, but will of course not be usable in
practice.

The length of the matrix n limits the size of the starting lists. For GBA to
find one solution on average, one needs lists Lj of size 2

r
a+1 . As the starting lists

contain XORs of w
2a vectors, we need

(
n
w
2a

) ≥ 2
r

a+1 . However, this constraint on
a is not sufficient: if all the starting lists contain the same vectors, all XORs will
be found many times and the probability of success will drop. To avoid this, we
need lists containing different vectors and this can be done by isolating the first
level of merges.

– first we select 2a−1 distinct vectors sj of a bits such that
⊕

sj = 0.
– then we pairwise merge lists L2j and L2j+1 to obtain lists L′j containing

elements having their a first bits equal to sj .

After this first round, we have 2a−1 lists of XORs of 2w
2a vectors such that, if we

XOR the a first bits of one element from each list we obtain 0. Also, all the lists
contain only distinct elements, which means we are back in the general case of
GBA, except we now have 2a−1 lists of vectors of length r − a. These lists all
have a maximum size L = 1

2a

(
n
2w
2a

)
and can be obtained from starting lists Lj of

size
√(

n
2w
2a

)
(see Sect. 2). We get the following constraint on a:

1
2a

(
n
2w
2a

)
≥ 2

r−a
a . (6)

10



In practice, after the first level of merges we are not exactly in the general
case of GBA: if, for example, s0⊕ s1 = s2⊕ s3, after the second merges, lists L′′0
and L′′1 would contain exactly the same elements. This can be avoided by using
another set of target values s′j such that

⊕
s′j = 0 for the second level of merges

(as for the first level) and so on for the subsequent levels of merges (except the
last two levels).

Using Non-Integer Values for a. Equation (6) determines the largest pos-
sible value of a that can be used with GBA. For given n and r, if w varies,
the complexity of the algorithm will thus have a stair-like shape (see Fig. 2(a)).
The left-most point of each step corresponds to the case where Equation (6) is
an equality. However, when it is not an equality, it is possible to gain a little:
instead of choosing values sj of a bits one can use slightly larger values and thus
start the second level of merge with shorter vectors. This gives a broken-line
complexity curve (see Fig. 2(b)). This is somehow similar to what Minder and
Sinclair denote by “extended k-tree algorithm” [19]. In practice, this is almost
equivalent to using non-integer values for a (see Fig. 2(c)). We will thus assume
that in GBA, a is a real number, chosen such that Equation (6) is an equality.

(a) (c)(b)

Fig. 2. Logarithm of the complexity of the Generalized Birthday Algorithm for given
n and r when w varies. (a) with no optimization, (b) when the lists are initialized with
shortened vectors, and (c) when a is not an integer.

Proposition 3. We can lower bound the binary work factor WFGBA(n, r, w) of
GBA applied to solving an instance of CSD with parameters (n, r, w) by:

WFGBA(n, r, w) ≥ r − a

a
2

r−a
a , with a such that

1
2a

(
n
2w
2a

)
= 2

r−a
a .

Note that this gives us a bound on the minimal time complexity of GBA but
does not give any bound on the memory complexity of the algorithm. Also, this
bound is computed using an idealized version of the algorithm: one should not
expect to achieve such a complexity in practice, except in some cases where a is
an integer and w a power of 2.

11



5 Case Studies

Now that we have given some bounds on the complexities of the best algorithms
to solve CSD problems, we propose to study what happens when using them to
attack existing constructions.

Note that in this section, as in the whole paper, we only consider the re-
sistance to decoding attacks. Code-based cryptosystems may also be vulnerable
to structural attacks. However, no efficient structural attack is known for bi-
nary Goppa codes (McEliece encryption and CFS signature) or for prime order
random quasi-cyclic codes (FSB hash function).

5.1 Attacking the McEliece Cryptosystem

In the McEliece [17] and Niederreiter [21] cryptosystems the security relies on two
different problems: recovering the private key from the public key and decrypting
an encrypted message. Decrypting consists in finding an error pattern e of weight
w, such that e×HT = c where H is a binary matrix derived from the public key
and c is a syndrome derived from the encrypted message one wants to decrypt.
Here, we suppose that the structural attack consisting in recovering the private
key is infeasible and can assume that H is a random binary matrix. Decryption
thus consists in solving an instance of the CSD problem where one knows that
one and only one solution exists.

Having a single solution rules out any attempt to use GBA, or at least, any
attempt to use GBA would consist in using the classical birthday attack. For this
reasons the best attacks against the McEliece and Niederreiter cryptosystems
are all based on ISD. Table 3 gives the work factors we obtain using our bound
from Sect. 3. For the classical McEliece parameters (10, 50) this bound can be
compared to the work factors computed by non-idealized algorithms. Canteaut
and Chabaud [10] obtained a work factor of 264.2 and Bernstein, Lange and
Peters [6] a work factor of 260.5. As one can see, the gap between our bound and
their complexities is very small indicating two things:

– our bound on ISD is tight when evaluating the practical security of some
McEliece parameters,

– the best ISD-based algorithms are sufficiently advanced to make our assump-
tion that Gaussian elimination is free almost realistic. Almost no margin is
left for these techniques to improve and better attacks will need to introduce
new methods.

5.2 Attacking the CFS Signature Scheme

The attack we present here is due to Daniel Bleichenbacher, but was never pub-
lished. We present what he explained through private communication including
a few additional details.

The CFS signature scheme [13] is based on the Niederreiter cryptosystem:
signing a document requires to hash it into a syndrome and then try to decode

12



Table 3. Work factors for the ISD lower-bound we computed for some typical
McEliece/Niederreiter parameters. The code has length n = 2m and codimension
r = mw and corrects w errors.

(m, w) optimal p optimal ` binary work factor

(10, 50) 4 22 259.9

(11, 32) 6 33 286.8

(12, 41) 10 54 2128.5

this syndrome. However, for a Goppa code correcting w errors, only a fraction
1
w! of the syndromes are decodable. Thus, a counter is appended to the message
and the signer tries successive counter values until one hash is decodable. The
signature consists of both the error pattern of weight w corresponding to the
syndrome and the value of the counter giving this syndrome.

Attacking this construction consists in forging a valid signature for a chosen
message. One must find a matching counter and error pattern for a given doc-
ument. This looks a lot like a standard CSD problem instance. However, here
there is one major difference with the case of McEliece or Niederreiter: instead of
having one instance to solve, one now needs to solve one instance among many
instances. One chooses a document and hashes it with many different counters
to obtain many syndromes: each syndrome corresponds to a different instance.
It has no importance which instance is solved, each of them can give a valid
“forged” signature.

For ISD algorithms, having multiple instances available is of little help, how-
ever, for GBA, this gives us one additional list. Even though Goppa code param-
eters are used and an instance has less than a solution on average, this additional
list makes the application of GBA with a = 2 possible. This will always be an
“unbalanced” GBA working as follows:

– first, build 3 lists L0, L1, and L2 of XORs of respectively w0, w1 and w2

columns of H (with w = w0 + w1 + w2). These lists can have a size up to(
n
wi

)
but smaller sizes can be used,

– merge the two lists L0 and L1 into a list L′0 of XORs of w0 + w1 columns of
H, keeping only those starting with λ zeros (we will determine the optimal
choice for λ later). L′0 contains 1

2λ

(
n

w0+w1

)
elements on average.

– All the following computations are done on the fly and additional lists do
not have to be stored. Repeat the following steps:
• choose a counter and compute the corresponding document hash (an

element of the virtual list L3),
• XOR this hash with all elements of L2 matching on the first λ bits (to

obtain elements of the virtual list L′1),
• look up each of these XORs in L′0: any complete match gives a valid

signature.

The number L of hashes one will have to compute on average is such that:

1
2λ

(
n

w0 + w1

)
× L

2λ

(
n

w2

)
= 2r−λ ⇔ L =

2r+λ

(
n

w0+w1

)(
n

w2

) .

13



The memory requirements for this algorithm correspond to the size of the largest
list stored. In practice, the first level lists Li can be chosen so that L′0 is always
the largest, and the memory complexity is 1

2λ

(
n

w0+w1

)
. The time complexity cor-

responds to the size of the largest list manipulated: max( 1
2λ

(
n

w0+w1

)
, L, L

2λ

(
n

w2

)
).

The optimal choice is always to choose w0 = dw
3 e, w2 = bw

3 c, and w1 =
w − w0 − w2. Then, two different cases can occur: either L′1 is the largest list,
or one of L′0 and L3 is. If L′1 is the largest, we choose λ so as to have a smaller
list L′0 and so a smaller memory complexity. Otherwise, we choose λ so that L′0
and L3 are of the same size to optimize the time complexity. Let T be the size
of the largest list we manipulate and M the size of the largest list we store. The
algorithm has time complexity O(T log T ) and memory complexity O(M logM)
with:





if 2r

( n
w−bw/3c)

≥
√

2r

( n
bw/3c)

then T = 2r

( n
w−bw/3c)

and M = ( n
w−bw/3c)
( n
bw/3c)

,

else T = M =
√

2r

( n
bw/3c)

.

This algorithm is realistic in the sense that only integer values are used,
meaning that effective attacks should have time/memory complexities close to
those we present in Table 4. Of course, for a real attack, other time/memory
tradeoffs might be more advantageous, resulting in other choices for λ and the
wi.

Table 4. Time/memory complexities of Bleichenbacher’s attack against the CFS sig-
nature scheme. The parameters are Goppa code parameters so r = mw and n = 2m.

w = 8 w = 9 w = 10 w = 11 w = 12

m = 15 251.0/251.0 260.2/243.3 263.1/255.9 267.2/267.2 281.5/254.9

m = 16 254.1/254.1 263.3/246.5 266.2/260.0 271.3/271.3 285.6/259.0

m = 17 257.2/257.2 266.4/249.6 269.3/264.2 275.4/275.4 289.7/263.1

m = 18 260.3/260.3 269.5/252.7 272.4/268.2 279.5/279.5 293.7/267.2

m = 19 263.3/263.3 272.5/255.7 275.4/272.3 283.6/283.6 297.8/271.3

m = 20 266.4/266.4 275.6/258.8 278.5/276.4 287.6/287.6 2101.9/275.4

m = 21 269.5/269.5 278.7/261.9 281.5/280.5 291.7/291.7 2105.9/279.5

m = 22 272.6/272.6 281.7/265.0 284.6/284.6 295.8/295.8 2110.0/283.6

5.3 Attacking the FSB Hash Function

FSB [1] is a candidate for the SHA-3 hash competition. The compression func-
tion of this hash function consists in converting the input into a low weight word
and then multiplying it by a binary matrix H. This is exactly a syndrome com-
putation and inverting this compression function requires to solve an instance
of the CSD problem. Similarly, finding a collision on the compression function
requires to find two low weight words having the same syndrome, that is, a word

14



of twice the Hamming weight with a null syndrome. In both cases, the security of
the compression function (and thus of the whole hash function) can be reduced
to the hardness of solving some instances of the CSD problem. For inversion (or
second preimage), the instances are of the form CSD(H, w, s) and, for collision,
of the form CSD(H, 2w, 0).

Compared to the other code-based cryptosystems we presented, here, the
number of solutions to these instances is always very large: we are studying a
compression function, so there are a lot of collisions, and each syndrome has a lot
of inverses. For this reason, both ISD and GBA based attacks can be used. Which
of the two approaches is the most efficient depends on the parameters. However,
for the parameters proposed in [1], ISD is always the best choice for collision
search and GBA the best choice for inversion (or second preimage). Table 5
contains the attack complexities given by our bounds for the proposed FSB
parameters. As you can see, the complexities obtained with GBA for inversion
are lower than the standard security claim. Unfortunately this does not give an
attack on FSB for many reasons: the version of GBA we consider is idealized
and using non-integer values of a is not practical, but most importantly, the
input of the compression of FSB is not any word of weight w, but only regular
words, meaning that the starting lists for GBA will be much smaller in practice,
yielding a smaller a and higher complexities.

Table 5. Complexities of the ISD and GBA bounds we propose for the official FSB
parameters.

inversion collision
n r w ISD GBA ISD GBA

FSB160 5× 218 640 80 2211.1 2156.6 2100.3 2118.7

FSB224 7× 218 896 112 2292.0 2216.0 2135.3 2163.4

FSB256 221 1 024 128 2330.8 2245.6 2153.0 2185.7

FSB384 23× 216 1 472 184 2476.7 2360.2 2215.5 2268.8

FSB512 31× 216 1 984 248 2687.8 2482.1 2285.6 2359.3

Conclusion

In this article we have reviewed the two main families of algorithms for solving
instances of the CSD problem. For each of these we have discussed possible
tweaks and described idealized versions of the algorithms covering those tweaks.
The work factors we computed for these idealized versions are lower bounds
on the effective work factor of existing real algorithms, but also on the future
improvements that could be implemented. Solving CSD more efficiently than
these bounds would require to introduce new techniques, never applied to code-
based cryptosystems.

15



For these reasons, the bounds we give can be seen as a tool one can use to
select parameters for code-based cryptosystems. We hope they can help other
designers choose durable parameters with more ease.

References

1. D. Augot, M. Finiasz, Ph. Gaborit, S. Manuel, and N. Sendrier. SHA-3 proposal:
FSB. Submission to the SHA-3 NIST competition, 2008.

2. D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based cryp-
tographic hash function. In E. Dawson and S. Vaudenay, editors, Progress in
Cryptology - Mycrypt 2005, number 3715 in LNCS, pages 64–83. Springer-Verlag,
2005.

3. T. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length of
the mceliece cryptosystem. In B. Preneel, editor, AFRICACRYPT 2009, LNCS.
Springer-Verlag, 2009. to appear.

4. E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory,
24(3), May 1978.

5. D. Bernstein, J. Buchmann, and J. Ding, editors. Post-Quantum Cryptography.
Springer, 2008.

6. D. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece
cryptosystem. In J. Buchmann and J. Ding, editors, Post-Quantum Cryptography,
number 5299 in LNCS, pages 31–46. Springer-Verlag, 2008.

7. D. J. Bernstein, T. Lange, C. Peters, R. Niederhagen, and P. Schwabe. Implement-
ing wagner’s generalized birthday attack against the sha-3 candidate fsb. Cryptol-
ogy ePrint Archive, Report 2009/292, 2009. http://eprint.iacr.org/.

8. D. J. Bernstein, T. Lange, C. Peters, and H. van Tilborg. Explicit bounds for
generic decoding algorithms for code-based cryptography. In Pre-proceedings of
WCC 2009, pages 168–180, 2009.

9. P. Camion and J. Patarin. The knapsack hash function proposed at crypto’89 can
be broken. In D. W. Davies, editor, Advances in Cryptology - EUROCRYPT’91,
number 547 in LNCS, pages 39–53. Springer-Verlag, 1991.

10. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378,
January 1998.

11. P. Chose, A. Joux, and M. Mitton. Fast correlation attacks: An algorithmic point
of view. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 209–221. Springer, 2002.

12. J.-S. Coron and A. Joux. Cryptanalysis of a provably secure cryptographic hash
function. Cryptology ePrint Archive, 2004. http://eprint.iacr.org/2004/013/.

13. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital
signature scheme. In C. Boyd, editor, Asiacrypt 2001, number 2248 in LNCS, pages
157–174. Springer-Verlag, 2001.

14. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosys-
tems. Cryptology ePrint Archive, Report 2009/414, 2009. http://eprint.iacr.org/.

15. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-
key cryptosystem. In C. G. Günther, editor, Advances in Cryptology - EURO-
CRYPT’88, number 330 in LNCS, pages 275–280. Springer-Verlag, 1988.

16



16. J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, September 1988.

17. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114–116,
January 1978.

18. C. Aguilar Melchor, P.-L. Cayrel, and P. Gaborit. A new efficient threshold ring
signature scheme based on coding theory. In J. Buchmann and J. Ding, editors,
PQCrypto, number 5299 in LNCS, pages 1–16. Springer-Verlag, 2008.

19. L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Mathieu, editor,
Proceedings of SODA 2009, pages 586–595. SIAM, 2009.

20. R. Misoczki and P. S. L. M. Barreto. Compact McEliece keys from Goppa codes.
Cryptology ePrint Archive, Report 2009/187, 2009. http://eprint.iacr.org/.

21. H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

22. J. Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding theory and applications, number 388 in LNCS, pages
106–113. Springer-Verlag, 1989.

23. J. Stern. A new identification scheme based on syndrome decoding. In D. R.
Stinson, editor, Advances in Cryptology - CRYPTO’93, number 773 in LNCS, pages
13–21. Springer-Verlag, 1993.

24. P. Véron. A fast identification scheme. In IEEE Conference, ISIT’95, page 359,
Whistler, BC, Canada, September 1995.

25. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO’02,
number 2442 in LNCS, pages 288–303. Springer-Verlag, 2002.

A Comments on the assumptions

We have assumed the following in Sect. 2:

(B1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are
uniformly and independently distributed in Wn,w.

(B2) The cost of the execution of the algorithm is approximatively equal to

` · ](ba 1) + ` · ](ba 2) + K0 · ](ba 3),

where K0 is the cost for testing e1H
T = s+ e2H

T given that h`(e1H
T ) =

h`(s + e2H
T ) and ](ba i) is the expected number of execution of the

instruction (ba i) before we meet the (success) condition.

The first assumption has to do with the way the attacker chooses the sets W1

and W2. In the version presented at the beginning of Sect. 2, they use different
sets of columns and thus all pairs (e1, e2) lead to different words e = e1 + e2.
When W1 and W2 increase, there is some waste, that is some words e = e1 + e2

are obtained several times. A clever choice of W1 and W2 may decrease this
waste, but this seems exceedingly difficult. The “overlapping” approach

H = H1 H2

17



is easy to implement and behaves (almost) as if W1 and W2 where random (it
is even sometimes slightly better). The second assumption counts only ` binary
operations to perform the sum of w/2 columns of ` bits. This can be achieved by
a proper scheduling of the loops and by keeping partial sums. This was described
and implemented in [6]. We also neglect the cost of control and memory handling
instructions. This is certainly optimistic but on modern processors most of those
costs can be hidden in practice. The present work is meant to give security levels
rather than a cryptanalysis costs. So we want our estimates to be implementation
independent as much as possible.

Similar comments apply to the assumptions (I1) and (I2) of Sect. 3.

B A Sketch of the Proof of Proposition 2

We provide here some clues for the proof of Proposition 2. More details on this
proof and on the proofs of the other results of this paper can be found in the
extended version [14].

Proof. (of Proposition 2 - Sketch) In one execution of (main loop) we exam-
ine λ(z)

(
k+`

p

)
distinct value of e1 + e2, where z = |W1||W2|/

(
k+`

p

)
and λ(z) =

1 − exp(−z). The probability for one particular element of Wk+`,p to lead to a
solution is

P =

(
r−`
w−p

)

min
((

n
w

)
, 2r

) .

Thus the probability for one execution of (main loop) to lead to (success) is

Pp(`) = 1− (1−P )λ(z)(k+`
p ) ≈ 1− exp

(
− λ(z)

Np(`)

)
where Np(`) =

min
((

n
w

)
, 2r

)
(

r−`
w−p

)(
k+`

p

)

When Np(`) is large (much larger than 1), we have Pp(`) ≈ λ(z)/Np(`) and a
good estimate for the cost is

Np(`)
λ(z)

(
`|W1|+ `|W2|+ Kw−p

λ(z)
(
k+`

p

)

2`

)
.

Choosing |W1|, |W2|, ` and z which minimize this formula leads to the first
formula of the statement.

Else we have Np(`) < 1 and the expected number of execution of (main
loop) is not much higher than one (obviously it cannot be less). In that case
we are in a situation very similar to a birthday attack in which the list size is
L =

√
1/P = 2r/2/

√(
r−`
w−p

)
. This gives a cost of 2L log(Kw−pL) which has to

be minimized in `, leading to the second formula of the statement.

18


