
Cryptanalysis of Sosemanuk and SNOW 2.0
Using Linear Masks

Jung-Keun Lee, Dong Hoon Lee, and Sangwoo Park

ETRI Network & Communication Security Division,
909 Jeonmin-dong, Yuseong-gu, Daejeon, Korea

Abstract. In this paper, we present a correlation attack on Sosemanuk
with complexity less than 2150. Sosemanuk is a software oriented stream
cipher proposed by Berbain et al. to the eSTREAM call for stream ci-
pher and has been selected in the final portfolio. Sosemanuk consists of a
linear feedback shift register(LFSR) of ten 32-bit words and a finite state
machine(FSM) of two 32-bit words. By combining linear approximation
relations regarding the FSM update function, the FSM output function
and the keystream output function, it is possible to derive linear approx-
imation relations with correlation −2−21.41 involving only the keystream
words and the LFSR initial state. Using such linear approximation rela-
tions, we mount a correlation attack with complexity 2147.88 and success
probability 99% to recover the initial internal state of 384 bits. We also
mount a correlation attack on SNOW 2.0 with complexity 2204.38.

Keywords: stream cipher, Sosemanuk, SNOW 2.0, correlation attack, linear
mask

1 Introduction

Sosemanuk[3] is a software oriented stream cipher proposed by Berbain et al. to
the eSTREAM call for stream cipher and has been selected in the final portfolio.
The merits of Sosemanuk has been recognized as its considerable security margin
and moderate performance[2].

Sosemanuk is based on the stream cipher SNOW 2.0[11] and the block cipher
Serpent[1]. Though SNOW 2.0 is a highly reputed stream cipher, it is vulnerable
to linear distinguishing attacks using linear masks[14, 15]. To strengthen against
linear distinguishing attacks, Sosemanuk applies the multiplication modulo 232

with a bit rotation in the FSM update function and a Serpent S-box in bit slice
mode in the keystream output function. As of now, there are no known attacks
against Sosemanuk with complexity less than 2226[5].

Linear masking has been used in the linear distinguishing attacks on word-
based stream ciphers such as SNOW 1.0[9], SNOW 2.0, NLS[7], and Dragon[8].
Coppersmith et al.[9] presented a linear distinguishing attack on SNOW 1.0.
They identified linear approximation relations of large correlation involving only
the LFSR states and the keystream words. Then using simple bitwise recur-
rence relations between the LFSR state words, they were able to mount a linear

distinguishing attack on SNOW 1.0. Watanabe et al.[15] presented a linear dis-
tinguishing attack on SNOW 2.0 and then Nyberg and Wallén[14] refined the
attack.

On the other hand, Berbain et al.[4] presented a correlation attack on Grain
using linear approximation relations between the initial LFSR state and the
keystream bits to recover the initial LFSR state. As to solving systems of linear
approximation equations, similar technique was used in [6] and iterative decoding
technique was used in [12].

In this paper, combining the linear masking method with the techniques in [4]
using fast Walsh transform to recover the initial LFSR state of Grain, we mount
a correlation attack on Sosemanuk. The time, data and memory complexity are
all less than 2150.

This paper is organized as follows. In Sect. 2, we present a description of
Sosemanuk. In Sect. 3, we show how to get approximation relations between the
initial LFSR state and the keystream words. In Sect. 4, we describe the attack
using the approximation relations. In Sect. 5, we present simulation results. In
Sect. 6, we present a correlation attack on SNOW 2.0. We conclude in Sect. 7.

2 Preliminaries

2.1 Notations and Definitions

We define the correlation of a function with respect to masks as follows. Let
f : (GF(2)n)k → GF(2)n be a function and let Γ0, Γ1, . . . , Γk be n-bit masks.
Then the correlation of f with respect to the tuple (Γ0;Γ1, . . . Γk) of masks is
defined as

cf (Γ0; Γ1, . . . , Γk) := 2Prob(Γ0 · f(x1, . . . , xk) = Γ1 · x1 ⊕ . . .⊕ Γk · xk)− 1,

where · represents the inner product which will be omitted henceforth. We also
define the correlation of an approximation relation as

2Prob(the approximation holds)− 1 .

The following notations will be used in the following sections.

– wt(x): the Hamming weight of a binary vector or a 32-bit word x
– ¢: addition modulo 232

– ×: multiplication modulo 232

– [i1, . . . , im]: the 32-bit linear mask 2i1 + . . . + 2im (i1, . . . , im are distinct
integers in between 0 and 31.)

– c+(Γ0;Γ1, . . . , Γm): the correlation of f(x1, . . . , xm) = x1 ¢ . . . ¢ xm with
respect to the tuple (Γ0; Γ1, . . . Γk) of 32-bit masks

– c2+(Γ) := c+(Γ ;Γ, Γ) for 32-bit linear mask Γ
– c3+(Γ) := c+(Γ ;Γ, Γ, Γ) for 32-bit linear mask Γ
– cT (Γ0; Γ1): the correlation of Trans(x) with respect to the tuple (Γ0; Γ1) of

32-bit masks
– c2T (Γ) = cT (Γ ; Γ) for 32-bit linear mask Γ
– x(j): j-th least significant bit of a nibble, a byte or a 32-bit word x

2.2 Description of Sosemanuk

The structure of Sosemanuk[3] is depicted in Fig. 1. Sosemanuk consists of three
main components: a 10-word linear feedback shift register, a 2-word finite state
machine, and a nonlinear output function. Sosemanuk is initialized with the key
of length in between 128 and 256 and the 128-bit initialization value. The output
of the cipher is a sequence of 32-bit keystream words (zt)t≥1. The LFSR state
at time t is denoted by LRt = (st+1, st+2, . . . , st+10).(t = 0 designates the time
after initialization.) The LFSR is updated using the recurrence relation

st+10 = st+9 ⊕ α−1st+3 ⊕ αst for all t ≥ 1,

where α is a zero of the primitive polynomial

P (X) = X4 + β23X3 + β245X2 + β48X + β239

on GF(28)(X) and GF(28) = GF(2)[γ], where γ is a zero of the primitive poly-
nomial

Q(X) = X8 + X7 + X5 + X3 + 1

on GF(2)(X). The FSM state at time t is denoted by (R1t, R2t). The FSM is
updated as follows.

R1t = R2t−1 ¢ (st+1 ⊕ lsb(R1t−1)st+8),
R2t = Trans(R1t−1) = (M ×R1t−1)<<<7,

where M = 0x54655307. The FSM has output

ft = (st+9 ¢ R1t)⊕R2t .

The keystream words are obtained as follows.

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st)
(t ≡ 1(mod 4))

where Serpent1 denotes the Serpent S-box S2 applied in bit slice mode. Four
words are output per 4 LFSR clockings.

3 Linear Approximations

In this section, we get linear approximation relations involving only the LFSR
states and the keystream words with non-negligible correlation by approximating
the FSM update functions, the FSM output functions, and the keystream output
function using linear masks with non-negligible correlation.

Let at = lsb(R1t). We consider the following approximations using 32-bit
linear masks Γ by replacing all operations (modular additions and the Trans
function) by XORs in the FSM update function and the FSM output function:

ΓR1t+1 = ΓR2t ⊕ Γ (st+2 ⊕ atst+9),
ΓR2t+1 = ΓR1t,
Γft = Γst+9 ⊕ ΓR1t ⊕ ΓR2t,
Γft+1 = Γst+10 ⊕ ΓR1t+1 ⊕ ΓR2t+1 .

R1

st+9 st+8 st+3 st+1 st

α−1 α

mux

R2Trans

Serpent1
ft (*4) output

Fig. 1. The Structure of Sosemanuk

XORing the above relations and applying the Piling-Up Lemma, we have the
approximation

Γ (ft ⊕ ft+1) = Γst+2 ⊕ atΓst+9 ⊕ Γst+9 ⊕ Γst+10 (1)

with correlation c2+(Γ)3c2T (Γ) assuming that the four linear approximations
are independent.

However the way of computing the correlation as above is not accurate since
the approximation relations have high dependencies. For example, approxima-
tions of two modular additions with correlations c1, c2 do not necessarily yield an
approximation with correlation c1c2. So we need to consider approximation rela-
tions which do not have obvious dependencies. We have the following equations
regarding the internal states and keystream words:

ft ⊕R2t = st+9 ¢ Trans−1(R2t+1),
ft+1 ⊕R2t+1 = st+10 ¢ (R2t ¢ (st+2 ⊕ atst+9)) .

We consider the following associated approximation relations

Γft ⊕ ΓR2t = Γst+9 ⊕ ΓR2t+1,
Λft+1 ⊕ ΛR2t+1 = Λst+10 ⊕ ΛR2t ⊕ Λst+2 ⊕ atΛst+9 .

where Γ and Λ are linear masks as depicted in Fig. 2. The correlations of the
above approximations are

∑

Φ

c+(Γ ; Γ, Φ)cT (Γ ;Φ)

R1 R2

Trans

s t+8

st+1

s t+9

ft

R1 R2

Trans

R1 R2

s t+9

st+2

s t+10

ft+1

Λ

Φ
Γ

Γ

Γ Γ

Φ
Λ

Λ

Λ
Λ

Λ

Λ Λ

Serpent1

ft

ft+1

zt

s t

z t+1

st+1

ft+2

ft+3

zt+2

s t+2

zt+3

st+3

Γ

Γ Γ
Γ

Γ
Γ

Fig. 2. Some Linear Masking of Sosemanuk

and c3+(Λ), respectively.
Note that the first correlation is a composite correlation of the function x2 =

Trans−1(x3) and the function y = x1 ¢ x2 with respect to (Γ ; Γ, Γ) which can
be computed as a sum of partial correlations [13, Theorem 3][14]. So if we let
Γ = Λ, we have the same approximation relation (1) with correlation

c3+(Γ)
∑

Φ

c+(Γ ; Γ, Φ)cT (Γ ; Φ) .

In order to remove terms involving ft and ft+1 in (1), we will utilize a linear
approximation relation regarding the keystream output function that comes from
the third S-box S2 of the block cipher Serpent in bit slice mode.

unsigned char S2[16] = {8,6,7,9,3,12,10,15,13,1,14,4,0,11,5,2}

S2 has maximal linear correlation 1
2 . Regarding the function y = S2(x), we have

8 linear approximation relations with maximal correlation 1
2 which is of the form

x(i) + x(i+1) + (terms involving only y) = 0 .

Each of such approximation relations gives linear approximation relations re-
garding the keystream output function. We will use the relation

x(0) + x(1) + y(0) + y(3) = 0

which induces the following relation for any j = 0, . . . , 31,

(ft)(j) ⊕ (ft+1)(j) ⊕ (zt)(j) ⊕ (st)(j) ⊕ (zt+3)(j) ⊕ (st+3)(j) = 0,

with correlation 1
2 when t ≡ 1(mod 4). Thus if Γ is a linear mask, then

Γ (ft ⊕ ft+1)⊕ Γzt ⊕ Γst ⊕ Γzt+3 ⊕ Γst+3 = 0, (2)

holds with correlation (1
2)wt(Γ) when t ≡ 1(mod 4). Noting that

atΓst+9 ⊕ Γst+9 = 0

holds with correlation 1
2 , we have linear approximation (3) involving only LFSR

states and keystream words by XORing relations (1) and (2)

Γst ⊕ Γst+2 ⊕ Γst+3 ⊕ Γst+10 = Γzt ⊕ Γzt+3 (3)

with correlation

C(Γ) := (
1
2
)wt(Γ)+1c3+(Γ)

∑

Φ

c+(Γ ; Γ, Φ)cT (Γ ;Φ)

when t ≡ 1(mod 4), assuming that the approximations are independent. Note
that we don’t see obvious dependencies between the approximations given above.
We check the validity of our estimation by simulations described in Sect. 5.

3.1 Search for Linear Masks

We try to find Γ such that |C(Γ)| is as large as possible. Taking into considera-
tion the factor (1

2)wt(Γ), we confined the search to masks of weight less than or
equal to 5. Furthermore, we have the following observation from many examples
though we don’t have a proof:

– If c2T (Γ) = 0, then C(Γ) = 0.

Based on this observation, we compute C(Γ) for a given mask Γ in the following
way:
If c2T (Γ) 6= 0, then

1. we compute c3+(Γ) using [14, Theorem 1] regarding correlation of modular
addition.

2. We compute
∑

Φ c+(Γ ;Γ,Φ)cT (Γ ; Φ) using [14, Theorem 1] and fast Walsh
transform. Once Γ is fixed, we can compute c+(Γ ;Γ,Φ) for any Φ using
the description with finite automaton in [14]. It turns out that for each Γ ,
c+(Γ ; Γ, Φ) = 0 except for most Φ’s. Using fast Walsh transform, for each
fixed Γ , we can compute cT (Γ ;Φ) for all Φ with time complexity 237 and
memory complexity 232.

Table 1. Correlations with respect to some linear masks of weight 4

Γ log2(|c3+(Γ)|) log2(|ΣΦ|) −(wt(Γ) + 1) |C(Γ)|
[25, 14, 13, 0] −3.17 −14.33 −5 2−22.50

[25, 24, 14, 0] −3.17 −13.24 −5 2−21.41

[25, 22, 18, 0] −4.55 −15.13 −5 2−24.68

Then we obtain the following results:

– There does not exist a mask Γ of weight 1,2, or 3 such that |C(Γ)| > 2−29.
– The only masks Γ of weight 2 such that C(Γ) 6= 0 are [i, i+25] (i = 0, . . . , 6).
– There exist masks Γ of weight 4 such that |C(Γ)| > 2−25. Some of them are

listed in Table 1.

We also considered some masks Γ of the form [i, i + 25, j, k, l], but we could not
find one such that |C(Γ)| > 2−25. Thus the best linear mask we found out is
[25, 24, 14, 0], for which the correlation is −2−21.41.

4 Correlation Attack on Sosemanuk

In this section, we describe a correlation attack against Sosemanuk recovering the
initial internal state. Using the approximation relations (3) involving only LFSR
state words and keystream words with non-negligible correlation obtained in the
preceding section, we apply the techniques in [4] using fast Walsh transform to
mount the attack.

Getting Approximation Relations between Initial LFSR State and
Keystream Words. Let Γ be the linear mask [25, 24, 14, 0], κ = C(Γ) =
−2−21.41, and ε = |κ/2| = 2−22.41 throughout this section. Starting with the
approximation (3) with correlation κ, we can obtain arbitrarily many linear ap-
proximations with correlation κ involving the initial LFSR state s1, · · · , s10 and
the keystream words using the relation

(Γ0, Γ1, · · · , Γ9) · (st+j , st+j+1, · · · , st+j+9)
= (Gj(Γ0, Γ1, · · · , Γ9)) · (st, st+1, · · · , st+9)

for each j > 0, where G is the “dual” of the LFSR update transformation and is
given by

G(Γ0, Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8, Γ9)
= (α∗Γ9, Γ0, Γ1, Γ2 ⊕ (α−1)∗Γ9, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8 ⊕ Γ9),

where α∗Γ and (α−1)∗Γ are 32-bit linear masks such that (α∗Γ)(x) = Γ (αx)
and ((α−1)∗Γ)(x) = Γ (α−1x) for each 32-bit x.

To be more explicit, the approximation relations (3) can be rewritten as

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s1, · · · , s10) = Γz1 ⊕ Γz4

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s5, · · · , s14) = Γz5 ⊕ Γz8

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s9, · · · , s18) = Γz9 ⊕ Γz12

· · · ,

(4)

which are again equivalent to

(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s1, · · · , s10) = Γz1 ⊕ Γz4

F(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s1, · · · , s10) = Γz5 ⊕ Γz8

F2(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ) · (s1, · · · , s10) = Γz9 ⊕ Γz12

· · · ,

(5)

where F = G4. Thus the complexity of getting R relations between the initial
LFSR state and the keystream words is comparable to the complexity of getting
128R bits of keystream.

Recovering Part of the Initial LFSR State. We apply the “Second LFSR
Derivation Technique” in [4]. Let n = 320 be the size of the LFSR state in bits
and m < n. Let ε′ = 2ε2 = 2−43.82 and N = (2λ

3ε′)
2, where λ satisfies

1√
2π

∫ ∞

λ

e−
t2
2 dt = 2−m.

Let R =
√

N2n−m+1. Let u1, · · · , un be the bits of the LFSR initial state
s1, · · · , s10. Suppose we have R linear approximation relations of correlation
κ involving ui’s. Let i1, · · · , im be any integers such that 1 ≤ i1 < . . . < im ≤ n.
XORing pairs of those R equations, we get about R(R−1)2m−n−1 ≈ N approx-
imation relations with correlation 2ε′ involving only ui1 , . . . , uim among ui’s. Let
these relations be

aj
i1

ui1 + · · ·+ aj
im

uim = bj . (j = 1, . . . , N) (6)

Let us define the function σ : GF(2)m → Z by

σ(a1, · · · , am) = |{j ∈ {1, . . . , N} : (aj
i1

, . . . , aj
im

) = (a1, . . . , am), bj = 0}|
− |{j ∈ {1, . . . , N} : (aj

i1
, . . . , aj

im
) = (a1, . . . , am), bj = 1}|

Let W be the fast Walsh transform defined by

W (f)(y1, . . . , ym) =
∑

x1,...,xm∈GF(2)

f(x1, . . . , xm)(−1)y1x1+...+ymxm

for f : GF(2)m → Z. Note that, for each (ui1 , · · · , uim), W (σ)(ui1 , · · · , uim) is

the number of relations in (6) satisfied by(ui1 , · · · , uim)
− the number of relations in (6) not satisfied by(ui1 , · · · , uim). (7)

Table 2. Complexity of the Attack

with Precomputation without Precomputation

time(unit) memory(bit) data(bit) time(unit) memory(bit) data(bit)

Precomputation 2147.47 2148.34

Online computation 2144.66 2144.55 2145.50 2147.88 2147.10 2145.50

For the right value of (ui1 , · · · , uim
), above number follows the normal distri-

bution N(2Nε′, N(1 − 4ε′2)). So, using N(1 − 4ε′2) ≈ N , for the right value of
(ui1 , · · · , uim

),

Prob
(

W (σ)(ui1 , · · · , uim) <
3
2
Nε′

)
=

1√
2π

∫ ∞

λ
3

e−
t2
2 dt .

But for random (ui1 , · · · , uim
), (7) follows the distribution N(0, N). So for ran-

dom (ui1 , · · · , uim),

Prob
(

W (σ)(ui1 , · · · , uim) >
3
2
Nε′

)
=

1√
2π

∫ ∞

λ

e−
t2
2 dt = 2−m .

Thus, when we use the threshold value 3
2Nε′ for determining whether a partial

LFSR state candidate (ui1 , · · · , uim) is the right one, we have non-detection
probability less than 1√

2π

∫∞
λ
3

e−
t2
2 dt and false alarm rate 2−m.

Complexity of the Attack. The attack can be performed in two ways. One
way is to precompute the coefficients (aj

i1
, · · · , aj

im
) and then perform all other

computations in online phase. The other is to perform all the computations
online. Complexity of both ways are described below and summarized in Table
2.

Attack with Precomputation. To recover partial bits ui1 , · · · , uim of the initial
initial state, in the precomputation phase, we get the coefficients of the left
hand sides of the R approximation relations (5) between the LFSR initial states
and the keystream words. Store the (320 + dlog2(R)e)-bit values (Ui, i) (i =
0, · · · , R− 1) in a list, where

Ui := F i(Γ ⊕ α∗Γ, 0, Γ, Γ ⊕ (α−1)∗Γ, 0, 0, 0, 0, 0, Γ)

for each i. Then sort the list according to the components in {1, · · · ,m} −
{i1, · · · , im}. For each pair (i, k) such that the components of Ui and Uk in
{1, · · · , m} − {i1, · · · , im} coincides, compute Xi,k := (Ui ⊕ Uk restricted to
i1-th, · · · , im-th components), and store (Xi,k, i, k) in a list. The list has about N
entries of size m+2dlog2(R)e. In the online phase, set the function σ : GF(2)m →

Table 3. Complexity of basic operations

operations time complexity

XOR of two k-bit words k
Comparison of two k-bit words k
Sorting a list with r k-bit entries kr log2(r)
Walsh transform for 2m k-bit integers km2m

Z as zero. Let wi = Γz4i+1+Γz4i+4 for each i = 0, · · · , R−1. For each (Xi,k, i, k)
in the list, compute the value wi + wk and update σ. (The update rule is that
σ(Xi,k) increases by 1 if wi +wk = 0 and decreases by 1 otherwise.) Perform the
fast Walsh transform to σ and check if there is some (ui1 , · · · , uim

) such that
W (σ)(ui1 , · · · , uim

) > 3
2Nε′. The complexity of the above attack to recover m

bits of the initial LFSR state is as follows. The complexity of the above attack to
recover m bits of the initial LFSR state is as follows. We assume the complexity
of the basic operations as in Table 3. The precomputation phase has time com-
plexity of about 128R + R log2(R)(320 + dlog2(R)e) + (N + R)(320 + dlog2(R)e)
and memory requirement of R(320 + dlog2(R)e) + N(m + 2dlog2(R)e) bits if
we apply a sorting algorithm of small memory requirement. The online phase
takes 2mdlog2(N)e-bits of memory and time complexity of 8N +m2mdlog2(N)e.
The data complexity of the online phase is 27R bits. Let m = 138. Then
λ ≈ 13.6(by e.g. Lemma 1 in the Appendix), N = 294.00 and R = 2138.50. For
recovery of the whole n bits of the LFSR initial state, we recover (u1, · · · , um)
and (um, · · · , u2m−1) using above-mentioned methods. Then restore the remain-
ing 45 bits of the initial LFSR state and 64 initial FSM bits simultaneously
using exhaustive search. The precomputation phase takes time complexity of
128R + 2(R log2(R)(320 + dlog2(R)e) + (N + R)(320 + dlog2(R)e)) = 2155.47.
(The number in the table is 2147.47 regarding 1 time unit as the time needed to
generate 256 bits of keystream which is not greater than the time cost of one
trial in the exhaustive search .)The required memory is 2R(320 + dlog2(R)e) +
N(m + 2dlog2(R)e) = 2148.34 bits. The online phase has time complexity of
2(8N +m2mdlog2(N)e) = 2152.66, memory requirement of 2mdlog2(N)e = 2144.55

bits, and data complexity of 27R = 2145.50 bits. The non-detection probability
is less than 2√

2π

∫∞
λ
3

e−
t2
2 dt ≤ 0.01. We mention that the increased complexity

due to sorting was not considered in [4].

Attack without Precomputation. To recover partial bits ui1 , · · · , uim of the initial
LFSR state, we first get all the coefficients of the R approximation relations
using the keystreams. Store the (320 + 1)-bit values (Ui, wi) (i = 0, · · · , R − 1).
Then sort the list according to the components in {1, · · · ,m} − {i1, · · · , im}.
Set the function σ as zero. For each pair (i, k) such that the components of Ui

and Uk in {1, · · · ,m} − {i1, · · · , im} coincides, compute Xi,k and update the
function σ using (Xi,k, wi + wk). Perform the fast Walsh transform to σ and
check if there is some (ui1 , · · · , uim) such that W (σ)(ui1 , · · · , uim) > 3

2Nε′. The

time complexity is about 128R + R log2(R)(n + 1) + N(n + 1) + m2mdlog2(N)e
and memory requirement is about dlog2(N)e2m + (320 + 1)R bits. The data
complexity is 27R bits. Let m = 138. For recovery of the whole n bits of the
LFSR initial state, we recover (u1, · · · , um) and (um, · · · , u2m−1) using above-
mentioned methods. Then restore the remaining 45 bits of the initial LFSR
state and 64 initial FSM bits simultaneously using exhaustive search. The time
complexity is 2(128R+R log2(R)(n+1)+N(n+1)+m2mdlog2(N)e)+129·2129 =
2155.88. The memory requirement is dlog2(N)e2m + (320 + 1)R = 2147.10 bits,
and the data complexity is 27R = 2145.50 bits.

Improving the Attack. We can reduce the data complexity without increasing
the time complexity. For the Serpent S-box S2, we have 8 linear approximations
with correlation 1

2 which is of the form

x(i) + x(i+1) + (terms involving only y) = 0 .

Using these approximations, we can get 8 linear approximation relations involv-
ing the LFSR initial state and keystream words with correlation κ. Thus we
can reduce the data complexity at least by the factor of 23. We can also reduce
the memory requirement of the attack using the “Improved Hybrid Method”[4]
without increasing time complexity or data complexity much.

5 Simulations and Results

5.1 Simulations for a Reduced Cipher

We validate our claims by simulating a reduced version of Sosemanuk keystream
generator defined as follows. It consists of an LFSR of five bytes and an FSM of
two bytes. The LFSR state at time t is (st, st+1, . . . , st+5). The LFSR is updated
using the relation

st+5 = st+4 ⊕ β−1st+3 ⊕ βst,

where β is a zero of x8 + x7 + x5 + x3 + 1 in

GF (28) = GF (2)(β) = GF (2)[x]/ < x8 + x7 + x5 + x3 + 1 >

The FSM state at time t is denoted by (R1t, R2t). The FSM is updated as
follows.

R1t = R2t−1 + (st+1 ⊕ lsb(R1t−1)st+3)(mod 28)
R2t = Trans(R1t−1) = ((M ×R1t−1)(mod 28))<<<3

where, M = 0x59. The FSM has output

ft = (st+4 + R1t)(mod 28)⊕R2t.

The keystream bytes are obtained as follows.

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st)
(t ≡ 1(mod 4))

Table 4. Correlations with respect to linear masks of weight 2

Γ log2(|c3+(Γ)|) log2(|ΣΦ|) −(wt(Γ) + 1) correlation

[5, 0] −1.59 −1.91 −3 −2−6.50

[6, 1] −10 −3 −3 −2−16

[7, 2] −3.57 −3.36 −3 −2−9.93

Then we get a linear approximation relation

Γst ⊕ Γst+2 ⊕ Γst+3 ⊕ Γst+5 = Γzt ⊕ Γzt+3 (t ≡ 1(mod 4))

with correlation

(
1
2
)wt(Γ)+1c3+(Γ)

∑

Φ

c+(Γ ; Γ, Φ)cT (Γ ; Φ)

when t ≡ 1(mod 4), for each 8-bit mask Γ . In the simulation, we generate 230

bytes of keystream and observe the actual correlation of the linear approximation
regarding the LFSR states and the keystream bytes for various initial internal
states. The observed actual correlation is about −2−6.12 when Γ = [5, 0] and
about −2−10.31 when Γ = [7, 2] regardless of the initial internal state. Using
the observed correlation for Γ = [5, 0], we are able to recover the initial internal
state using the method explained in Sect. 4. The parameters are n = 40, m = 24,
λ = 2.83, N = 230.31 and R = 223.66. We get R approximation relations regarding
the n-bit initial LFSR state and the keystream words. Then we get about N
approximations regarding the latter m bits of the initial LFSR state. Applying
the fast Walsh transform to an array with 2m entries, we can recover the m bits
correctly most of the time. We performed the experiments to recover the latter
24 bits of the initial LFSR state for 100 initial initial internal states as follows.

– LFSR initial states: (i, i + 1, i + 2, i + 3, i + 4) (i = 0, · · · , 99)
– FSM initial state: (0,0) (fixed)

With the threshold 3
2N2−13.24 = 206382, we were able to get the right 24-bit

value in each case except when i = 26. In each case 0–4 false alarms occurred
with average 1.18. A few minutes was spent on a Pentium IV 3.4GHz CPU with
1GB RAM for each case. This experimental results corroborate our assertions.

5.2 Simulations with Long Keystreams for Full Sosemanuk

To check if the correlation of relations (3) is correct in another way, we generate
long keystreams for Sosemanuk for some initial internal states. We consider the
following 2 LFSR initial states and 8 FSM initial states.

– LFSR initial states

Table 5. Simulation Result for Long Keystreams

LFSR FSM z-value correlation∗ LFSR FSM z-value correlation∗

A 0 -0.29 −2−21.28 B 0 1.93 −2−22.89

1 -2.13 −2−20.64 1 -0.65 −2−21.13

2 0.69 −2−21.79 2 -0.15 −2−21.34

3 0.35 −2−21.59 3 1.09 −2−22.06

4 0.54 −2−21.70 4 -0.95 −2−21.02

5 -0.35 −2−21.25 5 -0.16 −2−21.34

6 -0.48 −2−21.20 6 0.99 −2−21.99

7 -0.62 −2−21.14 7 1.73 −2−22.64

∗:observed correlation

• A: (0x9000, 0x8000, · · · , 0x1000, 0x0000)
• B: (0x9111, 0x8000, · · · , 0x1000, 0x0111) (the same as A except

for the first and the last word)
– FSM initial states: (0x0000, 0x0000), · · · , (0x7000, 0x7000)

For each of the 16 initial states, we generate Sosemanuk keystreams of 253 bits
and count how many of the 246 induced relations (3) are satisfied for the mask
Γ = [25, 24, 14, 0] and compute the observed correlation. The results are as in
Table 5. In the table, “z-value” represents

(the number of the satisfied among the 246 relations)− (245 + 245C(Γ))
222

,

which is the normalized deviation in the assumed normal distribution. In total,
the observed correlation using the 250 relations is −2−21.45, which is very close
to C(Γ). This result also corroborates our assertions.

6 Correlation Attack on SNOW 2.0

SNOW 2.0[11] consists of an LFSR consisting of 16 words and an FSM of 2
words. In [14], it was shown that there exists a linear approximation relation of
the LFSR bits and keystream bits with bias 2−15.496 or correlation ±2−14.496[14,
Table 2]. One of such approximation relations is

Λst + Λst+1 + Λst+5 + Λst+15 + Λst+16 = Λzt + Λzt+1,

where Λ = [0, 15, 16]. Applying the “Second LFSR derivation technique” again
with parameter n = 512 and ε = 2−15.496, we can mount a correlation attack on
SNOW 2.0 without precomputation as follows.

Let m = 192. Using the same notation as in Sect. 4, λ ≈ 16.1, N = 266.54

and R = 2193.77. The time complexity of the attack for recovering m bits is
32R + R log2(R)(n + 1) + N(n + 1) + m2mdlog2(N)e. (The factor 32 comes

from the fact that 32 bits of keystreams are needed per one approximation
relation.) Memory requirement is about dlog2(N)e2m + (512 + 1)R bits. The
data complexity is 25R bits. For recovery of the whole initial LFSR state, recover
partial 192 bits of LFSR three times and then recover the initial FSM state by
exhaustive search. The total time complexity is 3(32R+R log2(R)(n+1)+N(n+
1)+m2mdlog2(N)e) = 2212.38. The memory complexity is about dlog2(N)e2m +
(512 + 1)R = 2202.83 bits. The data complexity is 25R = 2198.77 bits. Since the
initialization of SNOW 2.0 is a reversible process, we can recover the key from
the initial state.

7 Conclusion

We described an attack recovering the initial internal state with time complex-
ity 2147.88, memory complexity 2147.10 bits, and data complexity 2145.50 bits.
Though the attack does not threaten the claimed 128-bit security of Sosemanuk,
it indicates that using keys longer than 150 bits for Sosemanuk does not guaran-
tee the security level of the key size. The main reason Sosemanuk is vulnerable
to the attack described in this paper is that the LFSR state is too small in
the presence of a relatively large correlation between the LFSR state and the
keystream words. Similar attack of complexity 2204.38 is valid against SNOW
2.0.

References

1. R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced En-
cryption Standard. Available from http://www.cl.cam.ac.uk/~rja14/serpent.

html.
2. S. Babbage et al. The eSTREAM Portfolio. Available from http://www.ecrypt.

eu.org/stream/portfolio.pdf, April 15,2008.
3. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,

L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. SOSEMANUK,
a fast software-oriented stream cipher. eSTREAM Report 2005/027 (2005)

4. C. Berbain, H. Gilbert, A. Maximov. Cryptanalysis of Grain. In Fast Software
Encryption(FSE 2006), LNCS 4047, pp. 15–29, Springer-Verlag, 2006.

5. D. Bernstein. Which eSTREAM ciphers have been broken? eSTREAM Report
2008/010 (2008)

6. V. Chepyzhov, T. Johansson, and B. Smeets. A Simple Algorithm for Fast Corre-
lation Attacks on Stream Ciphers. In Fast Software Encryption(FSE 2000), LNCS
1978, pp. 181–195, Springer-Verlag, 2001.

7. J. Cho and J. Pieprzyk. Crossword Puzzle Attack on NLS. In Selected Areas in
Cryptography(SAC 2006), LNCS 4356, pp. 249–265, Springer-Verlag, 2007.

8. J. Cho, An Improved Estimate of the Correlation of Distinguisher for Dragon, In
Workshop Record of The State of the Art of Stream Ciphers(SASC 2008), pp.
11-20.

9. D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with
linear masking. In Advances in Cryptology - Crypto 2002, LNCS 2442, pp. 515–
532, Springer-Verlag, 2002.

10. P. Ekdahl and T. Johansson. SNOW - a new stream cipher. Available from http:

//www.it.ith.se/cryptology/snow/.
11. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In Selected

Areas in Cryptography(SAC 2002), LNCS 1233, pp. 37–46, Springer-Verlag, 2002.
12. J. Golic, V. Bagini, and G. Morgari. Linear Cryptanalysis of Bluetooth Stream

Cipher. In Advances in Cryptology - Eurocrypt 2002, LNCS 2332, pp. 238–255,
Springer-Verlag, 2002.

13. K. Nyberg. Correlation theorems in cryptanalysis. Discrete Applied Mathematics,
pp. 177–188, Volume 111, 2001.

14. K. Nyberg and J. Wallén. Improved Linear Distinguishers for SNOW 2.0. In Fast
Software Encryption(FSE 2006), LNCS 4047, pp. 144–162, Springer-Verlag, 2006.

15. D. Watanabe, A. Biryukov, and C. De Canniere. A Distinguishing Attack of SNOW
2.0 with Linear Masking Method. In Selected Areas in Cryptography(SAC 2003),
LNCS 3006, pp. 222–233, Springer-Verlag, 2004.

A An Approximation of the Cumulative Normal
Distribution Function

Lemma 1. For any 0 < a < 1, we have

a

λ
e−

λ2
2 ≤

∫ ∞

λ

e−
t2
2 dt ≤ 1

λ
e−

λ2
2

for any λ ≥ 1 such that a ≤ λ2

λ2+1 .

Proof. Let

F (x) =
∫ ∞

x

e−
t2
2 dt− 1

x
e−

x2
2 (x > 0) .

Then F ′(x) = 1
xe−

x2
2 > 0 and limx→∞ F (x) = 0. Hence F (x) < 0 for all x > 0.

Let
G(x) =

∫ ∞

x

e−
t2
2 dt− a

x
e−

x2
2 (x > 0) .

Then G′(x) = (a− 1)e−
x2
2 + a

x2 e−
x2
2 so that G′(x) < 0 if a < x2

x2+1 .

Since limx→∞G(x) = 0, G(x) > 0 when a < x2

x2+1 . ut

