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Abstract. Most cryptographic protocols, in particular asymmetric protocols, are based on assumptions

about the computational complexity of mathematical problems. The Φ-Hiding assumption is such an

assumption. It states that if p1 and p2 are small primes exactly one of which divides ϕ(N), where N is a

number whose factorization is unknown and ϕ is Euler’s totient function, then there is no polynomial-

time algorithm to distinguish which of the primes p1 and p2 divides ϕ(N) with a probability significantly

greater than 1/2. In this paper, it will be shown that the Φ-Hiding assumption is not valid when applied

to a modulus N = PQ2e, where P,Q > 2 are primes, e > 0 is an integer and P hides the prime in

question. This indicates that cryptographic protocols using such moduli and relying on the Φ-Hiding

assumption must be handled with care.
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1 Introduction

The Φ-Hiding assumption as defined by Cachin, Micali and Stadler [3] is an assumption about the

difficulty of finding small factors of ϕ(N), where N is a number whose factorization is unknown,

and ϕ(·) is Euler’s totient function, i.e. the number of positive integers less than or equal to N

that are coprime to N . The security of several cryptosystems is based on the presumed difficulty of

solving this problem [2, 5–7]. In this paper, it will be shown how information about the unknown

factors of ϕ(N) can be obtained when the modulus N is chosen as N = PQ2e, where P,Q > 2 are

primes, e > 0 is an integer and P hides the prime in question, such that the Φ-Hiding assumption

is not valid in this case. Moduli of the form N = PQ2e are called Multi-Power RSA moduli and

are used to speed up cryptographic operations [1]. In addition, it will be shown that if two random

composite integers instead of two primes are used, the probability of choosing the integer that

divides ϕ(N) reaches 99% if the integers have at least 7 prime factors. Furthermore, the paper

suggests an approach to get more information about ϕ(N) without knowing the factorization of N .

The paper is organized as follows. In Section 2, two definitions of the Φ-Hiding assumption are

given. Our approach to show that the Φ-Hiding assumption is not valid in certain circumstances is

presented in Section 3. Section 4 concludes the paper and outlines areas for future research.



2 The Φ-Hiding Assumption

The Φ-Hiding assumption [3] can be defined in two different ways. The first definition illustrates

the computational problem the assumption is based on.

Definition 1 (Φ-Hiding assumption (1)). Given an integer N with unknown factorization, it

is computationally hard to decide whether a prime pi with 2 < pi << N1/4 divides ϕ(N) or not.1

The second definition represents a special case of the assumption, since it is assumed that

exactly one of two given integers divides ϕ(N).

Definition 2 (Φ-Hiding assumption (2)). If p1 and p2 are two random, small primes and N is

constructed such that exactly one of these primes divides ϕ(N), then there is no polynomial-time

algorithm to distinguish which of the primes p1 > 2 and p2 > 2 divides ϕ(N) with a probability

significantly greater than 0.5, if N is an integer with unknown factorization. If pi divides ϕ(N), it

is said that ϕ(N) hides pi.

In cryptographic protocols, Definition 2 of the Φ-Hiding assumption is used, since in this case

some previous knowledge is involved (i.e. which of the two primes divides ϕ(N)), that can be used

to create a necessary backdoor for asymmetric cryptography. To the best of our knowledge, no

attack on the Φ-Hiding assumption has been published until now. In the next Section, we present

our approach to show that the Φ-Hiding assumption is not valid when Multi-Power RSA moduli

are used.

3 The Φ-Hiding Assumption Revisited

The Φ-Hiding assumption is only valid when it is applied to a composite number that cannot be

completely factored in feasible time, since otherwise it would be trivial to decide whether a prime

divides ϕ(N) or not. Our approach to decide whether a prime divides ϕ(N) for a composite number

N uses the Jacobi symbol. It can be evaluated efficiently, even for composite numbers with unknown

factorization [4]. The Jacobi symbol JP (r), for P prime, generalizes the Legrende symbol and states

information about quadratic residues: If a2 ≡ r (mod P ) for given integers r and P has a solution

in a, then JP (r) = 1, otherwise JP (r) = −1 (if gcd(P, r) > 1, then JP (r) = 0). For composite odd

integers, the Jacobi symbol is defined as JN (r) =
∏m
j=1 JPj (r)νj , if N = P ν11 . . . P νm

m . Furthermore,

a particular 2k-th root of unity is used to show that the values of the Jacobi symbol are related to
1 Following the remarks of the original paper of Cachin, Micali and Stadler [3], N can be efficiently factored when

a prime > N1/4 of ϕ(N) is known, thus the Φ-Hiding assumption asks for very small primes. Even if it is known

which small primes pi divide ϕ(N), if log pi is significantly smaller than (log N)c, for a constant c between 0 and

1, N cannot be factored significantly faster.



factors of ϕ(N), and that the Jacobi symbol adopts non-random values when the evaluated integer

r is a divisor of ϕ(N). Thus, the novel idea to use the existence and the non-existence of 2k-th roots

of unity in finite fields/rings allows us to gain knowledge about the divisors of ϕ(N), which in some

cases can be used to make the decision whether a given integer divides ϕ(N) or not. These results

will be used to show that the Φ-Hiding assumption as defined by Cachin, Micali and Stadler [3] is

not valid when applied to a modulus N = PQ2e, where P,Q > 2 are primes, e > 0 is an integer

and P hides the prime in question. Lemma 1 is central for our approach:

Lemma 1. Let ξ2k be any fixed primitive 2k-th root of unity and k ∈ N+, then:

i1−k
k−1∏
j=1

(
ξj2k − ξ

−j
2k

)
= k (1)

Proof (of Lemma 1). The polynomial f(X) = (Xk − 1)/(X − 1) = Xk−1 + Xk−2 + ... + 1 has ξjk
for j = 1, ..., k − 1 as its roots, where ξk is any fixed primitive kth root of unity. Writing f(X) in

factored form f(X) =
∏k−1
j=1(X − ξjk), we obtain f(1) =

∏k−1
j=1(1− ξjk) = k. Since

i1−k
k−1∏
j=1

(ξj2k − ξ
−j
2k ) = i1−k

k−1∏
j=1

ξj2k

k−1∏
j=1

(1− ξ−jk ) = i1−kk

k−1∏
j=1

ξj2k (2)

and since
∏k−1
j=1 ξ

j
2k = ξ

(k−1)k/2
2k = ξk−1

4 = ik−1, the product i1−k
∏k−1
j=1 ξ

j
2k vanishes and we get

i1−k
k−1∏
j=1

(ξj2k − ξ
−j
2k ) = k (3)

which proves the lemma. �

We now rewrite the (k − 1) terms covered by the product symbol in equation (1), such that it

contains a large square:

Lemma 2 (Square Lemma). Let k ∈ Z+ and k > 2. Then:

1. If k is odd:

k−1∏
j=1

(
ξj2k − ξ

−j
2k

)
=

(k−1)/2∏
j=1

(
ξj2k + ξk−j2k

)2
(4)

2. If k is even:

k−1∏
j=1

(
ξj2k − ξ

−j
2k

)
= 2i

(k−2)/2∏
j=1

(
ξj2k + ξk−j2k

)2
(5)



Proof (of Lemma 2).

1. k is odd: Since k is odd, the jth and the (k − j)th factor for 1 ≤ j ≤ k − 1 can be paired. The

result is:

(ξj2k − ξ
−j
2k ) · (ξk−j2k − ξ

−(k−j)
2k ) = (ξj2k − ξ

−j
2k ) · (ξk−j2k + ξj2k)

= ξj2kξ
k−j
2k + ξj2kξ

j
2k − ξ

−j
2k ξ

k−j
2k − ξ

−j
2k ξ

j
2k = −1 + ξ2j2k − ξ

k−2j
2k − 1

= ξ2j2k − 2− ξk−2j
2k = ξ2j2k − 2 + ξk2kξ

k−2j
2k

= ξ2j2k − 2 + ξ
2(k−j)
2k = (ξj2k + ξk−j2k )2

The pairing contains a square. Since k−1 is even, no term is left and a product of (k−1)/2 squares

is generated, which proves the case for odd values of k.

2. k is even: Since k is even, the jth and the (k−j)th factor for 1 ≤ j < k/2 and k/2 < j ≤ k−1 can

be paired, which leads to the same terms as in case 1. The difference is that the factor
(
ξj2k − ξ

−j
2k

)
with j = k/2 remains. For this factor, ξk/22k −ξ

−k/2
2k = (−1)1/2−(−1)−1/2 = i−i−1 = i(1−1/i2) = 2i,

which proves the case for even values of k. �

By Lemma 2, the product in equation (1) is transformed to a product with a perfect square and

the factor i1−k (k odd) and 2i2−k (k even), respectively.

3.1 Application to Finite Fields and Rings

In this Section, the results are applied to finite fields FP with P being a prime number. We distin-

guish between two cases. In the first case, we assume that a ξ2k ∈ FP does not exist, and in the

second case, we assume that a ξ2k ∈ FP exists.

Case 1: A ξ2k ∈ FP does not exist. In this case, it is assumed that FP does not contain a 2k-th

root of unity. As a consequence, there is no integer of order 2k and thus the factors
(
ξj2k + ξk−j2k

)
are

not defined properly in FP . Thus, it cannot be assumed that the product
∏(k−1)/2
j=1

(
ξj2k + ξk−j2k

)2

forms a valid square in FP and vanishes from the Jacobi symbol. The integer k, which nevertheless

exists, has no defined counterpart on the left side of equation 1. In this case, JP (k) cannot be

distinguished from a random coin flip between 1 and −1.

Case 2: A ξ2k ∈ FP exists. This leads to the fact that the square
∏(k−1)/2
j=1

(
ξj2k + ξk−j2k

)2

obtained from Lemma 2 is valid in FP , since each ξ2k is defined properly. Therefore, equation (1)

can be written as a well defined congruence in FP . Corollary 1 shows the outcome when the Jacobi

symbol is applied to this congruence and the square obtained from Lemma 2 is inserted.



Corollary 1. Let P be an odd prime number, k ∈ FP . Assume that a ξ2k ∈ FP exists, then:

1. If k is odd:

JP

(−1)(1−k)/2
(k−1)/2∏
j=1

(
ξj2k + ξk−j2k

)2

 = JP ((−1)(1−k)/2) = JP (k) (6)

2. If k is even:

JP

2(−1)1−k/2
(k−2)/2∏
j=1

(
ξj2k + ξk−j2k

)2

 = JP (2(−1)1−k/2) = JP (k) (7)

After the square has vanished from the Jacobi symbol, a simple congruence is left. This con-

gruence indicates a relationship between the value of the Jacobi symbol and the divisors of ϕ(P ),

because Corollary 1 is only valid if 2k divides ϕ(P ). Again, this implicitly shows that it is important

to distinguish between the two cases of divisibility introduced above, since the square vanishes only

if it is defined properly. Otherwise, the Jacobi symbol of an arbitrary integer k would always be

equal to JP ((−1)(1−k)/2) or JP (2(−1)1−k/2), respectively, which obviously is wrong.

Example: Let P = 31 with ϕ(31) = 30. By setting k = 5 due to (2 · 5)|30, there must be

an integer of order 10, e.g. 23 or 15. It does not matter which of them is chosen here, since it

disappears after applying the Jacobi symbol. Now, calculate (−1)(1−5)/2 = (−1)−2 = 1. Since k is

odd, J31((−1)(1−5)/2) = J31(1) = J31(5) must hold, which is true since both sides are equal to 1.

Next, a Theorem is stated that describes the relationship between JP (k) and ξ2k.

Theorem 1. Let P be an odd prime number, k ∈ FP . JP (k) and the divisors of ϕ(P ) are connected

via following implications:

1. If k is odd, then:

If ξ2k ∈ FP exists ⇒ JP ((−1)(1−k)/2) = JP (k).

If JP ((−1)(1−k)/2) 6= JP (k) ⇒ ξ2k ∈ FP does not exist.

2. If k is even, then:

If ξ2k ∈ FP exists ⇒ J
(
2(−1)1−k/2

)
= JP (k).

If J
(
2(−1)1−k/2

)
6= JP (k) ⇒ ξ2k ∈ FP does not exist.

Proof (of theorem 1).

The proof of the Theorem follows directly from Corollary 1. �

Theorem 1 indicates that either a divisor k of ϕ(P ) must be known to conclude that the cor-

responding Jacobi symbols JP (k) and JP ((−1)(1−k)/2) (or J
(
2(−1)1−k/2

)
) are equal, or it must be



tested whether the two Jacobi symbols JP (k) and JP ((−1)(1−k)/2) (or J
(
2(−1)1−k/2

)
) are different

in order to get the information that k cannot be a divisor of ϕ(P ). In the two other cases, no

information can be obtained. The reason is that either the kth root of −1 is not defined, or from

the equality of the Jacobi symbols it cannot be concluded that k divides ϕ(P ).

To summarize, if 2k divides ϕ(P ), the Jacobi symbol of k adopts non-random values. Further-

more, Corollary 1 shows that the resulting congruences JP ((−1)(1−k)/2) ≡ JP (k) and

JP (2(−1)1−k/2) ≡ JP (k) for odd and even values of k are independent of the chosen ξ2k. Thus, it

is only essential that a ξ2k exists in FP , but it is not necessary to know them.

3.2 Leakage Corollaries

In this Section, we present tables for special composite integers N that contain the values the Jacobi

symbol must adopt to leak information about the divisors of ϕ(N). For composite integers N with

unknown factorization, we do not know the order of an arbitrary integer a, but we can compute

the Jacobi symbol JN (a). Thus, we are only able to use the first implication of item 1 and and the

second implication of item 2 of Theorem 1. For clarity, the following Corollary divides these items

further with respect to different residue classes of a prime P and an integer k.

Corollary 2 (Leakage Corollary for prime numbers). Let P be an odd prime number, k ∈ FP .

In any of the following six cases, there does not exist a ξ2k ∈ FP .

If P ≡ 1 (mod 4):

If k is odd: If JP
(
i1−k

)
= 1 6= −1 = JP (k).

If k is even: If JP
(
2i2−k

)
= (−1)(p

2−1)/8 6= JP (k).

If P ≡ 3 (mod 4):

If k ≡ 0 (mod 4): If JP
(
2(−1)1−k/2

)
= (−1)(P

2+7)/8 6= JP (k).

If k ≡ 1 (mod 4): If JP
(
(−1)(1−k)/2

)
= 1 6= JP (k).

If k ≡ 2 (mod 4): If JP
(
2(−1)1−k/2

)
= (−1)(P

2−1)/8 6= JP (k).

If k ≡ 3 (mod 4): If JP
(
(−1)(1−k)/2

)
= −1 6= JP (k).

The Corollary states which two Jacobi symbols must differ to be sure that the integer k is not a

divisor of ϕ(P ). Thus, in some cases, the access to the Jacobi symbol is sufficient to decide whether

a prime divides P − 1 or not. Next, the Corollary is extended to composite integers N being the

product of two distinct prime numbers P and Q. This leads to the tables shown in figure 1. The

tables must be read in the following way: The four tables handle the four different residues of k

modulo 4. Furthermore, the first two tables (horizontal direction) show the 64 combinations of the

8 different residues of P and Q modulo 16 (P,Q > 2) for even residues of k. The third tables



Q \ P

k=0+4s 1 3 5 7 9 11 13 15

1 -1 -1 +1 +1 -1 -1 +1 +1

3 -1 -1 +1 +1 -1 -1 +1 +1

5 +1 +1 -1 -1 +1 +1 -1 -1

7 +1 +1 -1 -1 +1 +1 -1 -1

9 -1 -1 +1 +1 -1 -1 +1 +1

11 -1 -1 +1 +1 -1 -1 +1 +1

13 +1 +1 -1 -1 +1 +1 -1 -1

15 +1 +1 -1 -1 +1 +1 -1 -1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 -1 +1 +1 -1 -1 +1

5 +1 -1 -1 +1 +1 -1 -1 +1

7 -1 +1 +1 -1 -1 +1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 -1 +1 +1 -1 -1 +1

13 +1 -1 -1 +1 +1 -1 -1 +1

15 -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 +1 -1 +1 -1 +1 -1

5 -1 +1 +1 -1 -1 +1 +1 -1

7 +1 -1 +1 -1 +1 -1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 +1 -1 +1 -1 +1 -1

13 -1 +1 +1 -1 -1 +1 +1 -1

15 +1 -1 +1 -1 +1 -1 +1 -1

Fig. 1. Entries: JPQ(k). Tables for N = PQ for different residues of P and Q modulo 16.

was reduced to one a single row since it contains 64 values of −1. The fourth table shows the 64

combinations of the 8 different residues of P and Q modulo 16 (P,Q > 2) for k ≡ 3 (mod 4). The

entries for each combination of P and Q illustrate which value of the Jacobi symbol JN (k) reveals

that there is no integer of order 2k for at least one of the primes P and Q. For example, the first

entry of −1 in the upper left table represents the case k ≡ 0 (mod 4) and P ≡ Q ≡ 1 (mod 16).

Applying Corollary 2 to this combination yields JP
(
2i2−k

)
= JQ

(
2i2−k

)
= 1. The corresponding

table entry of −1 shows that JN (k) must be −1, therefore at least for one of the primes P or Q,

there is no integer of order 2k.

The conclusion is too weak to obtain knowledge regarding the Φ-Hiding assumption, since φ(N)

could still be divisible by 2k. Some integers, even with unknown factorization, allow to obtain more

information about the divisors of ϕ(N). These are integers of the form N = PQ2e, since one of

the two involved primes is a square, which is ignored by the Jacobi symbol. In this way, the Jacobi

symbol leaks information about the other prime involved. If N has the form N = PQ2e, then for

the Jacobi symbol and a co-prime integer k > 2, JN (k) = JPQ2e(k) = JP (k) · JQ(k)2e = JP (k).

Using this fact, the tables displayed in figure 2 show the values the Jacobi symbol JN (k) must

adopt such that 2k does not divide ϕ(P ).



Example: Suppose N = 1323801442080750176044871 and N is of the form N = PQ2e, e > 0.

Suppose we want to test whether k = 41 divides P − 1. Since k ≡ 1 (mod 4), the third table must

be used. Thus, JN (41) = −1. The table shows that whenever the Jacobi symbol of k is negative, k

can not divide P − 1.

Q \ P

k=0+4s 1 3 5 7 9 11 13 15

* -1 -1 +1 +1 -1 -1 +1 +1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

* -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

* -1 +1 -1 +1 -1 +1 -1 +1

Fig. 2. Entries: JPQ2e(k). Tables for N = PQ2e for different residues of P and Q modulo 16.

In the next Section, the last two tables are used to invalidate the Φ-Hiding assumption when

using moduli of the form N = PQ2e and choosing P to hide the prime number in question.

3.3 Application to the Φ-Hiding Assumption

In both Definitions 1 and 2 of Section 2, it is only required that N is a composite integer with

unknown factorization. By applying our results from the previous Sections, we show that this

requirement is not sufficient. If the Φ-Hiding assumption is applied to a modulus of the form PQ2e,

where the integer P is constructed in such a way that P hides a given prime, then the Φ-Hiding

assumption is violated with non-negligible probability. Moduli of this form, mostly with e = 1, are

used by several cryptographic protocols, as described by Boneh and Shacham [1] and used, e.g., by

Poupard and Stern [8], to speed up some computations that profit from the form PQ2e with e > 0

instead of PQ. Using the results of the previous Sections, the following Theorem can be stated:

Theorem 2. Let N = PQ2e and suppose that P hides p. Then, the Φ-Hiding assumption from

Definition 2 can be violated. An attacker can choose the hidden prime with an average success

probability of 3
4 .

The following notation is used: N is again of the form N = PQ2 and T(N, k) is the value of

the corresponding table entry of figure 2.

Proof (of Theorem 2). Suppose that either p1 or p2 divides ϕ(N) and an attacker has to decide

which of them divides ϕ(N). Without loss of generality, we assume that p1 is the prime that is

hidden by P . For this prime, JN (p1) 6= T(N, p1) holds, because it divides P − 1 (see Theorem 1).



Thus, the attacker will find at least one matching Jacobi symbol concerning the primes p1 and p2.

From the attackers point of view, the probability that a prime pi, i ∈ {1, 2} divides ϕ(N) is

Prob[pi|ϕ(N)] =


0, JN (pi) = T(N, pi)

1, JN (pi) = T(N, pi)
1
2 , JN (pi) = JN (pi)

(8)

where pi denotes the other one of the two primes. Note the factorization of N is not needed to

construct the tables in figure 2. They are universally valid for moduli of the form N = PQ2e and

thus known to the attacker. Whenever the Jacobi symbol JN (pi) is equal to T(N, pi), Theorem 1

states that pi cannot be a divisor of ϕ(N), thus the probability is Prob[pi|ϕ(N)] = 0. Consequently,

the Jacobi symbol JN (pi) must be not equal to T (N, pi), which indicates that it is the hidden prime.

If both Jacobi symbols do not match the table entry, no information is leaked and the attacker

cannot argue in any direction. Thus, in this case the probability is Prob[pi|ϕ(N)] = 1
2 . Since the

primes pi are chosen randomly, it can be assumed that the Jacobi symbol JN (p2) adopts random

values of −1 and +1. The calculation of the total probability for the attacker to choose the hidden

prime correctly is as follows: Whenever a Jacobi symbol evaluates to a value unequal to the table

entry, it cannot be the prime that is hidden by P , so the attacker chooses the other one, the hidden

one, with a probability of 1. When both Jacobi symbols evaluate to 6= T(N, ·), the attacker chooses

the right one with a probability of 1
2 . Thus, in total there is an average probability of 1

2 ·1+ 1
2 ·

1
2 = 3

4

to choose the correct prime, which proves Theorem 2. �

Composite Integers. The situation is even worse when the Φ-Hiding assumption is used with

composite integers n1 and n2 instead of the primes p1 and p2, as done, for example, by Gentry et

al. [5]. Assume that there is a modulus of the form N = PQ2 and we want to determine whether

the composite integer ni, which is the product of m distinct primes greater than 2, divides ϕ(N).

Suppose the Jacobi symbol is applied and the result does not allow to decide whether ni divides

ϕ(N) or not. In this case, we can proceed with the prime factors of ni. Since ni is
∏m
j=1 pj , the

Jacobi symbol can simply be evaluated for all of its prime factors. If there is a prime pj with a

Jacobi symbol that leaks the required information, we know that ni cannot divide ϕ(N), since from

ni|ϕ(N) it follows that pj |ϕ(N) must also hold. If the integers in question consist only of 7 prime

numbers, there already is a success probability of ≈ 99% to choose the right integer.

Corollary 3. If n1 =
∏l1
j=1 pi and n2 =

∏l2
j=1 qj are two random, composite integers that are odd

and square free and n1 is the hidden integer, then an attacker has a success probability of (1− 1
2l2

)

to choose the hidden integer.

Proof. Let n1 =
∏l1
j=1 pj and n2 =

∏l2
j=1 qj be two odd, square free integers. If N = PQ2e and

exactly one of the two integers n1 and n2 divides ϕ(N), the probability to choose the right one of



the two possibilities is as follows. The case l1 = l2 = 1 was already addressed in the paper; it has a

success probability of 3
4 . Note that if ni|ϕ(N), then also each divisor of ni is a divisor of N . Thus, if

we find a divisor of ni that does not divide ϕ(N), we can conclude that ni is not the integer hidden

by ϕ(N). Since the same argument applies to all divisors that are prime numbers, it is sufficient to

check all prime factors of ni whether they are divisors of ϕ(N) or not.

Without loss of generality, we assume that n1 is the integer hidden by ϕ(N). For each of its l1 prime

factors pi, JN (pi) 6= T(N, pi) must hold. For the other integer n2, it follows that for each of its l2
prime factors qi it holds with a probability of 1

2 that JN (qi) 6= T(N, qi) and with a probability of 1
2

that JN (qi) = T(N, qi). Whenever the first case occurs, no knowledge is gained. But whenever the

latter case occurs, the information that n2 cannot be a divisor of ϕ(N) is gained, so n1 is the hidden

number. The method fails if for all prime factors JN (qi) 6= T(N, qi) is obtained, which occurs with

a probability of
∏l2
i=1 Prob[JN (qi) 6= T(N, qi)] = 1

2l2
. Thus, the success probability of choosing the

right integer is (1− 1
2l2

). �

Table 1 illustrates the success probability of choosing the right prime for different numbers of

prime factors.

l1 = l2 1 2 3 4 5 6 7

0.5 0.75 0.875 0.938 0.969 0.984 0.992

Table 1. Success Probability

3.4 Discussion

In the previous Section we have shown that in some circumstances it can be efficiently decided

whether a given prime p divides ϕ(N) or not. A necessary condition is that moduli of the form

PQ2e with e > 1 are used and P hides p. If someone implements a cryptographic protocol based

on the Φ-Hiding assumption and uses such moduli, an attacker has an average probability of 3
4 to

choose the right prime, if the primes the attacker can choose from are selected randomly. In cases

when it is desired to ask which composite number ni is hidden by P , the success probability would

be even greater than 3
4 , since for each prime factor of n the attacker has the success probability

of 3
4 . There are two possible countermeasures to the presented attack. First, moduli of the form

PQ2e, e > 1 should not be used in conjunction with the Φ-Hiding assumption. Second, the primes

a user can choose from should not be selected randomly, but only those primes that have a positive

Jacobi symbol regarding N should be used. Thus, the assumption as stated in the original form

should be adapted to avoid its vulnerability to the presented attack.



4 Conclusions

In this paper, it was shown that by utilizing an identity of 2k-th roots in ZN and the Jacobi symbol,

it is possible to gain knowledge about the unknown factors of Euler’s totient function ϕ(N) even

if N is computationally hard to factorize. This knowledge was used to invalidate the Φ-Hiding

assumption as defined by Cachin, Micali and Stadler [3] for moduli of the form N = PQ2e with

P hiding the prime in question, since the Jacobi symbol adopts non-random values when being

applied to a factor of ϕ(N). Our results are important for evaluating the security of cryptographic

protocols that use the Φ-Hiding assumption and exemplify the situation when it has to handled

with care. There are several areas for future work. For example, an interesting issue is to examine

the case when the integer k does not divide ϕ(N). In this case, the identity is not well defined.

Thus, it should be investigated whether there are methods to bypass this problem to obtain further

relationships between the Jacobi symbol and the factors of ϕ(N). Since the approach makes use

of an identity of 2k-th roots in ZN and this identity is only one of many, future work should be

directed to analyze other results of such identities that may offer attack possibilities on the Φ-Hiding

assumption.
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