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Abstract. In this paper, we show that two variants of Stern’s identification
scheme [IEEE Transaction on Information Theory '96] are provably secure
against concurrent attack under the assumptions ondh&-casénardness of lat-

tice problems. These assumptions are weaker than those for the previous lattice-
based identification schemes of Micciancio and Vadhan [CRYPTO ’03] and of
Lyubashevsky [PKC '08]. We also construdlieient ad hoc anonymous identifi-
cation schemes based on the lattice problems by modifying the variants.
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1 Introduction

Many researchers have so far developed cryptographic schemes based on combinato-
rial problems related to knapsacks, codes, and lattices, due to the intractability of the
underlying problems, thefléciency of primitive operations, and the threat of quantum
computers to number-theoretic schemes.

The cryptographic schemes based on combinatorial problems usually assume the
average-caséardness of the underlying problem because they have to deal with ran-
domly generated cryptographic instances such as keys, plaintexts, and ciphertexts. This
implies security risk in such schemes since it is generally hard to show their average-
case hardness. In fact, several attacks against such schemes, e.g., [25], were found in
practical settings. The cryptographic schemes based only on the average-case hardness
are more likely to be at risk of these kinds of attacks.

It is therefore significant to guarantee the security under the worst-case hardness.
Ajtai [1] showed that the average-case hardness of some lattice problem is equivalent
to its worst-case hardness. His seminal result opened the way to cryptographic schemes
based on the worst-case hardness of lattice problems. Several lattice-based schemes
were proposed such as public-key encryption schemes, e.g., by Ajtai and Dwork [2],
and hash functions [1, 11, 19].

Among varieties of lattice-based cryptographic schemes, there are very few results
on the identification (ID) schemes based on the worst-case hardness of lattice problems.
For example, Micciancio and Vadhan proposed ID schemes based on the worst-case
hardness of lattice problems, such as the gap versions of the Shortest Vector Problem.
These schemes are obtained from their statistical zero-knowledge protocoffigigne
provers [20]. Recently, Lyubashevsky also constructed lattice-based ID schemes secure



against active attack [14]. Unfortunately, the approximation factors of the underlying
problems in their schemes are large for practical use as noted in [14, Sec. 5] since secu-
rity parameters for ID schemes should be large in order to achieve the required hardness.
Therefore, it is necessary to construct the schemes based on weaker assumptions, i.e.,
the assumptions on lattice problems with smaller approximation factors.

1.1 Our Contributions

In this paper, we propose two variants, which we cdl| &nd g, , of Stern's ID
scheme [26]. These variants are secure agamsturrentattack under the assump-
tions on theworst-casehardness of lattice problems, while Stern’s original scheme as-
sumes tha@verage-casbardness of certain decoding problem in coding theory and the
existence of a collision-resistant hash function, and its security is only ageissive
attack. The underlying problems ofSand g, are the gap version of the Shortest

Vector Problem with approximation fact@(n) (GapSV%(n)) and the Shortest Vector
Problem for ideal lattices with approximation facton) (A(f)-SVPg’(n)), respectively,

whereO(g(n)) = O(g(n) poly logg(n)) for a functiongin n, The assumptions are weaker
than those for the previous lattice-based ID schemes [20, 14]. We stress that such weaker
assumptions will take a step for practical use of lattice-based ID schemes.

Moreover, we show that our variants yielffieient ad hoc anonymous identification
schemes (AID schemes). In an AID scheme, which introduced by Dodis, Kiayias, Ni-
colosi, and Shoup [7], the protocol is done by two parties, a prover and verifier, but we
implicitly suppose an ad hoc group. Given public keys of all members of the group to
the verifier (and the prover), the goal is to convince the verifier that the prover belongs
to the group, without being specified who the prover is of the group, if and only if the
prover is an actual member of the group. We formally define a concurrent version of
the security notion, the security against impersonation under concurrent chosen-group
attack, and prove that our AID schemes satisfy this security notion. Our schemes are
based on the worst-case hardness of Ga[%?nyandA(f)-SVPg(n). To authors’ best
knowledge, this is the first non-trivial construction under the assumption of the worst-
case hardness of lattice problems.

1.2 Main Ildeas

In this section, we only discuss the ID schende Based on GapSVP. We first construct

a string commitment scheme based on the lattice problem which will be used in ID

schemes. Then we will describe the idea of the proof on concurrent security of the

variant. Finally, we give a sketch of our construction method of an AID scheme.
Before giving the overview, we review the underlying problem Gapgsaird the

fundamental problem, the Small Integer Solution Problem{S}$ on which our vari-

L In active attackan adversary could interact with the prover prior to impersonatiocotur-
rent attack an adversary could interact with manyfdrent prover “clones” concurrently prior
to impersonation. Each clone has the same secret key, but has independent random coins and
maintains its own state. After interacting with many clones, the adversary tries impersonation.



ants are directly based. The informal definitions and the relationship of two problems
are given as follows:

— SI§;mp: Given a randomm-by-m matrix A whose elements are iy, the problem
is finding anm-dimensional integral non-zero vectasuch thatAz = 0 (mod q)
and||Zl; <B.

- GapSVFi: Given ann-dimensional latticd and a rational numbaet, the problem
is outputting YES if there exists a non-zero vectar L such that|vj|, < d, or NO
if for any non-zero vectov € L ||V||, > yd.

— ([19]) For suitableg andm, if there exists a probabilistic polynomial-time algorithm
which solves Slgmg on the average then there exists a probabilistic polynomial-
time algorithm which solves Gaps%gnm) in the worst case.

As in Lyubashevsky's result [14], we use the above relationship for our security reduc-
tion. Hence we mainly deals with SIS instead of GapSVP.

We simply obtain the lattice-based hash functions as in [11]: Choose a random
matrix A € Zg*™. For anyx € {0, 1}™, a hash value i$a(x) := Ax modqg. A collision
(%, x’) of the hash functiorfs implies a solutionz = x — x” of SIS, - Thus, the

security of the hash functions is based on the worst-case hardness of (%%VP

String commitment schemesVe construct a string commitment scheme from lattice-
based hash functions. General constructions of string commitment schemes from collision-
resistant hash functions were shown by Damgard, Pedersen, and Pfizmann [4] and
Halevi and Micali [12]. Stern also constructed a string commitment scheme from collision-
resistant hash functions in [26, Sec. Ill-A]: Letbe a hash function. Given a strirgy

and a random string, a commitment is(o o (0@ S)), whereo and® denote the concate-
nation and XOR operators, respectively. However, its hiding property was not shown.
We construct a string commitment scheme by a more direct and simpler way than the
general one and Stern’s one: Giveandp, a commitment ifi(po s), wherehis a lattice-

based hash function. The binding property simply follows from the collision-resistance
property ofh. We derive its hiding property frora-regularity ofh for some negligible
function € (see, e.g., [16, Sec. 4.1]). As mentioned in the above, we have collision-
resistant lattice-based hash functions based on the worst-case hardness of GapSVP,
while Stern assumed the existence of collision-resistant hash functions.

Our ID scheme and its concurrent securitiyn Stern’s scheme and our variant, a prover
has a binary vectax with fixed Hamming weight as hiser secret key. We also feed to
the prover and the verifier a matrikxas a system parameter and a vegtas the public
key corresponding tax. The task of the prover is to convince the verifier thasshe
knows a correct secret keysatisfying a relatiolx = y andx has a valid weight.

In Stern’s protocol [26], the prover computes three commitments and sends them to
the verifier. The verifier sends a random challenge to the prover. The prover reveals two
of three commitments corresponding to the challenge. He constructed the knowledge
extractor which computes a collision of a hash function in a string commitment scheme
or a secret key corresponding to the target public key if a passive adversary responds
correctly to any challenges after sending commitments.



One of standard strategies to achieve concurrent security is to prove that a public key
corresponds to multiple secret keys and that the protocol is witness indistinguishable
(W1) [8] and proof-of-knowledge: The reduction algorithm generateandpkand runs
the adversary opk by simulating the prover witkk Using the knowledge extractor of
the protocol, the algorithm obtains anotlsé corresponding tk with probability at
least ¥2 since the protocol is WI. The algorithm then solves the underlying problem
by usingpk, sk, andsK.

In our reduction, when the algorithm is givéy) it generates a secret kayand a
public keyy = Ax, and feedsA andy to the adversary. Note that the algorithm can
simulate the prover wit\ andx that the adversary concurrently accesses. Using the
knowledge extractor for the adversary in Stern’s proof, the algorithm obtains a collision
of a string commitment scheme or a secret keguch thatx’ # x andAx’ =y, differ-
ently from the general strategy. In the former case, the algorithm outputs the collision
(s, ¢) of a hash functiorh, in the string commitment scheme. Thus, the solution for
SIS is obtained by = s— . In the latter case, the condition# x’ will be satisfied
with probability at least 12 by witness indistinguishability of Stern’s protocol. Thus,
the algorithm has the solution= x — x’ for SIS. Thef, norm of both solutions is at
most vm = O(n*2). From the relationship between SIS and GapSVP the assumption
is the worst-case hardness of Gap%w?

AID schemesOur construction for AID schemes also has the following structure: Each
of | members in the ad hoc group has avesidi = 1, .. .,1). Then, the common inputs

of the scheme are a system paramétend a set of public keyg, ...,y of the mem-
bers, which satisfy; = Ax; (i = 1,...,1). We can show that, by Stern’s protocol, the
prover can anonymously convince the verifier that the prover kngwsrresponding

to one ofys, ...,V since hgshe knows a new vector such thatpy; ... yi]x’ = 0.

(This idea is due to Wu, Chen, Wang, and Wang [27], who presented an AID scheme
from certain combinatorial problem.) Additionally, we force the prover to prove that the
positions of+1 and—1 in x’ are proper by modifying Stern’s protocol. We succeed to
give security proof for the scheme, while Wu et al. gave no formal proof on the security
of their scheme.

1.3 Comparison with Other Lattice-based Schemes

ID schemes:In [20], Micciancio and Vadhan proposed a statistical zero-knowledge
and proof-of-knowledge protocol for GapSVP. Combining it with lattice-based hash
functions, we obtain an ID scheme which is secure aggiassive attaclbased on
SIS, ma(n): Which can be reduced from GapSé/(rlﬁs).

In the scheme, the prover and the verifier are given a mAtas a common input,
and the prover has a binary vectoas secret information. The task of the prover is to
convince the verifier that lighe knowsx satisfying the relations tha&x = 0 andx is
relatively short. It seems fllicult to directly simulate the prover since a simulator has
to prepare a dummy short vecter satisfyingAx’ = 0, which is the task of SIS itself.
Thus, we cannot straightforwardly prove the concurrent security for their ID scheme.

By a simple modification, we can construct a concurrently secure ID schemg (MV
for short) based on the worst-case hardness of lattice problems by Micciancio and Vad-



ID schemesAo, A1, A € ngm)

Param| Public key Relation yin GapSVI? Comm. cost Errors
MV, [20] |- Ao, Ay Agx=00rA;x=0 O(n®) t-O(n) 1-sided
Lol [14] [(A)  |A)y Ax=y O(r?) t-O(n) 2-sided
S A y Ax = yandwy(x) = m/2 | O(n) t-O(n) 1-sided

AID schemesAio, Ai1, A € ngm)

Base Param| Set of pks Relation yin GapSVI% Comm. cost Errors
MV, [20] |- {Aio,Aidicti |AigX = 00rAj1x =0 O(n'®) tl - &(n) 1-sided
Lo [14] |A Vi Vi AX =y O(n?) tl - O(n) 2-sided
St A Vi i Ax = y; andwy(x) = m/2| O(n) t-O( +n) |1-sided

Table 1. Comparisons among ID schemes and AID schemes. A secretidiex € {0, 1}™. The

factorn denotes the security parameter. We denote the Hamming weightyofv, (X). Assume

that the protocols are repeatgimes in parallel for reducing errors. In the table for AID schemes,

| denotes the number of the members in the group. Note that the parameters in ideal-lattice-based
versions are almost same as those in general-lattice-based versions.

han’s ID scheme as noted in [20, Sec. 5]. In particular, applying techniques of De Santis,
Di Crescenzo, Persiano, and Yung [6] and of Feige and Shamir [8], a modification of
the ID scheme can be proven to have concurrent seédrityed on the same problem
as that in the original scheme.

Recently, Lyubashevsky proposed new concurrently secure ID schemes based on
lattice problems [14]; we call it &, for short. In his protocol, the prover proves, given
A andy, he'she hasx € {0,1}™ such thatAx = y. Using an active adversary, his
knowledge extractor obtains another veckoérsuch thatAx’ = y and the length of
X' is at mostO(m*%) = O(n®). Thus, in the lg. scheme, the underlying problem is
SI§;m6(mes), which can be reduced from Gapsg(rfg).

As mentioned in the previous section, the assumptiorfpfiSthe worst-case hard-
ness of GapSV%D(n), which is weaker than those of My and Lg, . This improvement
is obtained by the condition that the knowledge extractor outputs another secrét key
whose length is at most/m = O(+/n). Our schemes has 1-sided error (perfect com-
pleteness and soundness error), whigg bas 2-sided error (completeness and sound-
ness errors). As a summary, see Table 1.

AID schemes: By taking OR of| statements [6], we can straightforwardly obtain
MV ¢, -based and g, -based AID schemes, whose security are based on the worst-case
hardness of lattice problems. We feed opli, ..., pk as the common inputs to the
prover and the verifier. In this case, the prover convinces the verifier tfgtihbas a
secret key corresponding to one of public keys,

2 Combining ORing technique by De Santis et al. [6] and discarding technique by Feige and
Shamir [8], we derive a construction technique for ID schemes secure against active attack.
Moreover, we can construct concurrently secure ID schemes by the same technique as a folk-
lore says.



However, each of these simple modifications requires a large overhead cost involv-
ing the size of the ad hoc group. Ldbe the number of the members of the group and
n the security parameter. The protocol is rurt imes in parallel to reduce the errors.
The communication costs of the I\g\/—based and ¢, -based schemes aite é(n). The
size of a set of the public keyslis O(n?) andO(n?) + | - O(n) in the modified versions
of MV, and Lg, respectively.

On AID schemes, the ¢, -based and our schemes require maegtorspropor-
tional to the size of the group, while the My-based scheme requires mangtrices
proportional to the size of the group (see Table 1). Additionally, the communication cost
of our schemes is- é(n + 1), while those in the MY, -based and &, -based schemes
aretl - O(n). This shows the advantage of our scheme on ffieiency.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we review basic notations
and notions, and the cryptographic schemes we consider. In Section 3, we review lattice-
based hash functions and give a commitment scheme based on the lattice-based hash
functions for our ID and AID schemes. In Section 4, we construct the ID scheme by
combining the framework of Stern’s scheme with our string commitment scheme. We
present the AID scheme in Section 5.

In this paper, due to lack of space, we only describe the schemes based on GapSVP
since the construction ofi(f)-SVP follows from a similar strategy to that on GapSVP.
We discuss the constructions af)-SVP in the full paper.

2 Preliminaries

Basic notions and notationsWe denote byn the security parameter of cryptographic
schemes throughout this paper, which corresponds to the rank of the underlying lattice
problems. We say that a problem is hard in the worst case if there exists no probabilistic
polynomial-time algorithm solves the problem in the worst case with non-negligible
probability. We sometimes u(g(n)) for any functiong in n asO(g(n)-polylog(g(n))).
We assume that all random variables are independent and uniform. For a positive integer
n, let [n] denote a setl, 2,...,n}.

For anyp > 1, the{, norm of a vectox = Y(X1,..., %) € R", denoted byIXlp, is
(Ziepm XP)Y/P. For ease of notation, we defiti&|| := [|X|l,. The £, norm is defined as
[IXllo = NIMpeo [IXI[y = MaXeq [Xi]. Let wi(X) denote the Hamming weight o, i.e.,
the number of non-zero elementsxnLet B(m, w) denote the set of binary vectors in
{0, 1}™ whose Hamming weights are exactly equalta.e., Bm w) := {x € {0,1}™ |
wh(X) = w}. We denote the concatenation of two vectors or stringadv, by vy o Vs,

We omit the definitions of zero-knowledge arguments and witness-indistinguishable
protocols. For formal definitions, see textbooks, e.g., by Goldreich [10].

Hash functions: We briefly review the definition of collision-resistant hash function
families. LetH, = {hx : My, — D, | k € K,} be a family of hash functions, where
Mn, Dn, andK,, denote a space of messages, digests, and indices, respectivety 4 et



{Hnlnew- Roughly speaking, ifH is collision resistant, any polynomial-time adversary
cannot, on input a random ind&xoutput a collision of the hash function indexedlby
For a formal definition, see, e.g., the textbook by Katz and Lindell [13, Sec. 4.6.1].

String commitment scheme¥ve consider a string commitment scheme in the trusted
setup model. The trusted setup model is often required to construct practifially e
cient cryptographic schemes such as non-interactive string commitment schemes. In
this model, we assume that a trusted pé&rtyronestly sets up a system parameter for
the sender and the receiver.

First 7 distributes the index of a commitment function to the sender and the
receiver. Both parties then share a common function Cloyna givenk. The scheme
runs in two phase, called committing and revealing phases. In the committing phase, the
sender commits hiser decision, say a string to a commitment string = Com(s; p)
with a random string» and sendg to the receiver. In the revealing phase, the sender
gives the receiver the decisianand the random string. The receiver verifies the
validity of ¢ by computing Corg(s; p).

We require two security notions of the string commitment schemes, statistically-
hiding and computationally-binding properties. Intuitively, we say that the commitment
scheme is statistically hiding, if any computationally unbounded adversarial receiver
cannot distinguish two commitment strings generated from two distinct strings. Also,
it is computationally binding, if any polynomial-time adversarial sender cannot change
the committed string after sending the commitment. See, e.g., [12] for the formal defi-
nition.

Canonical identification schemed:et ST = (SetUp,KG, P, V) be an identification
scheme, wher8etUp is the setup algorithm which on inpuf dbutputsparam KG is
the key-generation algorithm which on inppdram outputs pk, sK), P is the prover
algorithm taking inpusk, V is the verifier algorithm taking inpuggsaramandpk. We
sayS7 is a canonical identification scheme if it is a public-coin 3-move protocol.

We are interested in concurrent attack, which is stronger than active and passive
attack. We employ the definition of concurrent security in [3]. In concurrent attack, the
adversary will play the role of a cheating verifier prior to impersonation and can interact
many diferent prover clones concurrently. Each clone has the same secret key, but has
independent random coins and maintains its own state. WeS$aig secure against
impersonation under concurrent attack, if any polynomial-time adversary cannot, given
a random public key of a legitimate prover, impersonate the legitimate prover. For the
formal definition, see [3].

Ad hoc anonymous identification schemém AID scheme allows a user to anony-
mously prove hi§rer membership in a group if and only if the user is an actual member
of the group, where the group is formed in an ad hoc fashion without help of the group
manager. We then assume that every user registgtehisublic key to the public key
infrastructure.

We define the algorithms in AID schemes. An AID scheme is four tufieD =
(SetUp, Reg, P, V), where SetUp is the setup algorithm which on inpuf' butputs
param Reg is the key generation and registration algorithm which on irgaram



outputs pk, sk, P is the prover algorithm taking inpusaram a set of public keys
R = (pki,...,pk), and one of the secret kegk such thapk € R, andV is the verifier
algorithm taking inputparamandR. For more formal definition, see [7].

There are two goals for security of AID schemes: security against impersonation and
anonymity. Dodis et al. formally defined security against impersonation under passive
attack. They mentioned the definition of security against impersonation under concur-
rent attack. However, they did not give the formal definition (see [7, Sec. 3.2]). Thus,
we define the security notion with respect to concurrent attack. In the setting of chosen-
group attack, the adversary could force the prover to prove the membership in an ar-
bitrary group if the prover is indeed a member of the group. Additionally, concurrent
attack allows the cheating verifier to interact with the clones of any provers. Also, they
allow the cheating prover to interact with the clones of provers, but prohibit it from
interacting with the target provers. We s@f D is secure against impersonation under
concurrent chosen-group attack, if any polynomial-time adversary cannot impersonate
the legitimate prover in the above settings.

The security notion, anonymity against full key exposure, captures the property that
an adversary cannot distinguish two transcripts even if the adversary has the secret
keys of all the members. We s&g7D is anonymous against full key exposure if any
polynomial-time adversary cannot distinguish two provers with a common set of public
keys even though the adversary generates all keys of the set. The formal definitions of
two notions are in the full paper.

3 Main Tools

In this section, we review main tools, lattices, lattice problems, and lattice-based hash
functions, and construct string commitment schemes.

Lattices and lattice problemsWe first review fundamental notions of lattices, well-
known lattice problems, and a related problem.

An n-dimensional lattice ilR™ is the set(by, ..., bn) = {Xign aibi | @i € Z} of all
integral combinations af linearly independent vectols, . .., b, € R™ The sequence
of vectorsby, ... ., b, is called aasisof the latticeL and denoted bB. For more details
on lattices, see the textbook by Micciancio and Goldwasser [18].

We give the definitions of well-known lattice problems, the Shortest Vector Problem
(SVPP) and its approximation version (S\?}? The problem SVPis, given a basi8
of a latticeL, finding the shortest non-zero vectoin L in the £, norm. The problem
SVP§J is, given a basiB of a latticeL, finding a non-zero vectarin L such that for any
non-zero vectok in L, [V, < y [IX[p.

We next give the definition of the gap version of S}/IWhich is the underlying
problem of lattice-based hash functions.

Definition 3.1 (GapSVFyP [18]). For a gap functiony, an instance oGapSVF§ is a
pair (B, d) whereB is a basis of a lattice L and d is a rational number. In YES input
there exists a vectare L\ {0} such thaf|vi|, < d. In NO input, for any vector € L\ {0},
IIvilp > ¥d.



We also define the Small Integer Solution problem SIS (inftheorm), which is
often considered in the context of average-pasest-case connections and a source of
lattice-based hash functions as we see later.

Definition 3.2 (Slsgmﬂ [19]). For a fixed integer q and a redd, given a matrixA €
Zg“™, the problem is finding a non-zero integer vectar Z™ such thathz = 0 (mod q)

and|lZl, < 8.
The relation between SIS and GapSVP is reviewed in the next paragraph.

Lattice-based hash functiond¥e review the lattice-based hash functions. For a prime
q = q(n) = n°Y and an integem = m(n) > nlogq(n), we define a family of hash
functions,

H(g.m) = {fa : {0, 1" - Zg | A € Zg“™},

wherefa(x) = AX moda.

Originally, Ajtai [1] showed that the worst-case hardness of Ga@SMPsome
polynomialy(n) is reduced to the average-case hardness cﬁ,ng-ﬁor suitableq(n)
andm(n). It is known thatH (g, m) is indeed collision resistant for suitably chosgn
andmby Goldreich, Goldwasser, and Halevi[11]. They observed that finding a collision
(x,x") for fa € H(g, m) implies finding a short non-zero vectar= x — x’ such that
2l < YymandAz = 0 (modq), i.e., solving SI%mW' Recently, Micciancio and

Regev showed that(g, m) is collision resistant under the assumption that Gap%}ryP
is hard in the worst case [19].

Theorem 3.1 ([19]). For any polynomially bounded functiofs= g(n), m= m(n), q =
q(n), with q> 4+/mr/?8 andy = 147 \/nB, there exists a probabilistic polynomial-time
reduction from solvingSapSVl% in the worst case to solvin@l%mﬁ on the average
with non-negligible probability.

There were another reductions from the gap version of the covering radius problem
GapCRP, the shortest independent vector problem Si\éhd the guaranteed distance
decoding problem GDDby adjusting the parameters [19]. It is worth that we note the
results following the above results: Peikert [22] showed the reductions from the same
problems in any, norms forp > 2. The recent paper [9, Sec. 9] by Gentry, Peikert,
and Vaikuntanathan showed that the modujirs SIS can bed(n).

A string commitment schemeGeneral constructions of statistically-hiding and
computationally-binding string commitment schemes are known from a family of
collision-resistant hash functions [4, 12]. Their constructions used universal hash func-
tions for the statistically-hiding property.

Here, we give a more direct and simpler construction from the lattice-based hash
functions without the universal hash functions. The input of the commitment function
is anm-bit vector x obtained by concatenating a random string (o1, . . ., pmy2) and
a message string = (Sy,..., Sn2), i-e., X = p o s. We then define the commitment
function on inputss andp as

Coma(s;p) := Axmodq = A'(o1, ..., Pmy2, St - - - » Sy2) Modq.



Lemma 3.1. For m > 10nlogq, if SIS, \m is hard on the average, theGom, is

a statistically-hiding and computationally-binding string commitment scheme in the
trusted set up model. In particular, for any polynomially bounded functioasmgn),

q = q(n), y = y(n), with g > 4mr#¥/?, y = 14r+/nm, and m> 10nlogq, Comy is

a statistically-hiding and computationally-binding string commitment scheme in the
trusted setup model (BapSVFi is hard in the worst case.

Before the proof, we review a definition of statistical distances: Given two prob-
ability density functiongs; andg¢, on a finite setS, we define the statistical distance

between them ag(¢1, ¢2) 1= 3 Tyes lp1(X) — p2(X)!.

Proof. The computationally-binding property immediately follows from the collision-
resistant property. We now show the statistically-hiding property.

Let A = [a;--- am]. We then have Cor(s,p) = X7 piai + 277 Saism2. The
following claim in [24] says that a random subset sunaois statistically close to the
uniform distribution for almost all choices @f.

Claim ([24]). Let G be some finite Abelian group and llebe some integer. For arty
elementgy,, ..., g € G, conside(};; @i, U), whereu andg; is chosen uniformly at
random fromG and{0, 1}, respectively. Then the expectation of this statistical distance
over a uniform choice afy, ..., g € Gis at mosty/|G| /2. In particular, the probability
that this statistical distance is more th#®|(2')/* is at most |G| /2)V/4.

In our proof, we consideZg as a finite Abelian grouge. Sincem > 10nloggq,
(Gl /2™2)1/* < g™". Thus, for all but an at most™ fraction of A = [ay, ..., am] € Zg*™,
we have thatl(u, Yiemz pi&) < q7", whereu € Zg is uniform random variable. As-
sume that we have suéh So, we havel(u, Coma (0™?; p)) < g". By the definition of
Comy, for anys € {0, 1}™2, we haved(u, Coma (s; p)) < ™. By the triangle inequality,
we obtain

A(Coma(s1; p1), Coma(S2; p2)) < A(U, Comu(sy; p2)) + 4(u, Coma(sz; p2)) < 297",

for any message; ands,. This shows that, for all but negligible fraction of choice of
A, the distributions of two commitments are statistically close.
O

Using the Merkle-Damgard technique, we obtain a string commitment scheme
whose commitment function is Com: {0, 1}* x {0, 1}™2 — Zg rather than Com :
{0, ™2 x {0, 1)™2 — Z] as the following.

Assume tham = 2r. LetA = [BC], whereB,C € Zg". ForX € ng', we define
fx - {0,1) — Zg as the hash functiofx(s) = Xsmodq. Let| be [nlogq] and let
t:zg— {0, 1)' be some one-to-one function that we can compuatedt™ efficiently.
Letpad : {0, 1}* — {0, 1})* be a padding function for the Merkle-Damgard construction.
Applying the Merkle-Damgard construction fg, we obtain a new hash functidw :
{0,1}* — Zg. The precise definition dic is as follows:

Hash function h¢:
1. On inputs, obtain a padded message— pad(s).

10



2. Chopitinto S, ..., Sk), whereS; € {0,1)"".

3. Let Hp = 0 (more generally, some fixdd, can be used).
4. Fori =1tok+1doH; « fc(t(Hi,l) o Si—l)-

5. OutputHy, ;.

Our new commitment scheme is defined as follows:sfar{0, 1}* andp € {0, 1}",

Coma(s; p) := he(s) + fs(p) moda.

Lemma 3.2. If there exists a polynomial-time machine outputting a collisiorCfom,,
then there exists a polynomial-time machine outputting a collisiongfor f

Proof. Let us assume that we obtain a collisian), (5,0) € {0, 1}* x {0, 1}’ for Com.
By the assumption, we have

he(s) + fa(o) = he(§) + fa(@) (moda).

If p = p, we haves # §andhc(s) = hc(8). Using the reduction for the Merkle-
Damgard construction (see e.g., [13, Thm. 4.14]), we ohitainii € {0, 1}" such that
fc(u) = fc(0). Thus, we have a collisiono p,lio p € {0, 1}% for fa.

Next, we assume that # §. Let S andS be padded messages&nds; respec-
tively. Assume thaS andS are chopped intoSp, ..., Sy) and G, ..., Sk), respec-
tively. Let H andHy be inner hash values farandsin the algorithm, respectively. By
the definition ofH, andH,, we obtain

he(s) = fe(t(Hid © S,
hc(8) = fe(t(Hw) o Sk).
Combining the above equations with the assumption, we obtain
fa(t(Hk) © Sk 0 p) = fa(t(Hk) o Sk 0 ).
So, we have a collisiot{Hy) o Sk o p andt(Hy) o Sy o 5 € {0, 1}2 for fa. o

We use this commitment scheme in the rest of the paper. We often abuse the notation
of Comu . For example, Com(vy, V2; p) denotes Com(stringfv,) o stringfv.); o), where
string{v) is a binary representation of

4 An Identification Scheme

Our variant §, is obtained by replacing the string commitment scheme in Stern’s ID
scheme [26] with our lattice-based one. Stern’s protocol deals with the decoding prob-
lem on binary codewords called the Syndrome Decoding Probleie also proposed

that an analogous schemeZg, whereq is extremely small (typically 3, 5, or 7) [26,

3 The Syndrome Decoding Problem is defined as follows: GhenzZy™, y € Z3, andw € N,
the problem is finding a vector € B(m,w) such thatAx = y mod 2. We can consider this
problem as a restricted version of §}s.

11



Sec. VI]. We adjust this parameter to connect his framework to our assumptions of the
lattice problems.

We now describe the protocof;s below. Obviously, it has perfect completeness,
and at most 23 soundness error. By parallelizing each step of this protocol #n
w(logn) times, the soundness error becomes negligibly small. To simplify the notations,
we write Com instead of Cogand we do not write random strings in Com explicitly.

SetUp: The setup algorithm, on inpuf' loutputs a random matrik € Zg*™.
KG: The key-generation algorithm, on input, chooses a random vector €
B(m, m/2) and computeg := Ax modq. It outputs pk, sk = (y, x).
P, V: The common inputs ar& andy. The prover’s auxiliary input i. They interact
as follows:
Step P1: Choose a random permutatianover [m] and a random vector € Zg'
and send commitments, ¢, andcz computed as
— ¢1 = Comr, Ar),
— ¢ = Com(x(r)),
— c3 = Com@(x + r)).
Step V1 Send a random challen@h € {1, 2, 3} to P.
Step P2
— If Ch= 1, revealc, andcs. So, sends = x(x) andt = n(r).
— If Ch= 2, revealc; andcs. Sendg = randu = X + 1.
— If Ch= 3, revealc; andc,. Sendy = r andv =r.
Step V2
— If Ch=1, check that, = Com(t), cz = Com(s+ t), ands € B(m,m/2).
— If Ch= 2, check that; = Com(, Au — y) andcz = Com(g(u)).
— If Ch= 3, check that; = Com(y, Av) andc; = Com((v)).
OutputDec= 1 if all checks are passed, otherwise outpet = 0.

4.1 Statistical Zero-Knowledge Property

The proof of the zero-knowledge property of the original protocol is in [26, Thm. 4].
Stern left completion of the proof as the problem for reader. Thus, we give the whole
proof that Stern’s protocol is statistically zero knowledge when Com is a statistically-
hiding and computationally-binding string commitment scheme.

Theorem 4.1. The protocol is statistically zero knowledge whgomis a statistically-
hiding and computationally-binding string commitment scheme.

Proof. Following the definition, we construct a simulatS8rwhich on inputA andy
and given oracle access to a cheating ver@i@f, outputs a simulated transcript. A real
transcript betweeR andCV on inputA andy is denoted by(P, CV)(A, y).

First,S chooses a random valadrom {1, 2, 3} which is a prediction what value the
cheating verifieCV will not choose. Next, it chooses a random tap&€df, denoted
by r’. We remark that, by the assumption on the commitment, the distributions of a
challenge fronCV in the real interaction and in the simulation are statistically close.

Casec = 1: S computesx’ € Zg' such thatAx’ = y by using linear algebra. Next,
it chooses a random permutati@hover [m], a random vector’ € Z7, and random
stringspj, p5, andps. So, it computes
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— ¢} := Com@’,Ar’; p7),

— ¢, := Com@'(r'); p5),

— ¢ := Com@@' (X" +1'); p3).
It sends them t@<V. Since the commitment scheme is statistically hiding, the distribu-
tion of a challenge fronCV is statistically close to the real distribution. Receiving a
challengeCh from CV, the simulatorS computes a transcript as follows:

— If Ch=1, S outputsL and halts.
— If Ch= 2, itoutputs (’; (¢}, C}, C3), 2, (7', X' + 1, p!, p3)).
— If Ch= 3, itoutputs (’; (¢}, 5, C}), 3, (7', I, p7, p5))-

We analyze the caseh = 2. In this case, we obtain that

(P,CV)A,y) = (r; (C1,C2,C3), 2, (m, X + I', p1, p3),
S(A,y) = (r'; (€1, €5, C5), 2, (7', X' + 1, p1, p3))-

Assume thatA’,1’,p},p3) = (7,1 + X = X', p1,p3). By this equation, we have that
¢} = ¢, ¢ = cg, and the responses from the simulator equal to the responses from the
prover. Since the commitment is statistically hiding, we have the distributiogsansfd
c, are statistically close. Thus, we conclude that the both distributions of the simulated
transcript and the real transcript are statistically close.

It is straightforward to show it in the caggh = 3 by using the equationt(, r’) =
(7, r). Thus, we omit this part from the proof.

Casec = 2: S chooses a random permutatighover [], two random vectors’ € Z7,
X" € B(m,m/2), and random strings;, o5, andpj. S computes commitments
— ¢} := Com@’,Ar’; p}),
— ¢, ;= Com@'(r'); p5),
— ¢ := Com@@' (X" +1'); p3).
It sends them t@V. Receiving a challeng€h, the simulator computes a transcript as
follows:
— If Ch=1, thenS outputs (’; (¢}, C, C}), 1, (n'(X'), 7'(1"), p5, p3)).-
— If Ch= 2, then it outputsL and halts.
— If Ch= 3, then it outputsI(; (¢}, ¢}, ¢3), 3, (', I, p1. 05)).

We analyze the cageh = 1. In this case, we have that

<P, C(V>(A7 y) = (r! (CJ.’ Co, C3)a 19 (ﬂ'(X), ”(r)7P27P3),
S(A.Y) = ("5 (c1, €5, ¢3), L, (7' (X'), 7' (1), 05, p5))-

Lety be a permutation ovenf such thay(x’) = x. In this case, we setf{, ', p}, p3) =
(mox 72, x(r), p2, p3). By this equation, we have thatx) = 7' (x), 7(r) = 7'(r"), C, = Cp,
andcj = cs, that is, the responses from the simulator equal to the responses from the
prover. Since the commitment scheme is statistically hiding, the distributions of the real
transcript and the output of the simulator are statistically close.

We omit the proof of the cageh = 3, since it is trivial.

Casec = 3: S chooses a random permutatiomver [m], two random vectors € Z7,
x’ € B(m, m/2), and random strings;, p2, andps. S computes
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— ¢1 := Com@, A(X' + 1) =V, p1),
— ¢ 1= Com(x(r); p2),
— c3:= Com@(X’ + r);p3).

It sends them t@V.

— If Ch= 1, thenS outputs (’; (c1, C2, C3), 1, (n(X’), 7 (r), p2, p3)-
— If Ch= 2, then it outputsr(; (ci, Cp, C3), 2, (1, X" + r')).
— If Ch= 3, it outputsL and halts.

In the caseCh = 1, we consider the equation’(r’, p}, p3) = (7 o x~ L, x(1), p2. p3),
wherey denotes a permutation ovan| such thaty(x’) = x. The remaining part of
proof is the same as that in the case- 2 andCh = 1. In the case€Ch = 2, we let
(7', 1, p, p3) = (m, 1 + X=X, p1, p3). The remaining part of proof is the same as that in
the case = 1 andCh = 2.

The probability that the simulatd® outputsL is at most 13+¢€(n) < 1/2 wheree is
some negligible function. Additionally, by the above arguments, the distribution of the
output ofS conditioned on it is notL is statistically close to the distribution of the real
transcript. Therefore, we have constructed the simulator and completed the proof.

Since the protocol is statistically zero knowledge foe 1, it has a witness-
indistinguishable property. Witness-indistinguishable property is closed under the par-
allel composition [8]. Thus, the above protocol is witness indistinguishablée fer
w(logn) if a statistically-hiding string commitment scheme is used.

4.2 Security of the Protocol

We show the theorem of the security on our ID protocol, which concerns impersonation
under concurrent attack.

Theorem 4.2. For any n(n) = @(nlogn), there exist (n) = O(n*°logn) andy(n) =
O(n+/logn) such that n> 10nlogg and d'/ |B(m, m/2)| is negligible in n and the above
ID scheme is secure against impersonation under concurrent attéi:iquVI?} is hard
in the worst case.

Before the proof of security, we need to mention the following trivial lemma.

Lemma 4.1. For any fixedA, let Y := {y € Zg | l{(x € B(mm/2) | Ax =y}| = 1},
i.e., a set of vectory such that the preimage of y is uniquely determined foA. If
g"/ |B(m, m/2)| is negligible in n, then the probability that, if we obtgiy) X) «— KG(A),
theny € Y is negligible in n.

We now prove Theorem 4.2. The part of the proof is similar to that in [26].

Proof (Proof of Theorem 4.2)Since there exists average-cagarst-case reduction
from GapSVE to SlssnwrTq (Theorem 3.1), we only construcii solving S'%m\/m

on the average from an impersonafor= (CV,C®) which succeeds impersonation
under concurrent attack with non-negligible probabiéity
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For the clarity, we write the transcript of interaction it Ch, Rsp Deg). Since
the protocol is parallelized, ea&@mt, Ch, andRspis an ordered list which contairis
elements. For exampl€mt= (Cmt,...,Cmt).

Given A, A chooses a random secret keye B(m, m/2) and computey = AX.
Using the secret key, it can simulate the prover oracle perfe@tigunsCV on input
(A,y) and obtains a state f@@®. A feeds the state t@® and acts as a legitimate
verifier. Receiving commitment€mt, A chooses three challeng&?, CH?, and
Ch® from {1, 2, 3} uniformly at random. Rewinding with three challengespbtains
three transcriptsdmt Ch®, Rsp?, Ded") fori = 1,2, 3 as the results of the interactions.

By the Heavy Row Lemma [21], the probability thatBid” are 1 is at leask(2)°.
Meanwhile, we have

Pr(3j e [t] : {CHY, ch?, Ch®) = (1,2,3)] = 1- (7/9)

by a simple calculation. Thus the probability thafi has three transcripts
(Cmt Ch®, Rsp). Ded”) for i = 1,2,3 such thatDed? = 1 for all i, and
{chb, Chjz), Ch®) = {1,2,3} for somej € [t] is at least &/2)° - (7/9)', which is
non-negligible since is non-negligible and = w(logn).

We next show howA obtains a secret key or finds a collision of the hash functions in
the string commitment scheme by using three good transcripts. Assurog tizegtthree
transcriptsCmt?, Ch", Rsp), Ded") for i = 1,2, 3 such thatmt? = Cmt? = Cm{®,
Ded” = 1 for alli, and{Chi, Ch?, CH¥} = {1, 2, 3} for somej € [t]. Without loss of
generality, we assume thatl” = i. We parseRs’ as in Step V2. We have following
equations (We omit for simplification):

c1 = Comp (¢, Au -, p(lz)) = Com (v, Ay, p(s)),

¢ = Comy(tp) = Coma(u(v)p)

Cs = Coma(s+t;py) = Comn(g(u); p2),
se B(m m/2).

If there exists a distinct pair of arguments of Cgn# obtains a collision foA and
solves SIg, -

Next, we suppose that there exist no distinct pairs of the arguments of Qarh
n denote the inverse permutation&fFrom the first equation, we hawe® = ¢ = .
Thus, we obtairu = n(s + t) from the third equation. Combining it with the first
equation, we havAv = A(x(s) + n(t)) — y. Sincev = ¢~1(t) = n(t) from the second
equation, we obtaily = A - 7(s). Sinces € B(m,m/2), son(s) also is in B, m/2).
Therefore, A setsx’ := n(9).

We now have to show that' # x with probability at least 2. By Lemma 4.1,
there must be another secret kéycorresponding ty with overwhelming probability.
Recall that the protocol is statistically witness indistinguishable. Hefiseyiew is
independent ofA’s choice ofx with overwhelming probability. Thus we haveé # x
with probability at least 22. In this caseAl outputsz = x— X’ and solves Sig, ym. O

We note that the above proof is extended into multi-user settings as in the proof of
Lyubashevsky [14].
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5 An Ad Hoc Anonymous Identification Scheme

We next construct our AID scheme based on GapSVP. First, we sketch a basic idea for
our construction: LeA be a system parameter. Each user has a secreq; keB(m, w)
and a public key; = Ax;. Inthe AID scheme, a group is specified by a set of public keys
(Y1, ..., ¥) ofthe members. Let, denote am-dimensional vectdi(0, ...,0,1,0,...,0)
whosei-th element is 1. The prover in the group, who has a secrekkayants con-
vinces the verifier that Iighe knows thak” := x; o —g such thatAy; ... yJxX’ =0
andx; € B(m,m/2). Changing the parameters and using Stern’s protocol, the prover
can convinces the verifier that/sbe has< such thatp y; ... y]x’ = 0, the numbers
of +1 in x’ is m/2, and the numbers 6fl in X’ is 1. Additionally, we force the prover
to prove thatx’ is in the formx’ = x; o —g. To do so, we divide a permutationin
Step P1 into two permutations.

Letry be a permutation ovenf andn; be a permutation ovel][ For a permutation
mover [m+ ], we denoter = np © 7y if

(1 2 - m m+1 m+2 -+ m+l
= h(1) mh(2) - - - p(m) ' m+ (1) m+m(2) --- m+ (1))

For anyr, andn;, we have £, © m) ™! = n,! © oL, For anyx, € Z™andx; € Z', if
7 = 1 © 7y thena(Xy o X¢) = r(Xn) o me(Xe)-

We here construct an AID scheme based on GapSVP. Similarly to the ID scheme in
Section 4, the protocol is repeated w(logn) times in parallel to achieve exponentially
small soundness error. As in the previous section, we hide randomness jn Com

SetUp: Same asetUp of the protocol in Section 4.

Reg: Same aXG of the protocol in Section 4.

P,V: The common inputs ar& and {1, ..., V). The prover’s auxiliary input ix; for
somei € [l]. Let A’ :=[Ay; ... il and x := x; o —g,;. We write Com instead of
Com, for ease of notation. They interact as follows:

Step P1: Choose random permutatiomgover [m] andn; over [I]. Let 7 = mp O .
Choose a random vectore Zg‘*'. Send commitmentsy, C,, andcz as
— ¢1 = Comfm, i, A'r),
— ¢ = Comr(r)),
— ¢z = Com@(x + r)).
Step V1 Send a random challength € {1, 2, 3} to P.
Step P2
— If Ch= 1, reveal, andcz. Sends = n(x) andt = n(r).
— If Ch= 2, revealc; andc,. Sendgy = 7, ¢ = 7, andu = X + r.
— If Ch= 3, revealc; andcz. Sendyy, = 7, Y = 7y, andv = r.
Step V2
— If Ch =1, check that, = Com(t), cz = Com(s+ t), andsis in the form
$ o —¢j) for somej ands, € B(m, m/2).
— If Ch= 2, check that; = Com{gn, ¢, A’u) andcz = Com((pn © ¢¢)(u)).
— If Ch= 3, check that; = Comn, Y1, A’) andc, = Com((h © ) (V)).
OutputDec= 1 if all checks are passed, otherwise outipet = 0.
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The security of the above protocol is stated as follows. We omit the proof, since it
is similar to the proof of Theorem 4.2.

Theorem 5.1. Let m= m(n) and g= g(n) be polynomially bounded functions satisfy-
ing the conditions that n» 10nlogq and d'/|B(m, m/2)| is negligible in n. Assume
that there exists an impersonatdr that succeeds impersonation under concurrent
chosen-group attack with non-negligible probability. Then there exists a probabilistic
polynomial-time algorithniA that solve§|8§m\/m.

Combining Theorem 5.1 with Theorem 3.1, we obtain the following theorem.

Theorem 5.2. For any n(n) = @(nlogn), there exist (n) = O(n>°logn) andy(n) =
O(n+/logn) such that §/|B(m, m/2)| is negligible in n and the above scheme is secure
against impersonation under concurrent chosen-group atta@laifSVI% is hard in the
worst case.

The statistical anonymity of the above scheme follows from witness indistinguishability
of the protocol.
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