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Abstract. The generic group model is a valuable methodology for an-
alyzing the computational hardness of number-theoretic problems used
in cryptography. Although generic hardness proofs exhibit many simi-
larities, still the computational intractability of every newly introduced
problem needs to be proven from scratch, a task that can easily be-
come complicated and cumbersome when done rigorously. In this paper
we make the first steps towards overcoming this problem by identify-
ing criteria which guarantee the hardness of a problem in an extended
generic model where algorithms are allowed to perform any operation
representable by a polynomial function.
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1 Introduction

The generic group model was introduced by Nechaev [1] and Shoup [2]. In this

model one considers algorithms that given a group G as black box, may only

perform a restricted set of operations on the elements of G such as applying the

group law, inversion of group elements and equality testing. Since in this model

the group is treated as black box, the algorithms cannot exploit any special

properties of a concrete group representation.

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability. The
names of the last three authors are in alphabetical order.



Many fundamental cryptographic problems were proven to be computation-

ally intractable in the generic model, most notably the discrete logarithm prob-

lem (DLP), the computational and decisional Diffie-Hellman problem (DHP and

DDHP) [2], and the root extraction problem (in groups of hidden order) [3].

These intractability results are considered to be evidence supporting crypto-

graphic assumptions of number-theoretic nature which underly the security of a

vast number of systems of applied cryptography. Moreover, loosely speaking, it

has become considered good practice, when making new intractability assump-

tions, to prove the underlying problem to be hard in the generic model. Many

novel assumptions rely on more complex algebraic settings than the standard

assumptions. They involve multiple groups and operations on group elements

additional to the basic operations. Examples include the numerous assumptions

based on bilinear pairings (e.g., see [4, 5]). Since the properties ensuring generic

hardness had not been well-studied and formalized before this work, for each

novel problem an entire hardness proof had to be done from scratch.

A generic group algorithm can only perform a subset of the operations that

can be performed by an algorithm that may exploit specific properties of the

representation of group elements. This implies that proving a problem to be

intractable in the generic group model is a necessary, but not sufficient condition

for the problem to be intractable in any concrete group. A generically intractable

problem that is easy in any concrete group has been considered in [6].

Our contributions. In a nutshell, we identify the core aspects making crypto-

graphic problems hard in the generic model. We provide a set of conditions, which

given the description of a cryptographic problem allow one to check whether the

problem at hand is intractable with respect to generic algorithms performing

certain operations. In this way we aim at (i) providing means to structure and

analyze the rapidly growing set of cryptographic assumptions as motivated in

[7] and (ii) making the first steps towards automatically checkable hardness con-

ditions in the generic model.

Related Work. In [8] the author analyzes a generalization of the Diffie-Hellman

problem, the P -Diffie-Hellman problem: given group elements (g, gx1 , gx2) the

challenge is to compute gP (x1,x2), where P is a (non-linear) polynomial and g is

a generator of some group G. Among other results, it is shown there that the

computational and decisional variant of this problem class is hard in the generic

model. Another general problem class has been introduced in [9] to cover DH

related problems over bilinear groups. The authors show that decisional problems

belonging to this class are hard in the generic model.

Recent work by Bresson et al. [10] independently analyzes generalized deci-

sional problems over a single prime order group in the plain model. They showed

that under several restrictions a so-called (P,Q)-DDH problem is efficiently re-

ducible to the standard DDH problem. However, one important requirement for



applying their results is that the P and Q polynomials describing the problem

need to be power-free, i.e., variables are only allowed to occur with exponents

being equal to zero or one.

2 Some Preliminaries

Let poly(x) denote the class of univariate polynomials in x with non-negative

integer coefficients. We call a function f negligible if ∀poly ∈ poly(x)∃κ0 ∀κ ≥

κ0 : f(κ) ≤ 1
poly(κ) .

Throughout the paper we are concerned with multivariate Laurent polyno-

mials over the ring Zn. Informally speaking, Laurent polynomials are poly-

nomials whose variables may also have negative exponents. More precisely, a

Laurent polynomial P over Zn in indeterminates X1, . . . ,Xℓ is a finite sum

P =
∑

aα1,...,αℓ
Xα1

1 · · ·X
αℓ

ℓ where aα1,...,αl
∈ Zn and αi ∈ Z. The set of Laurent

polynomials over Zn forms a ring with the usual addition and multiplication.

By deg(P ) = max{
∑

i |αi| | aα1,...,αl
6≡ 0 mod n} we denote the (absolute) total

degree of a Laurent polynomial P 6= 0. Furthermore, we denote by L
(ℓ,c)
n (where

0 ≤ c ≤ l) the subring of Laurent polynomials over Zn where only the variables

Xc+1, . . . ,Xℓ can appear with negative exponents. Note that for any P ∈ L
(ℓ,c)
n

and x = (x1, . . . , xℓ) ∈ Z
c
n × (Z∗

n)
ℓ−c the evaluation P (x) is well-defined.

If A is a probabilistic algorithm, then y
R
← A(x) denotes the assignment to y

of the output of A’s run on x with fresh random coins. Furthermore, by [A(x)]

we denote the set of all possible outputs of a probabilistic algorithm A on input

of a fixed value x. If S is a set, then x
R
← S denotes the random generation of

an element x ∈ S using the uniform distribution.

3 Problem Classes

In this section we formally define the classes of computational problems under

consideration. For our formalization we adapt and extend the framework in [11].

Definition 1 (DL-/DH-type problem). A DL-/DH-type problem P is char-

acterized by

– A tuple of parameters

ParamP = (k, ℓ, c, z)

consisting of some constants k, ℓ ∈ N, c ∈ N0 where c ≤ ℓ and z ∈ poly(x).

– A structure instance generator SIGenP(κ) that on input of a security param-

eter κ outputs a tuple of the form

((G,g, n), (I, Q)),

where



• (G,g, n) denotes the algebraic structure instance consisting of descrip-

tions of cyclic groups G = (G1, . . . , Gk) of order n and corresponding

generators g = (g1, . . . , gk),

• (I, Q) denotes the relation structure instance consisting of the input

polynomials I = (I1, . . . , Ik), with Ii ⊂ L
(ℓ,c)
n , |Ii| ≤ z(κ), and the chal-

lenge polynomial Q ∈ L
(ℓ,c)
n .

Then a problem instance of P consists of a structure instance

((G,g, n), (I, Q))
R

← SIGenP(κ) and group elements (g
P (x)
i |P ∈ Ii, 1 ≤ i ≤ k),

where x
R

← Z
c
n × (Z∗

n)
ℓ−c are secret values. Given such a problem instance, the

challenge is to compute
{

Q(x), for a DL-type problem

g
Q(x)
1 , for a DH-type problem

.

Numerous cryptographically relevant problems fall into the class of DL-type

or DH-type problems. Examples are problems such as the DLP [2], DHP [2],

a variant of the representation problem [11], generalized DHP [11], square and

inverse exponent problem [11], bilinear DHP [4], w-bilinear DH inversion prob-

lem [5], w-bilinear DH exponent problem [9], co-bilinear DHP [4], and many

more. In Appendix A we extend our definitions and conditions to also include

problems like the w-strong DH and w-strong BDH problem where the challenge

is specified by a rational function. As an illustration of the definition, we consider

the w-BDHI problem in more detail.

Example 1 (w-BDHIP). For the w-BDHI problem we have parameters

Paramw-BDHI = (3, 1, 0, w + 1) and a structure instance generator SIGenw-BDHI

that on input κ returns

((G = (G1, G2, G3),g = (g1, g2, g3), p),

(I = (I1 = {1}, I2 = {1,X1
1 , . . . ,X

w(κ)
1 }, I3 = {1}), Q = X−1

1 ))

such that p is a prime, there exists a non-degenerate, efficiently computable

bilinear mapping e : G2 ×G3 → G1 with e(g2, g3) = g1, and an isomorphism

ψ : G2 → G3 with ψ(g2) = g3. A problem instance additionally comprises group

elements (g
P (x)
i |P ∈ Ii, 1 ≤ i ≤ 3) = (g1, g2, g

x1
2 , . . . , g

x
w(κ)
1

2 , g3), where x = x1
R
←

Z
∗
n, and the task is to compute g

Q(x)
1 = g

x
−1
1

1 .

In the remainder of this paper, we are often only interested in individual parts

of the output of SIGenP . To this end, we introduce the following simplifying no-

tation: By $
R
← SIGen$

P(κ), where $ is a wildcard character, we denote the projec-

tion of SIGenP ’s output to the part $. For instance, (n, I, Q)
R
← SIGen

(n,I,Q)
P (κ)

denotes the projection of the output to the triple consisting of the group or-

der, the input polynomials, and the challenge polynomial. Furthermore, by



[SIGen$
P(κ)] we denote the set of all possible outputs $ for a given fixed security

parameter κ.

4 Extending Shoup’s Generic Group Model

4.1 Generic Operations

For our framework we restrict to consider operations of the form ◦ : Gs1 ×

. . .×Gsu
→ Gd, where u ≥ 1, s1, . . . , su, d ∈ {1, . . . , k} are some fixed constants

(that do not depend on κ). Furthermore, we demand that the action of ◦ on the

group elements can be represented by a fixed regular polynomial. That means,

there exists a fixed F ∈ Z[Y1, . . . , Yu] (also not depending on κ) such that for

any generators gs1 , . . . , gsu
, gd given as part of a problem instance we have that

◦(a1, . . . , au) = g
F (y1,...,yu)
d where a1 = gy1s1 , . . . , au = gyu

su
. For instance, the

bilinear mapping e : G2 ×G3 → G1 which is part of the algebraic setting of the

w-BDHIP is such an operation: for any g2, g3 and g1 = e(g2, g3) it holds that

e(a1, a2) = e(gy12 , gy23 ) = g
F (y1,y2)
1 where F = Y1Y2. In fact, to the best of our

knowledge, virtually any deterministic operation considered in the context of the

generic group model in the literature so far belongs to this class of operations.

We represent an operation of the above form by a tuple (◦, s1, . . . , su, d, F ),

where the first component is a symbol serving as a unique identifier of the oper-

ation. The set of allowed operations can thus be specified by a set of such tuples.

The full version of this paper [12] explains how to extend the operation set to

include decision oracles.

Example 2 (Operations Set for w-BDHIP). The operations set Ω =

{(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1),

(inv2, 2, 2,−Y1), (inv3, 3, 3,−Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} specifies oper-

ations for the group law (◦i) and inversion (inv i) over each group as well as the

isomorphism ψ : G2 → G3 and the bilinear map e : G2 ×G3 → G1.

4.2 Generic Group Algorithms and Intractability

In this section, we formally model the notion of generic group algorithms for DL-

/DH-type problems. We adapt Shoup’s generic group model [2] for this purpose.

Let Sn ⊂ {0, 1}
⌈log2(n)⌉ denote a set of bit strings of cardinality n and

Σn the set of all bijective functions from Zn to Sn. Furthermore, let σ =

(σ1, . . . , σk) ∈ Σ
k
n be a k-tuple of randomly chosen encoding functions for the

groups G1, . . . , Gk ∼= Zn.

A generic algorithm A is a probabilistic algorithm that is given access to

a generic (multi-) group oracle OΩ allowing A to perform operations from Ω

on encoded group elements. Since any cyclic group of order n is isomorphic to



(Zn,+), we will always use Zn with generator 1 for the internal representation

of a group Gi.

As internal state OΩ maintains two types of lists, namely element lists

L1, . . . , Lk, where a Li ⊂ L
(ℓ,c)
n , and encoding lists E1, . . . , Ek, where Ei ⊂ Sn.

For an index j let Li,j and Ei,j denote the j-th entry of Li and Ei, respec-

tively. Each list Li is initially populated with the corresponding input polyno-

mials given as part of a problem instance of a DL-/DH-type problem P, i.e.,

Li = (P |P ∈ Ii). A list Ei contains the encodings of the group elements cor-

responding to the entries of Li, i.e., Ei,j = σi(Li,j(x)). Ei is initialized with

Ei = (σi(P (x))|P ∈ Ii). A is given (read) access to all encodings lists. In or-

der to be able to perform operations on the randomly encoded elements, the

algorithm may query OΩ . Let (◦, s1, . . . , su, d, F ) be an operation from Ω. Upon

receiving a query (◦, j1, . . . , ju), the oracle computes P := F (Ls1,j1 , . . . , Lsu,ju),

appends P to Ld and σd(P (x)) to the encoding list Ed. After having issued a

number of queries, A eventually provides its final output. In the case that P is a

DL-type problem, we say that A has solved the problem instance of P if its out-

put a satisfies Q(x)− a ≡ 0 mod n. In the case that P is a DH-type problem, A

has solved the problem instance if its output σ1(a) satisfies Q(x)− a ≡ 0 mod n.

Let a DL-/DH-type problem over cyclic groups G1, . . . , Gk of order n be

given. We can write the group order as n = pe · s with gcd(p, s) = 1 where p be

the largest prime factor of n. Then for each i it holds that Gi ∼= G
(pe)
i × G

(s)
i

where G
(pe)
i and G

(s)
i are cyclic groups of order pe and s, respectively. It is easy

to see that solving an instance of a DL-/DH-type over groups Gi of order n is

equivalent for a generic algorithm to solving it separately over the subgroups

G
(pe)
i and the subgroups G

(s)
i . Thus, computing a solution over the groups Gi is

a least as hard for generic algorithms as computing a solution over the groups

G
(pe)
i . In the following we always assume that SIGenP on input κ generates

groups of prime power order n = pe with p > 2κ and e > 0.

Definition 2 (q-GGA). A q-GGA is a generic group algorithm that for any

κ ∈ N, it receives as part of its input, makes at most q(κ) queries to the generic

group oracle.

Definition 3 (GGA-intractability of DL-type Problems). A DL-type

problem P is (Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr

[

Q(x) ≡ a mod n
(n, I, Q)

R

← SIGen
(n,I,Q)
P (κ);σ

R

← Σk
n;x

R

← Z
c
n × (Z∗

n)
ℓ−c;

a
R

← AOΩ (κ, n, I, Q, (σi(P (x))|P ∈ Ii)1≤i≤k)

]

≤ ν(κ)

Definition 4 (GGA-intractability of DH-type Problems). A DH-type

problem P is (Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr

[

Q(x) ≡ a mod n
(n, I, Q)

R

← SIGen
(n,I,Q)
P (κ);σ

R

← Σk
n;x

R

← Z
c
n × (Z∗

n)
ℓ−c;

σ1(a)
R

← AOΩ (κ, n, I, Q, (σi(P (x))|P ∈ Ii)1≤i≤k)

]

≤ ν(κ)



5 Abstract Hardness Conditions: Linking GGA and SLP

Intractability

Informally speaking, the grade of intractability of a DL-/DH-type problem with

respect to generic algorithms can be “measured” by means of two “quantities”:

1. The probability of gaining information about the secret choices x in the

course of a computation by means of non-trivial equalities between group

elements. This quantity is called leak-resistance.

2. The probability to solve problem instances using a trivial strategy, i.e., by

taking actions independently of (in)equalities of computed group elements

and thus independent of the specific problem instance. This quantity is called

SLP-intractability.

For formalizing both quantities, we make use of so-called straight-line pro-

gram (SLP) generators. Note that SLPs are a very common concept in the field

of computational algebra and has also proved its usefulness in the area of cryp-

tography. However, the SLP model and the GGA model have not been explicitly

related in the literature so far.

Definition 5 ((Ω, q)-SLP-generator). A (Ω, q)-SLP-generator S is a proba-

bilistic algorithm that on input (κ, n, I, Q), outputs lists (L1, . . . , Lk) where Li ⊂

L
(ℓ,c)
n . Each list Li is initially populated with Li = (P |P ∈ Ii). The algorithm

can append a polynomial to a list by applying an operation from Ω to polynomi-

als already contained in the lists, i.e., for an operation (◦, s1, . . . , su, d, F ) ∈ Ω

and existing polynomials P1 ∈ Ls1 , . . . , Pu ∈ Lsu
the algorithm can append

F (P1, . . . , Pu) to Ld. In this way, the algorithm may add up to q(κ) polyno-

mials in total to the lists. The algorithm additionally outputs an element a ∈ Zn

in the case of a DL-type problem and a polynomial P ∈ L1 in the case of DH-type

problem, respectively.

Let us first formalize the leak-resistance of a problem. When do group ele-

ments actually leak information due to equality relations? To see this, reconsider

the definition of the generic oracle in Section 4.2 and observe that two encodings

Ei,j and Ei,j′ are equal if and only if the evaluation (Li,j −Li,j′)(x) yields zero.

However, it is clear that such an equality relation yields no information about

particular choices x if it holds for all elements from Z
c
n × (Z∗

n)
ℓ−c. Thus, denot-

ing the ideal of L
(ℓ,c)
n containing all Laurent polynomials that are effectively zero

over Z
c
n × (Z∗

n)
ℓ−c by

In = {P ∈ L(ℓ,c)
n | ∀x ∈ Z

c
n × (Z∗

n)
ℓ−c : P (x) ≡ 0 mod n} (1)

an equality yields no information at all if (Li,j − Li,j′) ∈ In. Otherwise, a non-

trivial collision occurred and A learns that x is a modular root of Li,j − Li,j′ .



By Definition 6 we capture the chance that information about the secret

choices x is leaked in the course of a computation due to non-trivial equali-

ties between group elements. For this purpose we can make use of (Ω, q)-SLP-

generators since they generate all possible sequences of polynomials that may

occur in an execution of a q-GGA.

Definition 6 (Leak-resistance). A DL-/DH-type problem P is (Ω, q, ν)-leak-

resistant if for all (Ω, q)-SLP-generators S and κ ∈ N we have

Pr







∃i and P, P ′ ∈ Li such that
(P − P ′)(x) ≡ 0 mod n ∧ P − P ′ /∈ In

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c






≤ ν(κ)

Now assume that no information about x can be gained. In this case, we

can restrict to consider algorithms applying trivial solution strategies to solve

instances of a problem. That means, we can restrict our considerations to the

subclass of generic algorithms that, when fixing all inputs except for the choice

of x, always apply the same fixed sequence of operations from Ω and provide the

same output in order to solve an arbitrary problem instance. Thus, the algorithm

actually acts as a straight-line program in this case.

Definition 7 (SLP-intractability of DL-Type Problems). A DL-type

problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and

κ ∈ N we have

Pr






Q(x) ≡ a mod n

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(a, L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c






≤ ν(κ)

Definition 8 (SLP-intractability of DH-type Problems). A DH-type

problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and

κ ∈ N we have

Pr






(P −Q)(x) ≡ 0 mod n

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(P,L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c






≤ ν(κ)

Theorem 1 (GGA-intractability of DL-/DH-type Problems). If a DL-

type problem is (Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable then it is

(Ω, q, ν1 + ν2)-GGA-intractable. If a DH-type problem is (Ω, q, ν1)-leak-resistant

and (Ω, q, ν2)-SLP-intractable then it is (Ω, q, 1
2κ−(q(κ)+z(κ)) + ν1 + ν2)-GGA-

intractable.

The proof of this theorem is given in the full version of the paper [12].



6 Practical Conditions

In this section, we present easily checkable conditions ensuring that a DL-/DH-

type problem is (Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable with q

being polynomial and ν1 and ν2 being negligible functions in the security pa-

rameter. Reviewing the corresponding definitions, we see that the probabilities ν1
and ν2 are closely related to the probability of randomly picking roots of certain

multivariate Laurent polynomials. Lemma 1 shows in turn that the probability

of finding such a root is small for non-zero polynomials in L
(ℓ,c)
n having low total

degrees.

Lemma 1. Let p be a prime, e ∈ N, n = pe, and let P ∈ L
(ℓ,c)
n be a non-zero

Laurent polynomial of total degree d. Then for x
R

← Z
c
n × (Z∗

n)
ℓ−c we have

Pr[P (x) ≡ 0 mod n] ≤
(ℓ− c+ 1)d

p− 1
.

6.1 Operations Sets as Graphs: Bounding Polynomial Degrees

We aim at formalizing the class of operations sets that only allow for a small rise

in the degrees of polynomials that can be generated by any (Ω, q)-SLP-generator

S. Remember, these are the polynomials that can be generated from the input

polynomials by applying operations from Ω at most q(κ) times. To this end,

we introduce a special type of graph, called operations set graph (Definition 9),

modeling an operations set and reflecting the corresponding rise of degrees.

Definition 9 (Operations Set Graph). An operations set graph G = (V,E) is

a directed multi-edge multi-vertex graph. There are two types of vertices, namely

group and product vertices. The vertex set V contains at least one group vertex.

Each group vertex in V is labeled with a unique integer. All product vertices are

labeled by Π. Any edge in E may connect two group vertices or a group and a

product vertex.

Let Ω be an operations set involving k groups. Then the operations set

graph GΩ = (V,E) corresponding to Ω is constructed as follows: V is initialized

with k group vertices representing the k different groups, where these vertices

are labeled with the numbers that are used in the specification of Ω, say the

numbers 1 to k. For each operation (◦, s1, . . . , su, d, F ) ∈ Ω we add additional

product vertices to V and edges to E. Let F =
∑

iMi be represented as the sum

of non-zero monomials. Then for each Mi we do the following:

1. We add a product vertex and an edge from this vertex to the group vertex

with label d.



2. For each variable Yj (1 ≤ j ≤ u) occurring with non-zero exponent ℓ in

Mi we add ℓ edges from the group vertex labeled with the integer sj to the

product vertex just added before.

In order to embed the notion of increasing polynomial degrees by applying

operations into the graph model we introduce the following graph terminology:

We associate each group vertex in a graph with a number, called weight. The

weight may change by doing walks through the graph. Taking a walk through the

graph means to take an arbitrary path that contains exactly two group vertices

(that are not necessarily different) where one of these vertices is the start point

and the other is the end point of the path. A walk modifies the weight of the

end vertex in the following way:

– If the path contains only the two group vertices, the new weight is set to be

the maximum of the weights of the start and end vertex.

– If the path contains a product vertex, the new weight is set to be the max-

imum of the old weight and
u
∑

j=1

wj , where u is the indegree and wj is the

weight of the j-th predecessor of this product vertex.

We define a free walk to be a walk through a path that only consists of the two

group vertices and no other vertex. A non-free walk is a walk through a path

containing a product vertex. It is important to observe that

– a non-free walk can actually increase the maximum vertex weight of a graph

in contrast to a free-walk.

– after each non-free walk the weight of any vertex can be changed at most

finitely many times by doing free walks.

Hence, the following definition of the q-weight makes sense: Let q be a fixed

positive number. We consider finite sequences of walks through a graph, where

each sequence consists of exactly q non-free walks and an arbitrary finite number

of free walks. We define the q-weight of a (group) vertex to be the maximum

weight of this vertex over all such sequences. Similarly, we define the q-weight of

an operations set graph to be the maximum of the q-weights of all its vertices.

Obviously, the q-weights of the vertices 1, . . . , k of an operations set graph GΩ
can be used to upper bound the degrees of the output polynomials L1, . . . , Lk of

any (Ω, q)-SLP-generator S when setting the initial weight of each group vertex

i to the maximal degree of the polynomials in Ii. Similarly, we can bound the

maximum positive or negative exponent of a single variable Xj by setting the

initial weight of the group vertex i to be the maximum degree of Xj in any

polynomial in Ii.

With regard to the definition of the q-weight, we can immediately simplify

the structure of operations set graphs: Clearly, we do not change the q-weight



∏

1

2

3

Fig. 1. GΩ for Ω = {(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1),
(inv2, 2, 2,−Y1), (inv3, 3, 3,−Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} of w-BDHIP. Strongly connected
components are marked by dashed borders.

of a graph if we remove self-loops and product vertices with indegree 1, where

in the latter case the two edges entering and leaving the vertex are replaced

by a single edge going from the predecessor vertex to the successor vertex. We

call such a graph a reduced operations set graph. As an illustrating example,

consider the reduced operations set graph depicted in Figure 1, which belongs

to the operations set for the w-BDHI problem (cf. Example 2).

The following condition characterizes graphs that do not allow for a super-

polynomial grow of vertex weights. Intuitively, it prohibits any kind of repeated

doubling. For the q-weight of operations set graphs satisfying Condition 1, it is

possible to derive non-trivial upper bounds as given in Theorem 2. The proof is

given in the full version of the paper [12].

Condition 1 Let GΩ be a reduced operations set graph. Then for every strongly

connected component2 C of GΩ it holds that every product vertex contained in C

has at most one incoming edge from a vertex that is also contained in C.

Theorem 2. Let GΩ be a reduced operations set graph satisfying Condition 1.

Let n1 denote the number of product vertices contained in GΩ, umax the maximal

indegree of these product vertices, dmax the maximal initial weight of any group

vertex, and n2 the number of SCCs containing at least one product and one group

vertex. Then the q-weight of GΩ is upper bounded by

D(n1, n2, umax, dmax, q) =















dmax(umax)
n1 , n2 = 0

dmaxe
n1 , n2 > 0 and q < e

umax
n1

dmax

(

umaxq
n1

)n1

, n2 > 0 and q ≥ e

umax
n1

,

where e denotes Euler’s number.

2 A strongly connected component of a directed graph GΩ = (V, E) is a maximal set
of vertices U ⊂ V s.t. every two vertices in U are reachable from each other. The
strongly connected components of a graph can be computed in time O(|V | + |E|).



Example 3. Condition 1 is satisfied for GΩ depicted in Figure 1 since the strongly

connected component containing the product vertex contains no other vertices.

We have n1 = 1, n2 = 0, and umax = 2. Since the problem instance implies

dmax = w we have that the q-weight of the graph is bounded by 2w.

Note that the factor by which the (maximal) initial weight of the vertices

can be increased only depends on the particular operations set graph. Hence,

once we have shown that an operations set only allows to increase degrees by a

low (i.e., polynomial) factor, this certainly holds for all problems involving this

operations set and does not need to be reproven (as it is currently done in the

literature).

It is possible to devise a graph algorithm (Algorithm 1) that finds individual

bounds on the q-weights of the group vertices which are often tighter than the

generic bound from Theorem 2. The principle of the algorithm is simple. We con-

sider the directed acyclic graph that is composed of the SCCs of the operations

set graph. We move from the sources to the sinks of the DAG and recursively

bound the q-weights of the vertices within each SCC. In the end when all SCCs

are labeled with such a bound, the q-weight of a group vertex is simply set to

be the q-weight bound of the (unique) SCC in which it is contained.

6.2 Practical Conditions: Leak-Resistance

To provide leak-resistance, we ensure that any difference of two distinct poly-

nomials computable by a (Ω, q)-SLP-generator is of low degree. We do so by

demanding that the input polynomials I of a problem P have low degrees (Con-

dition 2) and restrict to operations sets Ω only allowing for small increase of

degrees (Condition 1). If these conditions are satisfied, we can derive a concrete

leak-resistance bound ν for any runtime bound q (Theorem 3).

Condition 2 There exists r1 ∈ poly(x) such that for all κ ∈ N, I ∈ [SIGenI
P(κ)]

we have max
1≤i≤k,P∈Ii

(deg(P )) ≤ r1(κ)

Theorem 3. Let Ω be an operations set such that Condition 1 is satisfied. Fur-

thermore, let P be a DL-type or DH-type problem satisfying Condition 2. Then

for any q ∈ poly(x), the problem P is (Ω, q, ν)-leak-resistant, where

ν(κ) = 2−κk(q(κ) + z(κ))2(ℓ− c+ 1)D(n1, n2, umax, r1(κ), q(κ)) .

Example 4 (Leak-resistance for w-BDHIP). The degrees of the input poly-

nomials of the w-BDHI problem are polynomially upper bounded through

w by definition. Example 3 showed that Ω satisfies Condition 1 yielding

D(1, 0, 2, w(κ), q(κ)) = 2w(κ). Furthermore, for w-BDHIP we have parameters

k = 3, ℓ = 1, and c = 0. Thus, by Theorem 3 the problem P is (Ω, q, ν)-leak-

resistant, where ν(κ) = 2−κ12(q(κ) + w(κ) + 1)2w(κ).



Algorithm 1 Computation of the q-weigths of group vertices.

Input: q, reduced operations set graph G satisfying Condition 1, initial weights for
the k group vertices in G

Output: q-weights w1, . . . , wk of vertices 1, . . . , k

1: Perform a topological sort on the DAG of G, i.e., arrange the SCCs of G in layers
0 to ℓ such that SCCs in layer j can only receive edges from SCCs contained in
layers i < j.

2: for each layer j = 0 : ℓ do

3: for each SCC C in layer j do

4: if C consists only of group vertices then

5: set weight of C to maximum of weights of vertices contained in C and weights
of SCCs in layers i < j having edges to C

6: end if

7: if C consists only of a single product vertex then

8: set weight of C to sum of weights of SCCs in layers i < j having edges to C
9: end if

10: if C consists of at least one product vertex and one group vertex then

11: let w be the maximum of the weights of group vertices contained in C and
the weights of SCCs in layers i < j having edges to these group vertices

12: for each product vertex Π in C, compute sum of weights of SCCs in layers
i < j having edges to Π, and let v be the maximum of these sums

13: set weight of C to w + qv

14: end if

15: end for

16: end for

17: for i = 1 : k do

18: set wi to weight of SCC containing the group vertex i

19: end for

6.3 Practical Conditions: SLP-intractability of DL-type Problems

In view of Lemma 1, in order to ensure SLP-intractability for a DL-type problem

it suffices to require the challenge polynomial being non-constant (Condition 3)

and of low degree (Condition 4).

Condition 3 There exists κ0 ∈ N such that for all κ ≥ κ0, (n,Q) ∈

[SIGen
(n,Q)
P (κ)] the polynomial Q is not a constant in L

(ℓ,c)
n .

Condition 4 There exists r2 ∈ poly(x) such that for all κ ∈ N, Q ∈ [SIGen
Q
P(κ)]

we have deg(Q) ≤ r2(κ).

Assuming the above conditions are satisfied for a DL-type problem, Theorem 4

implies that the problem is (Ω, q, ν)-SLP-intractable, where q is an arbitrary

polynomial and ν is a negligible function in the security parameter.



Theorem 4. Let P be a DL-type problem satisfying Condition 4 and Condi-

tion 3. Then for any q ∈ poly(x) and any operations set Ω, P is (Ω, q, ν)-SLP-

intractable, where

ν(κ) =

{

1, κ < κ0
(ℓ−c+1)r2(κ)

2κ , κ ≥ κ0

.

6.4 Practical Conditions: SLP-intractability of DH-type Problems

To ensure SLP-intractability of DH-type problems we formulate similar condi-

tions as in the case of DL-type problems. More precisely, we ensure that the

difference polynomials considered in the definition of SLP-intractability (Defini-

tion 8) are never zero and of low degree.

The non-triviality condition (Condition 5) states that an efficient SLP-

generator can hardly ever compute the challenge polynomial, and thus solve

the problem with probability 1.

Condition 5 For every q ∈ poly(x) there exists κ0 ∈ N such that for all κ ≥

κ0, (Ω, q)-SLP-generators S, (n, I, Q) ∈ [SIGen
(n,I,Q)
P (κ)], and (P,L1, . . . , Lk) ∈

[S(κ, n, I, Q)] we have P 6= Q in L
(ℓ,c)
n .

We note that Condition 5 appears to be more complex compared to the prac-

tical conditions seen so far and it is not clear to us how to verify it in its full

generality. However, it is usually easy to check in the case of a problem of prac-

tical relevance. Usually, one of the following properties is satisfied implying the

validity of Condition 5:

– The total degree of P ∈ L1 is bounded by a value which is smaller than the

total degree of Q.

– The positive/negative degree of P ∈ L1 is bounded by a value which is

smaller than the positive/negative degree of Q.

– The positive/negative degree of some variable Xj of P ∈ L1 is bounded by

a value which is smaller than the positive/negative degree of that variable

in Q.

Remember, that we can make use of the results from Section 6.1 for proving that

a problem satisfies one of these properties.

Moreover, we have to prevent that an (Ω, q)-SLP-generator outputs a poly-

nomial P 6= Q which frequently “collides” with Q and thus constitutes a good

interpolation for Q. If P is low degree (Conditions 1 and 2), then it is sufficient

to demand that Q is of low degree as well (Condition 4).

Hence, we need the practical conditions for leak-resistance in addition to the

ones stated in this section for showing that a DH-type problem is (Ω, q, ν)-SLP-

intractable, where ν is a negligible function in the security parameter.



Theorem 5. Let Ω be an operations set such that Condition 1 is satisfied.

Furthermore, let P be DH-type problem satisfying Condition 2, Condition 4

and Condition 5. Then for any q ∈ poly(x), the problem P is (Ω, q, ν)-SLP-

intractable, where

ν(κ) =

{

1, κ < κ0
(ℓ−c+1)(r2(κ)+D(n1,n2,umax,r1(κ),q(κ)))

2κ , κ ≥ κ0

is a negligible function.

Example 5 (SLP-intractability of w-BDHIP). Remember that for this problem

the challenge polynomial is fixed to Q = X−1
1 . Moreover, observe that all vari-

ables occurring in the input polynomials only have positive exponents. Thus,

any polynomial P ∈ L1 has only positive exponents in any variable. Hence,

Condition 5 is trivially satisfied (independently of the considered operations set

Ω).3 Condition 4 is satisfied since we always have deg(Q) = 1 =: r2(κ). As we

have already seen in the previous sections, Conditions 1 and 2 hold yielding the

upper bound D(1, 0, 2, w(κ), q(κ)) = 2w(κ) on the degrees of the polynomials

P ∈ L1. Thus, by Theorem 5 the problem is (Ω, q, ν)-SLP-intractable, where

ν(κ) = 2−κ(2 + 4w(κ)).
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A Rational Functions Specifying Problem Challenges

Our framework so far only covers problems where the solution of a problem

instance can be represented as a Laurent polynomial. This restriction excludes

important problems like the w-strong Diffie-Hellman problem or the w-strong

Bilinear Diffie-Hellman problem. Informally speaking, the w-SDH problem can

be described as follows: Given group elements g, gx
1

, gx
2

, . . . , gx
w

, where x
R
← Z

∗
p,

the task is to find an integer v ∈ Z
∗
p and a group element a such that a = g

1
x+v .

Observe that here the solution is defined by a rational function of the secret

choices and the value v that can be chosen freely. If 1
x+v is not defined over Zp

for particular x and v, then the problem instance is deemed to be not solved.

To let the class of DL-/DH-type problems (Definition 1) cover this prob-

lem type we do the following: We first need introduce two additional param-

eters ℓ′ and c′ defining the range Z
c′

n × (Z∗
n)
ℓ′−c′ from which the algorithm is

allowed to choose the value v. Furthermore, we consider structure instance gen-

erators SIGenP which output two Laurent polynomials Q1 and Q2 over Zn in

the variables X1, . . . ,Xℓ, V1, . . . Vℓ′ , where only the variables Xc+1, . . . ,Xℓ and

Vc′+1, . . . , Vℓ′ may appear with negative exponents. These polynomials represent

a rational function

R : (Zcn × (Z∗
n)
ℓ−c)× (Zc

′

n × (Z∗
n)
ℓ′−c′)→ Zn ,

(x,v) 7→
Q1(x,v)

Q2(x,v)
.



A problem instance of such an extended DL-/DH-type problem is defined as

before. Given a problem instance, the challenge is to output some v ∈ Z
c′

n ×

(Z∗
n)
ℓ′−c′ with Q2(x,v) ∈ Z

∗
n and the element







Q1(x,v)
(Q2(x,v)) , for a DL-type problem

g
Q1(x,v)

(Q2(x,v))

1 , for a DH-type problem
. (2)

Adapting most of the framework to the new definition is quite straightfor-

ward. In fact, the definition of leak-resistance, the corresponding conditions and

theorems stay the same since the definition is completely independent of the

challenge polynomial. In the following, we only sketch important differences to

the previous version of the conditions.

For this purpose, we need to introduce some new notation: By

F(L(ℓ,c)
n ) :=

{

Q1

Q2
| Q1, Q2 ∈ L(ℓ,c)

n , Q2 is not a zero-divisor

}

we denote the ring of fractions of L
(ℓ,c)
n . An element a

b
∈ F(L

(ℓ,c)
n ) with a, b ∈ Zn

is called a constant fraction. The ring L
(ℓ,c)
n can be seen as a subring of this

ring by identifying Q ∈ L
(ℓ,c)
n with Q

1 ∈ F(L
(ℓ,c)
n ). Note that if we evaluate the

fraction Q1

Q2
with some v ∈ Z

c′

n × (Z∗
n)
ℓ′−c′ we obtain a fraction Q1(X,v)

Q2(X,v) that

is not necessarily a well-defined element of F(L
(ℓ,c)
n ). This is because Q2(X,v)

might be a zero-divisor in L
(ℓ,c)
n . However, we can exclude this case, because by

choosing such a fraction (i.e., by selecting this particular v) an algorithm can

never solve a problem instance.

We stipulate the following definitions for the SLP-intractability of a (ex-

tended) DL-type and a DH-type problem, respectively. Note that the SLP-

generators now additionally output v in order to select a specific fraction.

Definition 10 (SLP-intractability of DL-Type Problems). A DL-type

problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and

κ ∈ N we have

Pr







Q2(x,v) ∈ Z
∗
n and

R(x,v) ≡ a mod n

(n, I, Q1, Q2)
R

← SIGen
(n,I,Q1,Q2)
P (κ);

(v, a, L1, . . . , Lk)
R

← S(κ, n, I, Q1, Q2);

R← Q1

Q2
;x

R

← Z
c
n × (Z∗

n)
ℓ−c






≤ ν(κ)

Definition 11 (SLP-intractability of DH-type Problems). A DH-type

problem P is (Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and

κ ∈ N we have

Pr







Q2(x,v) ∈ Z
∗
n and

(P −R(X,v))(x) ≡ 0 mod n

(n, I, Q1, Q2)
R

← SIGen
(n,I,Q1,Q2)
P (κ);

(v, P, L1, . . . , Lk)
R

← S(κ, n, I, Q1, Q2);

R← Q1

Q2
;x

R

← Z
c
n × (Z∗

n)
ℓ−c






≤ ν(κ)



The GGA-intractability of a DL-/DH-type problem is still related in the same

way to the leak-resistance property and the SLP-intractability of the problem.

That means, Theorem 1 holds unchanged for our extension.

To ensure SLP-intractability, we have Condition 6 and 7 for DL-type prob-

lems and Condition 6 and 8 for DH-type problems. These conditions imply

(Ω, q, ν)-SLP-intractability for the same negligible functions ν as stated in The-

orems 4 and 5.

Condition 6 There exists r2 ∈ poly(x) such that for all κ ∈ N,

(n,Q1, Q2) ∈ [SIGen
(n,Q1,Q2)
P (κ)], and v ∈ Z

c′

n × (Z∗
n)
ℓ′−c′ we have

max{deg(Q1(X,v)),deg(Q2(X,v))} ≤ r2(κ) .

Condition 7 There exists κ0 ∈ N such that for all κ ≥ κ0, (n,Q1, Q2) ∈

[SIGen
(n,Q1,Q2)
P (κ)], and v ∈ Z

c′

n × (Z∗
n)
ℓ′−c′ we have that Q1(X,v)

Q2(X,v) is not a con-

stant fraction in F(L
(ℓ,c)
n ).

Condition 8 For every q ∈ poly(x) there exists κ0 ∈ N such that for all

κ ≥ κ0, (Ω, q)-SLP-generators S, (n, I, Q1, Q2) ∈ [SIGen
(n,I,Q1,Q2)
P (κ)], and

(v, P, L1, . . . , Lk) ∈ [S(κ, n, I, Q1, Q2)] we have that Q1(X,v)
Q2(X,v) 6= P in F(L

(ℓ,c)
n ).

Example 6 (SLP-intractability of w-SDHP). For the w-SDH problem we have

parameters Paramw-SDH = (k = 1, ℓ = 1, c = 0, z = w + 1, ℓ′ = 1, c′ = 0) and a

structure instance generator SIGenw-SDH that on input κ returns

((G = G1,g = g1, n = p), (I = I1 = {1,X1
1 , . . . ,X

w(κ)
1 }, Q1 = 1, Q2 = X1+V1)) .

Note that for any v1 ∈ Z
∗
p, the fraction Q1(X,v)

Q2(X,v) = 1
X1+v1

is an element of

F(L
(ℓ,c)
n ) but not an element of the subring L

(ℓ,c)
n . Hence, Condition 8 is triv-

ially satisfied, since P is always a Laurent polynomial (independently of the

considered operations set Ω). Condition 6 is satisfied since we always have

max{deg(Q1(X,v),deg(Q2(X,v))} = 1 =: r2(κ). As we can easily see, Con-

ditions 1 and 2 hold assuming an operations set containing operations for per-

forming the group law and inversion of elements in G1, this yields an upper

bound D(0, 0, 0, w(κ), q(κ)) = w(κ) on the degrees of the polynomials P ∈ L1.

Thus, the problem is (Ω, q, ν)-SLP-intractable, where ν(κ) = 2−κ(w(κ) + 1).


