
Breaking the F-FCSR-H Stream Cipher

in Real Time

Martin Hell and Thomas Johansson

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. The F-FCSR stream cipher family has been presented a few
years ago. Apart from some �aws in the initial propositions, corrected
in a later stage, there are no known weaknesses of the core of these
algorithms. The hardware oriented version, called FCSR-H, is one of the
ciphers selected for the eSTREAM portfolio.
In this paper we present a new and severe cryptanalytic attack on the
F-FCSR stream cipher family. We give the details of the attack when
applied on F-FCSR-H. The attack requires a few Mbytes of received
sequence and the complexity is low enough to allow the attack to be
performed on a single PC within seconds.

1 Introduction

The cryptographic scene include a variety of e�cient and trusted block ciphers.
However the same does not seem to hold for stream ciphers. The stream ciphers
that have received attention through use in various standards tend to have more
or less serious security weaknesses. Examples are A5 algorithms used in GSM,
the RC4 algorithm used in for example WLAN applications through the WEP
protocol and the E0 stream cipher used in Bluetooth.

Based on a belief that a dedicated stream cipher still has a capability of
signi�cantly outperforming a block cipher, the eSTREAM project was launched
in 2004. The goal of this project was to solicit and evaluate submitted proposals
of stream ciphers for future standardization. The main evaluation criteria set
up were long-term security, e�ciency in terms of performance, �exibility and
market requirements.

The eSTREAM project considered two di�erent pro�les, one targeting soft-
ware implemented stream ciphers; and one for hardware implemented stream
ciphers (in particular constrained devices). The hardware category received a
total of 25 submitted proposals. After three phases of evaluation, the �nal eS-
TREAM portfolio recommended four of them. One of them is a design called
F-FCSR-H v2.

F-FCSR-H v2 is one of several algorithms in the F-FCSR family of stream
ciphers designed by the French researchers F. Arnault, T.P. Berger, and C. Lau-
radoux. The family of ciphers is based on feedback with carry shift registers
(FCSR) together with a �ltering function. The idea of using FCSRs to gener-
ate sequences for cryptographic applications was initially proposed by Klapper

and Goresky in [6]. The F-FCSR family was introduced in [1], proposing four
concrete constructions. These proposals were cryptanalyzed in [5]. The initial
version submitted to eSTREAM, targeting hardware, was called F-FCSR-H. It
was shown in [4] that this construction also had security problems. This lead to
a change in the initialization procedure and the resulting algorithm was named
F-FCSR-H v2. This paper will focus on the speci�cation of F-FCSR-H v2 given
in [2].

The eSTREAM class of hardware stream ciphers (and F-FCSR-H v2 in par-
ticular) prescribes a key of length 80 bits. Apart from the initial �aws (on the
IV-setup procedure, and a TMD tradeo� attack), there are yet no known weak-
nesses of the core of these algorithms and the best attack on F-FCSR-H v2 is an
exhaustive key search.

In this paper we present a new and severe cryptanalytic attack on the F-
FCSR stream cipher family. We give the details of the attack when applied
on F-FCSR-H v2. The attack is based on observing that the contribution of
nonlinearity comes from the carry bits and that sometimes this contribution is
too low and the system can be linearized. The whole attack require a few Mbytes
of received sequence and the complexity is low enough to allow the attack to be
performed on a single PC within seconds. The attack has been fully implemented
using the designers' reference implementation.

In Section 2 we give an overview of the FCSR automaton and the F-FCSR
construction. In Section 3 we then discuss the underlying weaknesses giving the
attack. In Section 4 we give a description of the attack and in Section 5 we give
a more detailed analysis of parts of the attack and we also give the estimated
and simulated complexities. In Section 6 we give a rough outline of how the key
could be reconstructed from a known state.

2 Recalling the FCSR automaton and the F-FCSR

construction

Recall that a Feedback with Carry Shift Register (FCSR) is a device that com-
putes the binary expansion of a 2-adic number p/q, where p and q are some
integers, with q odd. For simplicity one can assume that q < 0 < p < |q|. Follow-
ing the notation from [2], the size n of the FCSR is the value such that n + 1 is
the bitlength of |q|. In the stream cipher construction, p depends on the secret
key (and the IV), and q is a public parameter. The choice of q induces some prop-
erties of the FCSR. The most important one is that it completely determines the
length of the period T of the keystream. The conditions for an optimal choice
as used in the F-FCSR family of stream ciphers are: q is a (negative) prime of
bitsize n+1; the order of 2 modulo q is |q|−1; and T = (|q|−1)/2 is also prime.
Furthermore, set d = (1+ |q|)/2. Then the Hamming weight W (d) of the binary
expansion of d is checked to be not too small, say W (d) > n/2.

The FCSR automaton as described in [2] is one way to e�ciently implement
the generation of the 2-adic expansion sequence. It contains two registers: the
main register M and the carries register C. The main register M contains n

cells. Let M = (mn−1, mn−2, . . . ,m1, m0) and associate M to the integer M =∑n−1
i=0 mi · 2i.

Recall the positive integer d = (1 + |q|)/2 and its binary representation

d =
∑n−1

i=0 di · 2i. The carries register contains l active cells where l + 1 is the
number of nonzero di binary digits in d. The active cells are the ones in the
interval 0 ≤ i ≤ n− 2 and dn−1 = 1 always hold. For this purpose we write the
carries register C as C = (cn−2, cn−3, . . . , c1, c0) and associate C to the integer

C =
∑n−2

i=0 ci · 2i. Note that only l of the bits in C are active and the remaining

ones are set to zero. Let the integer p be written as p =
∑n−1

i=0 pi · 2i, where
pi ∈ {0, 1}. Then the 2-adic expansion of the number p/q is computed by the
automaton given in Figure 1.

pn−1 - pn−2 - - p1 - p0 --

�
6

-

-
dn−1 �

6

6

-
dn−2 �

6

6

-
dn−3 �

6

6

-
d1 �

6

6

-
d0

Fig. 1. Automaton to compute the 2-adic expansion of p/q.

The automaton is referred to as the Galois representation and it is very
similar to the Galois representation of a usual LFSR. Other representations in
connection with F-FCSR were considered in [7]. For all de�ned variables we
also introduce a time index t, and let M(t) denote the content of M at time t.
Similarly, C(t) denotes the content of C at time t.

The addition with carry, denoted � in Figure 1, has a one bit memory (the
carry). It takes three inputs in total, two external inputs and the carry bit. It
outputs the XOR of the inputs and it sets the new carry value to one if the
integer sum of the three inputs is two or three.

In Figure 2 we give an illustrating example (following [2]). Here q = −347
giving d = 174 and its binary expansion (10101110). The F-FCSR family of
stream ciphers uses this particular automaton as the central part of their con-
struction. So for future considerations in this paper we only need to recall the
FCSR automaton as implemented in Figure 1 and Figure 2. Important facts are
that the FCSR automaton has n bits of memory in the main register and l bits
in the carry register, in total n + l bits. If (M,C) is our state, then many states
are equivalent in the sense that starting in equivalent states will produce the
same output. As the period is |q| − 1 ≈ 2n the number of states equivalent to a
given state is in the order of 2l.

- m7 - m6 -

6

?
6

m5 - m4 -

6

?
6

m3 -

6

?
6

m2 -

6

?
6

m1 - m0 -

c5 c3 c2 c1

d 1

0

0

0

1 0

0

1 1 1 0

0

M(t)

C(t)

Fig. 2. Example of an FCSR.

2.1 Describing the F-FCSR-H Construction

The F-FCSR family of stream ciphers combines the FCSR automaton with a
�ltering function. The �ltering function extracts keystream bits from the state of
the main register in the FCSR automaton. The �lter is a simple linear function
of bits from the state. In order to increase the throughput, the constructions
extract not only one but many bits each clock cycle. The number of extracted
bits is eight for F-FCSR-H. Thus there are 8 di�erent �lters, now called sub�lters,
used to extract an 8 bits keystream byte after each transition of the automaton.

A one bit �lter F is a bitstring (f0, . . . , fn−1) of length n. The output bit of
the �lter is de�ned to be,

F (M) =
n−1⊕
i=0

fimi,

i.e., the scalar product. As F is a known string the output is a linear function
(in F2).

For the 8 bit �lter, it consists of 8 such binary functions F0, F1, . . . , F7. How-
ever, �lter Fj uses only cells mi in the main register that satis�es i = j (mod 8).

The parameters for F-FCSR-H are now given. The proposal uses key length
80 and IV of bitsize v with 32 ≤ v ≤ 80. The core of the F-FCSR-H algorithm
has remained identical to the one originally proposed in [1]. Only the key and
IV initialization procedure was updated in [2].

The FCSR length (size of the main register) is n = 160. The carries register
contains l = 82 cells. The feedback is determined by the prime

q = 1993524591318275015328041611344215036460140087963.

This gives

d = (1 + |q|)/2 = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)

(hexadecimal notation). So addition boxes and carries cells are present at the
positions matching the binary ones in the binary expansion of d. To extract one
keystream byte, FCSR-H uses the static �lter

F = d = (AE985DFF26619FC58623DC8AAF46D5903DD4254E).

Using the designers notation, this means that the 8 sub�lters (sub�lter j is
obtained by selecting the bit j in each byte of F) are given by

F0 = (00110111010010101010), F4 = (01110010001000111100),
F1 = (10011010110111000001), F5 = (10011100010010001010),
F2 = (10111011101011101111), F6 = (00110101001001100101),
F3 = (11110010001110001001), F7 = (11010011101110110100).

So the F-FCSR-H generator outputs one byte every time instance and it is simply
given as

z = (m8 + m24 + m40 + m56 + . . . + m136, m1 + m49 + . . . , . . . ,m23 + . . .).

The key and IV initialization consists of loading key and IV into the main
register, clocking 20 times and extracting 20 bytes of output. These 160 bits are
used as initial state in the main register of the FCSR automaton and it is clocked
162 times without producing output. More details are given in Section 6.

The second relevant construction in the F-FCSR family, called F-FCSR-16,
is constructed in a similar manner. However it has a larger state and extracts 16
bits every clock cycle.

3 Weaknesses of the FCSR Automaton and the F-FCSR

Family of Stream Ciphers

As the �ltering function is F2 linear, essentially all the security of the FCSR con-
structions rely on the FCSR automaton ability to create nonlinearity. It might
at �rst glance look like this is achieved. The nonlinearity lies in the carry bit
calculation, and carry bits are quickly spread over the entire main register. They
enter new carry bit calculations, thus increasing the degree of nonlinear expres-
sions rapidly. This is probably the �rst way one tries to analyze the construction,
looking at the algebraic expressions created when the automaton is clocked a few
times. It looks di�cult to �nd some useful algebraic expression or some correla-
tion between di�erent variables that can be tracked all the way to the keystream
symbols.

Instead, we look at the nonlinearity from a di�erent perspective. The main
observation we use is the fact that the carry bits in the carries register behave
very far from random. The key point is that they all have one common input
variable, the feedback bit. Let us look at what happens for a carry bit when the
feedback bit is set to zero. We can see that when the feedback bit is zero then a
carry bit that is zero must remain zero whereas if the carry bit is one then by
probability 1/2 it will turn to zero (assuming random input on the active input).
If we now assume that the feedback bit is zero a few consecutive time instances,
then it is very likely that the carry bit is pushed to zero.

Actually, the same arguments can be repeated when the feedback bit is one.
Then the carry is more likely to be one and by repeatedly having ones on the

feedback bit we push the carry value to one. However, for the moment we ignore
this case.

Since the feedback bit is a common input to all carries, this has a dramatic
e�ect on the carries vector C. We know that C has l = 82 active cells (carry
bits) and we can expect that on average C will have a weight of 41. However, the
weight is strongly correlated to the values of the feedback bit. Every time the
feedback bit is zero all cells in C that are zero must remain zero, whereas those
with value one has a 50% chance of becoming zero. So a zero feedback bit at time
t gives a carries vector at time t+1 of roughly half the weight compared to time
t. This behavior is easily checked by just running the generator and observing
the contents of C.

Having found this crucial observation, the attack looks almost trivial. We
assume that we have a number of consecutive feedback bits all zero. This would
push the carries register to the all zero content. Then 19 more zero feedback bits
to keep C zero all the time. During this time the generator outputs 20 bytes, or
160 bits. We can thus reconstruct the main register from knowing these values
and the fact that C is zero. The only problem is that this does not work.

4 Describing the Attack

The underlying ideas of the attack were given in the previous section. However,
the assumption that a large number of consecutive zero feedback bits would push
the weight of C to zero is wrong. By simply running the generator we could
see that this never happened. Once you look at the details, there is a simple
explanation for this. Look at the FCSR automaton as illustrated in Figure 2,
especially the last (least signi�cant) active cell c1 among the carries. Assume
that the feedback bits are zero from time t to t+ t0 and the feedback bit at time
t−1 was one. Now since the feedback bit at time t−1 was one and the feedback
bits are zero from time t to t + t0 the last carry addition must return zero to
the next main register cell. Thus it must set the carry to one. Now, when the
carry is one the only way we can have zero output and thus zero feedback is
if the main register input to the last carry addition is one. Thus the last carry
cell will never be pushed to zero, as we initially hoped. The fact that the carry
vector and the feedback will not be zero for several consecutive clock cycles was
actually observed in [3]. It was shown that this situation can not occur if the
FCSR automata has reached a state of the main cycle, which is the case for all
proposed F-FCSR stream ciphers.

However, this is not a problem. We slightly modify our approach and then it
will work. As we described above, the all zero feedback sequence can appear if
the main register input to the last carry addition is the all one sequence and we
start with setting the carry bit to one. Then the all zero feedback will push the
weight of C to one (the last active carry cell is always one). So it is natural to
de�ne the following event.

Event Ezero : C(t) = C(t + 1) = . . . = C(t + 19) = (0, 0, . . . , 0, 1, 0).

When this happens we know that we have had 20 consecutive zeros in the feed-
back and that the carry has remained constant for 20 time instances. Using our
previous arguments we would think that we need about log2 82 ≈ 7 zeros in the
feedback to push the weight of C to 1 and then an additional 19 zeros in the
feedback to keep C constant for 20 time instances. Assuming a uniform distri-
bution on the feedback bits this would lead to a probability of very roughly 2−26

for the event Ezero to happen. As we will see in the next section is it possible
to use more information about the state in order to increase the e�ciency of the
attack. For now, let us just assume that we know how the main register M at
time t + 1, t + 2, . . . , t + 19 depends on M(t) and that this dependency is linear.

Assuming that event Ezero occurs, the remaining part is to recover the main
register from the given keystream bytes z(t), z(t + 1), . . . , z(t + 19). This will
lead to a linear system of equations with 160 equations in 160 unknowns. This
could basically be solved through Gaussian elimination, costing something like
1603 operations. However, we observe that the equations have the special byte
structure explained before. There are 20 equations that only include the main
register variables m0, m8, m16, . . . ,m152, there are 20 equations that only include
m1, m9, m17, . . . ,m153, etc. Note that we are only shifting in zeros in M due to
the assumption.

So it is much more e�cient to treat each 20 by 20 system of equations in-
dependently. Let us describe the received systems of linear equations in more
detail. We denote the least signi�cant bit of z(t) by z(t)0, the next bit by z(t)1
etc, i.e., the output byte z(t) at time t is given by

z(t) = (z(t)7︸ ︷︷ ︸
MSB

, z(t)6, z(t)5, z(t)4, z(t)3, z(t)2, z(t)1, z(t)0)︸ ︷︷ ︸
LSB

. (1)

Then the linear equations involving the main register bits mi when i ≡ 0 mod 8
at time t can be written as

z(t)0 = m8 ⊕m24 ⊕ . . .⊕m136,

z(t + 1)7 = m24 ⊕m40 ⊕ . . .⊕m152,

...

z(t + 19)5 = m32 ⊕m48 ⊕ . . .⊕m152.

Similar equations containing only the main register bits mi such that i ≡ 1
mod 8 can also be listed. The same then goes for equations using only mi bits
when i ≡ 2 mod 8, etc. Altogether, we can for simplicity write

W0 = (z(t)0, z(t + 1)7, . . . , z(t + 19)5),
W1 = (z(t)1, z(t + 1)0, . . . , z(t + 19)6),

...

W7 = (z(t)7, z(t + 1)6, . . . , z(t + 19)4).

The vector of main register values m0, m8, m16, . . . ,m152 is denoted M̂0. Then
we get

W0 = M̂0P0, (2)

where P0 is a known 20 by 20 matrix (determined from the �lter F). Similarly,
M̂i, 1 ≤ i ≤ 7 will denote the main register variables (mi, mi+8, mi+16, . . . ,mi+152).
With this notation we can write the eight 20 by 20 linear systems of equations
as

W0 = M̂0P0,W1 = M̂1P1, . . . ,W7 = M̂7P7. (3)

Of course, some equations need to have 1 added to them since we have to com-
pensate for the fact that the carry vector is given as C = (0, 0, . . . , 0, 1, 0).

The idea is now to precompute, for each linear system, the solution M̂i for
each possible value of the vector of keystream bits Wi. This would require 8
tables of size 220 entries, each entry being a 20 bit vector. Though, the real time
phase will be more e�cient if 20 bytes are stored in each entry, having values
only in the bit positions corresponding to the bits in M̂i. Then a full candidate
state can be found by just ORing together the 8 saved contributions.

Finding the main register content would then require only to compute the
vectors Wi, 0 ≤ i ≤ 7 from the keystream and then 8 table lookups to get the
candidate main register state. The part of a candidate main register state given
by Wi is denoted TABLEi[Wi].

We can note that the Pi matrices are not all of full rank. This means that for
our table of solutions, some Wi values will have no solutions whereas other values
will have multiple (a power of two) solutions. This fact will then be combined over

all 8 systems of equations, leading to a total number of S =
∏7

i=0 si solutions,
where si is the number of solutions to the ith system. Thus TABLEi[Wi] returns
a set of zero or more solutions.

In our case this property will increase the e�ciency of the attack because if we
get a value W0 for which TABLE0[W0] returns no solutions we can immediately
stop and conclude that our assumption of event Ezero was wrong.

We now summarize our attack as follows.

0. for t = 1 to Tmax do
1. Select the 20 consecutive output bytes z(t), z(t + 1), . . . , z(t + 19).

for i = 0 to 7
Compute Wi

if TABLEi[Wi] has no solutions
go to 0.

else

store all possible values for M̂i.
end for

3. "Check candidate states": Test all possible values of (M̂0, M̂1, . . . , M̂7),
by checking if a candidate value generates z(t + 20), z(t + 21),

4. go to 0.

5 Improving the Attack Complexity

In the previous section we assumed that the carry vector was �xed to C(t) =
C(t + 1) = . . . = C(t + 19) = (0, 0, . . . , 0, 1, 0) for all considered time instances.
However we note that this is not necessary. As long as we can express the output
bits in z(t), z(t+1), . . . , z(t+19) as linear equations in the main register variables
at time t, the attack will work.

Denote the state at time t as (M,C)(t) and let x represent bits in the state
that the output can be expressed as linear combinations of. Let ? represent bits
that we do not need to know the value of. Assume that the state (M,C)(t) is
given by

(M,C)(t) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
16

00, 000 . . . 0010).

Then, the state will be updated as

(M,C)(t + 1) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
15

00, 000 . . . 0010),

(M,C)(t + 2) = (xx . . . xx0 11 . . . 11︸ ︷︷ ︸
14

00, 000 . . . 0010),

...

(M,C)(t + 15) = (xxxxxxxx . . . xx0100, 000 . . . 0010),
(M,C)(t + 16) = (xxxxxxxx . . . xxx000, 000 . . . 0010),
(M,C)(t + 17) = (xxxxxxxx . . . xxxx10, 000 . . . 0000),
(M,C)(t + 18) = (xxxxxxxx . . . xxxxx1, 000 . . . 0000),
(M,C)(t + 19) = (xxxxxxxx . . . xxxxxx, ???????????).

The only di�erence from the case presented in the previous section is that we
should not compensate for the carry bit when computing the state (M,C)(t + 18)
and we need to compensate for the 1 in the feedback when computing the state
(M,C)(t + 19). Note that the feedback used when calculating (M,C)(t + 19)
will cause the carry vector to be unpredictable. However, only M(t+19) is used
to extract z(t + 19) and knowledge of the carry vector here is not necessary.
Using these observations, we can conclude that we only require the carry vector
to take the value (0, 0, . . . , 0, 1, 0) at least 17 consecutive time instances. Thus,
we update the de�nition of Ezero to

Event Ezero : C(t) = C(t + 1) = . . . = C(t + 16) = (0, 0, . . . , 0, 1, 0).

The probability of Ezero has been simulated using in total 2 TB data and 2000
di�erent keys and is estimated to be

P (Ezero) = 2−25.3. (4)

Thus, we would expect that we need on average 225.3 bytes of keystream to
recover the state.

The attack using the observations from this section has been fully imple-
mented. The low complexity of the attack allows it to be simulated targeting
the full version of F-FCSR-H v2. Using 5000 random keys, the state was recov-
ered using on average 224.7 bytes of keystream. The success rate was 100%. The
slightly lower amount of keystream which was observed compared to the expected
amount can easily be accounted for. For each state there are many equivalent
states and sometimes one of these equivalent states is recovered. As an example, if
C(t) = C(t + 1) = C(t + 15) = (0, 0, . . . , 0, 1, 0) but C(t− 1) 6= (0, 0, . . . , 0, 1, 0),
then (M,C)t−1 can be recovered if it is equivalent to another state (M′,C′)
with C′ = (0, 0, . . . , 0, 1, 0). Since the two states will merge after a few clocks,
the attack will also recover the real state.

A slight improvement of the attack is achieved by noting that we can also look
at the situation when the carry vector is one in all active positions except the last.
The required keystream length will be halved, but the attack time will remain
unchanged. The same simulation was performed with this improvement and as
expected the state was recovered using on average 223.7 bytes of keystream.

6 Recovering the key

We have described a state recovery attack that completely breaks F-FCSR-H.
We now outline how we can also derive the key from a known state at any time
t. In order to shortly describe this, we recall the initialization from the design
document (reference code). Inputs to the initialization are a key K of length 80
bits and an IV of length v ≤ 80 bits. For simplicity we �x the IV length to 80
bits.
Key+IV setup:

1. The main register M is initialized with key and IV by

M = K + 280IV = (IV ||K),

and the carries register C = 0.
2. A loop is iterated 20 times. Each iteration of this loop consists in clocking

the FCSR and then extracting a pseudorandom byte Si(0 ≤ i ≤ 19) using
the �lter.

3. The main register M is reinitialized with these bytes:

M = (S19, S18, . . . , S0),

and C = 0.
4. The FCSR is clocked 162 times (output is discarded).

Keystream generation:

Keystream is produced by �rst clocking the FCSR, then extracting one pseudo-
random byte using �lter F as described before.

Let us assume that time t = 0 appears directly after 3. in the initialization
above, i.e.,

M(0) = (S19, S18, . . . , S0).

Recall from Section 2 that every state (M,C) is associated with an integer p,
1 ≤ p ≤ |q|, as the state generate the 2-adic expansion of p/q, where p = M +2C.
Let us write the value of p at time t as p(t).

Now assume that we have recovered the state M and the carries register
C at some time t. So p(t) is known. Thus p(0) can be derived since p(0) =
p(t) · 2t mod q. This gives us knowledge of M(0) = (S19, S18, . . . , S0), since the
carries register at time 0 was 0.

Recall that (S19, S18, . . . , S0) was the output from F-FCSR-H when the main
register was initialized with IV and key bits with C = 0. If we for simplicity
assume that IV = 0, then the remaining problem is to reconstruct the key bits.
We give a rough outline on how such a reconstruction could be done. A more
careful analysis might reveal more e�cient ways to solve the problem.

The main register starts as M = (080||k79k78 . . . k1k0) and C = 0. The FCSR
is clocked once before any output.

We start by guessing the �rst 8 key bits k7, k6, . . . , k0 that control the feed-
back the �rst 8 output bytes. With known feedback we can describe how every
state bit can be expressed in algebraic form. Note that as long as we have zero
feedback the carries register remain zero and we just get linear equations from
the output bytes. The nonlinearity starts to grow when feedback is one. So as-
suming that the �rst feedback bit is one, we can examine the equations from the
output bytes.

Similarly as before, let K̂0 = (k0, k8, . . . , k72), K̂1 = (k1, k9, . . . , k73), etc. Let
Li(K̂i) denote some linear function of variables in K̂i and let Ci(K̂i1 , K̂i2 , . . . , K̂in)
denote some nonlinear function of variables in K̂i1 , K̂i2 , . . . , K̂in . Then the re-
ceived equations for the �rst output byte have the form

(S0)7 = L0(K̂0),

(S0)1 = L1(K̂1),
...

...

(S0)6 = L7(K̂7).

The next output byte is written

(S1)6 = L8(K̂0) + C8(K̂7),

(S1)7 = L9(K̂1) + C9(K̂0),
...

...

(S1)5 = L15(K̂7) + C15(K̂6),

and then

(S2)5 = L16(K̂0) + C16(K̂6, K̂7),

(S2)6 = L17(K̂1) + C17(K̂7, K̂0),
...

...

(S2)4 = L23(K̂7) + C23(K̂5, K̂6),

and so on. The last one we use is

(S7)0 = L56(K̂0) + C56(K̂1, . . . , K̂6, K̂7),

(S7)6 = L57(K̂1) + C57(K̂2, . . . , K̂7, K̂0),
...

...

(S7)4 = L63(K̂7) + C63(K̂0, . . . , K̂5, K̂6).

When K̂i appears in the linear expression but not in the nonlinear expression
in an equation, we can use the equation to eliminate one variable. Starting
with K̂7 we have 8 such equations. Since we guessed the �rst key byte K̂7

contains 9 unknown variables. By leaving or guessing one bit in K̂7 we can
derive the remaining ones as functions C(K̂0, . . . , K̂5, K̂6). These functions are
inserted instead of K̂7 variables in the remaining equations. Then examining the
equations and looking for those with K̂6 only in the linear part gives 7 more
equations that can be used to eliminate K̂6 variables. Then the same for K̂5

gives 6 more equations etc. Altogether we can remove 36 variables in this way
and we have to do a work e�ort of trying 244 choices of certain key bits. The
algebraic expressions we need to test can be precomputed. Observe that if the
�rst feedback bit is zero (probability 1/2) the complexity drops to 236, two zero
feedback bits give complexity 228, etc.

The key recovery part has not been fully implemented but the given argu-
ments show that also key recovery can be done with low complexity.

7 Conclusions

We have given a very strong attack on the F-FCSR-H stream cipher, a cipher
that has been selected for the eSTREAM portfolio. The state recovery attack
has been fully implemented to attack F-FCSR-H using the designers reference
code. It succeeds in a few seconds using on average 223.7 bytes (≈ 13 Mbyte) of
keystream.

The weakness that was exploited is that the FCSR automata sometimes
temporarily (almost) behaves as a regular LFSR. Together with the fact that
the output �lter is linear, the complete cipher became temporarily linear, which
allowed us to recover the internal state.

References

1. F. Arnault and T. Berger. F-FCSR: Design of a new class of stream ciphers. In
H. Gilbert and H. Handschuh, editors, Fast Software Encryption 2005, volume 3557
of Lecture Notes in Computer Science, pages 83�97. Springer-Verlag, 2005.

2. F. Arnault, T. Berger, and C. Lauradoux. Update on F-FCSR stream ci-
pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/025, 2006.
http://www.ecrypt.eu.org/stream.

3. F. Arnault, T. Berger, and M. Minier. Some results on FCSR automata with applica-
tions to the security of FCSR-based pseudorandom generators. IEEE-IT, p.836-840,
v.54, N.2, February 2008.

4. E. Jaulmes and F. Muller. Cryptanalysis of ECRYPT candidates F-FCSR-8 and
F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046, 2005.
http://www.ecrypt.eu.org/stream.

5. E. Jaulmes and F. Muller. Cryptanalysis of the F-FCSR stream cipher family.
In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography�SAC 2005,
volume 3897 of Lecture Notes in Computer Science, pages 36�50. Springer-Verlag,
2005.

6. A. Klapper and M. Goresky. 2-adic shift registers. In R.J. Anderson, editor, Fast
Software Encryption'93, volume 809 of Lecture Notes in Computer Science, pages
174�178. Springer-Verlag, 1994.

7. S. Fischer, W. Meier, D. Stegemann. Equivalent representations of the F-FCSR
Keystream Generator. In SASC 2008, Workshop Record, pages 87�96.

