
Twisted Edwards Curves Revisited

Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson

Information Security Institute,
Queensland University of Technology, QLD, 4000, Australia
{h.hisil, kk.wong, g.carter, e.dawson}@qut.edu.au

Abstract. This paper introduces fast algorithms for performing group
operations on twisted Edwards curves, pushing the recent speed limits of
Elliptic Curve Cryptography (ECC) forward in a wide range of applica-
tions. Notably, the new addition algorithm uses1 8M for suitably selected
curve constants. In comparison, the fastest point addition algorithms for
(twisted) Edwards curves stated in the literature use 9M +1S. It is also
shown that the new addition algorithm can be implemented with four
processors dropping the effective cost to 2M. This implies an effective
speed increase by the full factor of 4 over the sequential case. Our re-
sults allow faster implementation of elliptic curve scalar multiplication.
In addition, the new point addition algorithm can be used to provide
a natural protection from side channel attacks based on simple power
analysis (SPA).

Keywords: Efficient elliptic curve arithmetic, unified addition, side channel
attack, SPA.

1 Introduction

Edwards curves are drawing increasing attention with their low cost and memory
friendly arithmetic in cryptographic applications. Recently, there has been a
rapid development of Edwards curves and their use in cryptology. An outline of
the previous work that closely relates to twisted Edwards curves is as follows.

– Building on the historical results of Euler and Gauss, Edwards introduced
a normal form for elliptic curves and stated the addition law in [13]. These
curves are defined by x2 + y2 = c2 + c2x2y2.

– Bernstein and Lange introduced a more general version of these curves de-
fined by x2 + y2 = c2(1 + dx2y2) or simply x2 + y2 = 1 + dx2y2 together
with the first algorithms for computing the group operations on projective
coordinates in [5]. For instance, the addition costs 10M + 1S + 1D with
c = 1. Here, and in the rest of this paper, multiplication by a curve constant
is denoted by D. With the definitions in [5], these curves are today known
as the Edwards curves.

1 M: Field multiplication, S: Field squaring, I: Field inversion.

– Bernstein and Lange introduced the inverted Edwards coordinates in [6]
which reduce the cost for the group operations on Edwards curves. For in-
stance, the addition costs 9M + 1S + 1D.

– Bernstein, Birkner, Joye, Lange, and Peters introduced twisted Edwards
curves ax2 + y2 = 1 + dx2y2 in [1], a generalization of Edwards curves.

In this paper, the speed of the arithmetic of twisted Edwards curves is in-
creased by a suitable point representation. The new system is called extended
twisted Edwards coordinates which adds an auxiliary coordinate to twisted Ed-
wards coordinates. Despite the computational overhead of the additional coordi-
nate, we develop faster ways of performing point addition since the new formulae
are composed of polynomial expressions with lower total degrees. We show that
the increase in the number of coordinates comes with an increase in the level
of parallelism which is exploited for further improvements. We also provide op-
timizations for the scalar multiplication by mixing extended twisted Edwards
coordinates with twisted Edwards coordinates.

The paper is organized as follows. A review of twisted Edwards curves to-
gether with some new results is given in Section 2. The new point representation
is introduced in Section 3. Several applications of the new achievements are given
in Section 4. We draw our conclusions in Section 5.

2 Twisted Edwards Curves

In what follows some terms related to the group law on elliptic curves will be
extensively used. In particular, the term unified is used to emphasize that point
addition formulae remain valid when two input points are identical, see [10, Sec-
tion 29.1.2]. Therefore, unified addition formulae can be used for point doubling.
The term complete is used to emphasize that addition formulae are defined for
all inputs, see [5]. The term readdition is used to emphasize that a point addition
has already taken place and some of the previously computed data is cached, see
[5]. The term mixed addition refers to adding an affine point to a point in some
projective representation, see [11]. We adapt the notation from [11], [5], and [1].

Let K be a field of odd characteristic. In [5], Bernstein and Lange introduce
Edwards curves defined by x2 + y2 = c2(1 + dx2y2) where c, d ∈ K with cd(1−
dc4) 6= 0. In [1], this form is generalized to twisted Edwards form defined by

EE,a,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ K with ad(a − d) 6= 0. Edwards curves are then a special case
of twisted Edwards curve where a can be rescaled to 1. We next review some
formulae regarding the group law on twisted Edwards curves which will be used
with slight modifications in Section 3.

Affine addition formulae for twisted Edwards curves in [1] (also see [13],
[5]):

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1y1x2y2

,
y1y2 − ax1x2

1− dx1y1x2y2

)

= (x3, y3). (1)

The point (0, 1) is the identity element and the point (0,−1) is of order 2.
The negative of a point (x, y) is (−x, y). For further facts such as the resolution
of singularities or the points at infinity or the coverage of these curves or the
group structure, we refer the reader to the original reference [1]. Also see [13],
[5], [4], [6], and [3].

In [5] (where a = 1) and later in [1], it was proven that if d is not a square
in K and a is a square in K then these formulae are complete. In Theorem 1,
with reasonable assumptions, we show that it is possible to prevent exceptions
in the addition formulae even if d is a square in K or a is not a square in K. We
should note that this statement should not be considered as a recommendation
for selecting d a square in K and/or a a non-square in K. The desired properties
for a and d may change depending on the target application. We will recall
Theorem 1 in Section 4.

Theorem 1. Let K be a field of odd characteristic. Let EE,a,d be a twisted
Edwards curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on
EE,a,d. Assume that P and Q are of odd order. It follows that 1−dx1x2y1y2 6= 0
and 1 + dx1x2y1y2 6= 0.

Proof. In [5] (where a = 1) and later in [1], it is proven that the points at infinity
(over the extension of K where they exist) are of even order. Assume that P
and Q are of odd order. Thus, P , Q and P + Q cannot be the points at infinity.
Since the formulae (1) are complete (see [1]) provided that the points at infinity
are not involved, the denominators of (1); 1−dx1x2y1y2 and 1+dx1x2y1y2 must
be nonzero. ⊓⊔

Affine doubling formulae (independent of d) for twisted Edwards curves
deduced from [1] (also see [5], [2], [3]):

2(x1, y1) =

(

2x1y1

y2
1 + ax2

1

,
y2
1 − ax2

1

2− y2
1 − ax2

1

)

= (x3, y3). (2)

The exceptional cases and how to prevent them are analogous to formulae (1).
Affine addition formulae (independent of d) for twisted Edwards curves

adapted from our preprint [17]: Consider the relations obtained by the curve
equation; ax2

1 + y2
1 = 1 + dx2

1y
2
1 , ax2

2 + y2
2 = 1 + dx2

2y
2
2 . After straight forward

eliminations, we express a and d in terms of x1, x2, y1, y2 as follows,

a =
(x2

1y
2
1 − x2

2y
2
2)− y2

1y2
2(x

2
1 − x2

2)

x2
1x

2
2(y

2
1 − y2

2)
, d =

(x2
1 − x2

2)− (x2
1y

2
2 − y2

1x2
2)

x2
1x

2
2(y

2
1 − y2

2)
.

Ignoring any exceptions that can be introduced by these rational expressions,
substitutions in the addition formulae (1) yield

x3 =
x1y2 + y1x2

1 +
(x2

1
−x

2
2
)−(x2

1
y
2
2
−y

2
1
x
2
2
)

x
2

1
x
2

2
(y2

1
−y

2

2
)

x1y1x2y2

=
x1x2(y

2
1 − y2

2)

x1y1 − x2y2 − y1y2(x1y2 − y1x2)

=
x1y1 + x2y2

y1y2 +
(x2

1
y
2
1
−x

2
2
y
2
2
)−y

2
1
y
2
2
(x2

1
−x

2
2
)

x
2

1
x
2

2
(y2

1
−y

2

2
)

x1x2

=
x1y1 + x2y2

y1y2 + ax1x2
,

y3 =
y1y2 − (x2

1
y
2

1
−x

2

2
y
2

2
)−y

2

1
y
2

2
(x2

1
−x

2

2
)

x
2
1
x
2
2
(y2

1
−y

2
2
)

x1x2

1− (x2
1
−x

2
2
)−(x2

1
y
2
2
−y

2
1
x
2
2
)

x
2
1
x
2
2
(y2

1
−y

2
2
)

x1y1x2y2

=
x1y1 − x2y2

x1y2 − y1x2
.

The addition formulae (independent of d) are then as follows,

(x1, y1) + (x2, y2) =

(

x1y1 + x2y2

y1y2 + ax1x2

,
x1y1 − x2y2

x1y2 − y1x2

)

= (x3, y3). (3)

The formulae given by (3) produce the same outputs as the addition formu-
lae (1). However, these formulae fail for point doubling. In addition, there are
exceptional cases even if d is a not a square in K and a is a square in K. The
following theorem states these points explicitly.

Theorem 2. Let K be a field of odd characteristic. Let EE,a,d be a twisted
Edwards curve defined over K. Let P = (x1, y1) and Q = (x2, y2) be points on
EE,a,d. Assume that P is fixed.

If x1 = 0 or y1 = 0 then y1y2 + ax1x2 = 0 if and only if Q ∈ Sx where
Sx = {(y1/

√
a,−x1

√
a), (−y1/

√
a, x1

√
a)}. Similarly, x1y2 − y1x2 = 0 if and

only if Q ∈ Sy where Sy = {(x1, y1), (−x1,−y1)}.
Otherwise (i.e. x1 6= 0 and y1 6= 0), Sx and Sy are given by

Sx =

{(

y1√
a

,−x1

√
a

)

,

(

− y1√
a

, x1

√
a

)

,

(

1

x1

√
a d

,−
√

a

y1

√
d

)

,

(

− 1

x1

√
a d

,

√
a

y1

√
d

)}

,

Sy =

{

(x1, y1), (−x1,−y1),

(

1

y1

√
d

,
1

x1

√
d

)

,

(

− 1

y1

√
d

,− 1

x1

√
d

)}

.

Proof. ⇒ : The set of all solutions to the system of equations y1y2 + ax1x2 =
0, ax2

1 +y2
1 = 1+dx2

1y
2
1 , ax2

2 +y2
2 = 1+dx2

2y
2
2 gives Sx. The set of all solutions to

the system of equations x1y2−y1x2 = 0, ax2
1+y2

1 = 1+dx2
1y

2
1 , ax2

2+y2
2 = 1+dx2

2y
2
2

gives Sy. Clearly, all solutions are distinct since (0, 0) is not on the curve.
⇐ : Trivial, by substitution. ⊓⊔

Theorem 2 shows that suitable selection of a and d are not enough to elimi-
nate all exceptional cases. Therefore the formulae given by (3) are not complete.
Nevertheless, the exceptional inputs have a special property given by the follow-
ing lemma.

Lemma 1. Let K, EE,a,d, P, Q be defined as in Theorem 2. Assume that P is a
fixed point of odd order. Assume that Q ∈ Sx ∪ Sy − {P}. Then Q is of even
order.

Proof. The proof is given in Appendix-A. ⊓⊔

We now provide a practical solution to prevent exceptional cases. We will
recall Corollary 1 in Section 4.

Corollary 1. Let EE,a,d be a twisted Edwards curve defined over K. Let P =
(x1, y1) and Q = (x2, y2) be points on EE,a,d. Assume that P and Q are of odd
order with P 6= Q. It follows that y1y2 + ax1x2 6= 0 and x1y2 − y1x2 6= 0.

Proof. The proof follows from Theorem 2 and Lemma 1. ⊓⊔

Cryptographic applications involving elliptic curve scalar multiplication typ-
ically use points of prime order. If this is the case, Corollary 1 shows that the
addition formulae given by (3) are exception-free for distinct input points. Fur-
thermore, extending K cannot introduce any exception. Of course, one can still
choose arbitrary points as the input at the expense of exception handling or
leave the exceptions unhandled. However, this can lead active attackers to suc-
ceed in exceptional point attacks, see [19]. As a general solution, a suitable
randomization technique can be used. For various randomization techniques, a
comprehensive reference is [10, chapter 29].

The rest of the paper is about cryptographic applications. Therefore, we now
further assume that K is finite. In some implementations the ratio I/M is quite
large. For this reason, a natural strategy is to prevent the frequent use of field
inversions and a classical solution is using projective coordinates.

At this stage, consider the homogenous projective coordinates in [1]. In this
system, each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented as the triplet
(X : Y : Z) which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These
triplets satisfy the homogenous projective equation

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (4)

The curve defined by (4) is the projective closure of the curve ax2 + y2 =
1 + dx2y2. The identity element is represented by (0 : 1 : 1). The negative of
(X : Y : Z) is (−X : Y : Z). For all nonzero λ ∈ K, (X : Y : Z) = (λX : λY : λZ).
We denote this system by E . The choice of E leads to inversion-free very efficient
point addition algorithms recently proposed in [1, Section 6].

3 Extended Twisted Edwards Coordinates

To gain more speed, it is convenient to introduce an auxiliary coordinate t = xy
to represent a point (x, y) on ax2 +y2 = 1+dx2y2 in extended affine coordinates
(x, y, t). One can pass to the projective representation using the map (x, y, t) 7→
(x : y : t : 1). For all nonzero λ ∈ K, (X : Y : T : Z) = (λX : λY : λT : λZ) which
satisfies (4) and corresponds to the extended affine point (X/Z, Y/Z, T/Z) with
Z 6= 0. The auxiliary coordinate T has the property T = XY/Z. This point
representation is named extended twisted Edwards coordinates and is denoted
by Ee. The identity element is represented by (0 : 1 : 0 : 1). The negative of
(X : Y : T : Z) is (−X : Y : −T : Z). Given (X : Y : Z) in E passing to Ee can be
performed in 3M + 1S by computing (XZ, Y Z, XY, Z2). Given (X : Y : T : Z)
in Ee passing to E is cost-free by simply ignoring T .

3.1 Unified Addition in E
e

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1 6= 0 and Z2 6= 0, a
unified addition can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =

(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),

Y3 = (Y1Y2 − aX1X2)(Z1Z2 + d T1T2),

T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2),

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + d T1T2).

(5)

These unified formulae are derived from the addition formulae (1). We deduce
from [5] and [1] that these formulae are also complete when d is not a square in
K and a is a square in K. The operations can be performed with a 9M + 2D
algorithm given by

A← X1 ·X2, B ← Y1 · Y2, C ← d T1 · T2, D← Z1 · Z2,

E ← (X1 + Y1) · (X2 + Y2)− A−B, F ← D − C, G← D + C,

H ← B − aA, X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

An 8M+2D mixed addition algorithm can then be derived by setting Z2 = 1.
This means that we are adding (X1 : Y1 : T1 : Z1) and an extended affine point
(x2, y2, x2y2) which is equally written as (x2 : y2 : x2y2 : 1).

Choosing curve constants with extremely small sizes or extremely low (or
high) hamming weight can be used to eliminate the computational overhead of
a field multiplication. For instance see [9], [7], [12]. See also [1, Section 7] for an
alternative strategy for the selection of constants. When using Ee the situation
is even better if a = −1; we save 1M + 1D rather than just 1D. Consider a
twisted Edwards curve given by

ax2 + y2 = 1 + dx2y2.

The map (x, y) 7→ (x/
√
−a, y) defines the curve,

−x2 + y2 = 1 + (−d/a)x2y2.

This map can be constructed if −a is a square in K. It is worth pointing out
here that the curve −x2 + y2 = 1 + (−d/a)x2y2 corresponds to the Edwards
curve x2 + y2 = 1 + (d/a)x2y2 via the map (x, y) 7→ (ix, y) if i ∈ K with
i2 = −1. For such curves a 10M + 1S + 1D point addition algorithm is given in
[4, add-2007-bl-4].

After a renaming of the constant−d/a to d′, the point addition on the twisted
Edwards curve −x2 + y2 = 1 + d′x2y2 can now be performed with an 8M + 1D
algorithm given by

A← (Y1 −X1) · (Y2 −X2), B ← (Y1 + X1) · (Y2 + X2), C ← k T1 · T2,

D ← 2Z1 · Z2, E ← B − A, F ← D − C, G← D + C,

H ← B + A, X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G

where k = 2d′. The optimization that leads to the removal of the extra multipli-
cation is similar to the optimizations in [23] and [4, add-2007-bl-4]. A 7M + 1D
mixed addition algorithm can be derived by setting Z2 = 1.

In the case a = −1, we comment that it is possible to save two additions by
further extending the coordinates to (X : Y : T : Z : Y −X : Y +X). Alternatively,
(Y2 −X2), (Y2 + X2), 2Z2, and k = 2d′ can be cached to save two additions and
two multiplications by 2 when performing readdition. We do not claim that these
cachings are very useful in practice. On the other hand, a caching of kT2 leads
to readdition in 8M rather than 8M + 1D. This can save time if D is large. As
a consequence, readdition with Z2 = 1 needs 7M rather than 7M+ 1D. Similar
arguments can be easily extended over the other algorithms in Section 3 when
appropriate.

3.2 Dedicated Addition in E
e

Given the representations (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) of distinct
points with Z1 6= 0 and Z2 6= 0, the point addition can be performed as
(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),

T3 = (T1Z2 + Z1T2)(T1Z2 − Z1T2),

Z3 = (Y1Y2 + aX1X2)(X1Y2 − Y1X2).

(6)

These formulae are independent of the curve constant d. These formulae are
analogous to the addition formulae (3). The operations can be performed with
a 9M + 1D algorithm given by

A← X1 ·X2, B ← Y1 · Y2, C ← Z1 · T2, D← T1 · Z2,

E ← D + C, F ← (X1 − Y1) · (X2 + Y2) + B − A, G← B + aA,

H ← D − C, X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

An 8M + 1D mixed addition algorithm can be derived by setting Z2 = 1.

For the case a = −1, the operations can be performed with an 8M algorithm
given by

A← (Y1 −X1) · (Y2 + X2), B ← (Y1 + X1) · (Y2 −X2), C ← 2Z1 · T2,

D ← 2T1 · Z2, E ← D + C, F ← B − A, G← B + A,

H ← D − C, X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

A 7M mixed addition algorithm can be derived by setting Z2 = 1. A parallel
version of the dedicated addition algorithm is given in Section 4.4 for the case
a = −1.

3.3 Dedicated Doubling in E
e

Given (X1 : Y1 : T1 : Z1) with Z1 6= 0, point doubling can be performed as
2(X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where

X3 = 2X1Y1(2Z2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 + aX2

1)(Y 2
1 − aX2

1),

T3 = 2X1Y1(Y
2
1 − aX2

1),

Z3 = (Y 2
1 + aX2

1)(2Z2
1 − Y 2

1 − aX2
1).

(7)

These formulae are independent of the curve constant d. These are essentially
the same formulae from [1] plus the formula T3 = 2X1Y1(Y

2
1 − aX2

1) which
increases the number of multiplications needed to compute a point doubling by
1. The operations can be performed with a 4M + 4S + 1D algorithm given by

A← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← aA, E ← (X1 + Y1)

2 −A−B,

G← D + B, F ← G− C, H ← D −B, X3 ← E · F, Y3 ← G ·H,

T3 ← E ·H, Z3 ← F ·G.

This algorithm is similar to 3M + 4S + 1D point doubling algorithm in [1].
The slowing down from 3M + 4S + 1D to 4M + 4S + 1D will be remedied in
Section 4.3 by mixing Ee with E . A parallel version of the doubling algorithm is
given in Section 4.4 for the case a = −1.

3.4 More Formulae

Since we have two different addition formulae for computing x3 and another two
for y3, it is possible to produce hybrid addition formulae from (1) and (3). The
hybrid formulae are given by

(x1, y1) + (x2, y2) =

(

x1y1 + x2y2

y1y2 + ax1x2
,

y1y2 − ax1x2

1− dx1y1x2y2

)

= (x3, y3), (8)

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1y1x2y2
,
x1y1 − x2y2

x1y2 − y1x2

)

= (x3, y3). (9)

We comment that Ee analogs of (8) and (9) lead to similar speeds.

4 Applications

We provide further optimizations targeting scalar multiplication operations, nP
where n is an integer called the scalar and P is the base point multiplied by the
scalar.

The impact of the new unified addition algorithms in Ee for preventing side
channel attacks is discussed in Section 4.1. Parallel versions of the 8M+1D uni-
fied addition in Ee are provided in Section 4.2. The speed of scalar multiplication
on twisted Edwards curves is increased by mixing Ee with E in Section 4.3. A

parallel implementation of fast scalar multiplication in Ee is explained in Sec-
tion 4.4. When parallelization is desired the algorithms in Section 4.2 and Sec-
tion 4.4 help to reduce significantly the effective cost of scalar multiplication.
Other applications appear in Section 4.5.

4.1 Defeating SPA Attacks

It is well known that a scalar multiplication algorithm can gain SPA protection
when unified additions are used as the only group operation, see [10, Section
29.1.2] for instance. From Section 3.4 we know that the unified addition costs
9M+2D in Ee. For the case a = −1 the cost drops to 8M+1D. Both results are
faster than all the other unified addition algorithms known to date. Assuming
that S = 0.8M and D ≈ 0, the 8M + 1D algorithm is approximately 17.5%,
22.5%, 35%, 50%, 55%, 82.5%, 97.5% faster than the best results in [17], [6],
[5], [20], [7], [22], [8], respectively. Note, if S = M most speedups will be even
more significant. Furthermore, both unified addition algorithms are complete for
suitably selected parameters, see section 2 for pointers. The completeness is a
stronger property than the unification, see [5, p.2].

Another approach to a protected scalar multiplication is using the Mont-
gomery ladder with Montgomery curves or Kummer surfaces. Montgomery’s
algorithm for Montgomery curves in [23] use 5M + 4S + 1D per scalar bit.
Gaudry/Lubicz algorithm for Kummer surfaces (genus 1, odd characteristic
case) in [16] use 3M + 6S + 3D per scalar bit. We will only provide com-
parisons with Montgomery curves in the rest of the paper. Assuming that an
optimized protected scalar multiplication algorithm uses 1.2 unified additions
per scalar bit, scalar multiplication using the 8M + 1D algorithm then requires
(8M+1D)× 1.2 = 9.6M+1.2D per scalar bit. Assuming that 0.67M ≤ S ≤M
and 0 < D ≤M, this will be approximately 6% to 25% slower2 than Montgomery
curves. However, we will show in Section 4.2 that the 8M + 1D algorithm can
be faster on parallel implementations. When designing the parallel algorithms
we try exploiting all inherent parallelism. If an M is performed in parallel with
a D and/or an S then the cost is counted as an effective 1M.

4.2 Defeating SPA Attacks in Parallel Environments

A useful feature of the 8M + 1D unified addition algorithm is that it is highly
parallelizable. In this section, targeting parallel environments, we explain how
a protected scalar multiplication using the 8M + 1D unified addition in Ee can
perform faster than a protected scalar multiplication based on the Montgomery
ladder [23]. For details on the ladder algorithm and Montgomery curves, we refer
the reader to [23] and [21]. See [18] and [15] for preventing side channel attacks
in parallel environments using general elliptic curves.

The Montgomery curve EM,A,B is defined by By2 = x3 + Ax2 + x with
B(A2 − 4) 6= 0. Given the projective coordinates of two points (Xm : Zm) and

2 The ratios S/M and D/M are fixed equally for both cases.

(Xn : Zn) and also (Xm−n : Zm−n) = (Xm : Zm)−(Xn : Zn); (Xm+n, : Zm+n) =
(Xm : Zm) + (Xn : Zn) is given in [23] by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,

Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

Dedicated doubling formulae (which can be faster than the addition) are used
to compute X2n and Z2n given in [23] by

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,

X2n = (Xn + Zn)2(Xn − Zn)2,

Z2n = (4XnZn)((Xn − Zn)2 + ((A + 2)/4)(4XnZn)).

The doubling algorithm uses 2M+ 2S+ 1D and the addition algorithm uses
3M+2S assuming that Zm−n = 1. The total cost of a doubling and an addition
is then 5M+4S+1D. In a sequential environment it is convenient to consider the
addition and doubling operations as a single composite operation. This approach
is given in [4]. To follow the same notation rename

[(A + 2)/4, Xm−n, Zm−n, Xm, Zm, Xn, Zn, X2n, Z2n, Xm+n, Zm+n]

as [a24, X1, Z1, X2, Z2, X3, Z3, X4, Z4, X5, Z5]. Assuming that Z1 = 1, a 5M +
4S+1D Montgomery differential-addition-and-doubling algorithm is given in [4,
mladd-1987-m] by

A← X2 + Z2, AA← A2, B ← X2 − Z2, BB ← B2,

E ← AA−BB, C ← X3 + Z3, D ← X3 − Z3, DA← D · A,

CB ← C ·B, X5 ← (DA + CB)2, Z5 ← X1 · (DA−CB)2,

X4 ← AA ·BB, Z4 ← E · (BB + a24E).

2-Processor Montgomery addition and doubling. In [21], it is observed
that the doubling and the addition phases of the Montgomery ladder algorithm
can be performed independently. From this, it is clear that one of the processors
needs 2M + 2S + 1D and the other needs 3M + 2S to perform doubling and
addition, respectively. Since 3M + 2S ≥ 2M + 2S + 1D we conclude that one
round of computing a doubling and an addition can be done in an effective
3M+2S. Alternatively, we can parallelize the “mladd-1987-m” algorithm in [4].
This approach also yields an effective 3M + 2S. See Appendix-B. The ladder
algorithm then uses 3M + 2S per scalar bit.

2-Processor twisted Edwards (a = −1) unified addition in Ee. We
now investigate the 8M+ 1D unified addition algorithm. We can split the com-
putational task into 9 steps with a full utilization of 2 processors. The unified
addition can then be performed with an effective 4M + 1D algorithm.

Cost Step Processor 1 Processor 2

1 R1 ← Y1 −X1 R2 ← Y2 −X2

2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 3 R5 ← R1 · R2 R6 ← R3 · R4

1M 4 R7 ← T1 · T2 R8 ← Z1 · Z2

1D 5 R7 ← kR7 R8 ← 2R8

6 R1 ← R6 − R5 R2 ← R8 − R7

7 R3 ← R8 + R7 R4 ← R6 + R5

1M 8 X3 ← R1 · R2 Y3 ← R3 ·R4

1M 9 T3 ← R1 ·R4 Z3 ← R2 · R3

Assuming that an optimized SPA protected scalar multiplication algorithm
uses 1.2 unified additions per scalar bit, we have the cost estimate (4M+1D)×
1.2 = 4.8M + 1.2D per scalar bit (for each of 2 processors). The fastest system
is determined by the ratios S/M and D/M. For instance, if S = M and D ≈
0 then twisted Edwards (a = −1) curves are approximately 4.2% faster than
Montgomery curves. On the other hand, using Montgomery curves still seems to
be preferable since the ladder algorithm needs less memory and it is not affected
by changes in the ratio D/M. Note also that S < M in some applications.

We omit details for the 3-processor case which can be derived with similar
approaches.

4-Processor Montgomery addition and doubling. The Montgomery
addition and doubling does not nicely fit the 4-processor setting. For instance
the “mladd-1987-m” algorithm in [4] seems to be quite uncompetitive even if we
exploit all inherent parallelism. A quick investigation shows that we can perform
a doubling and addition in an effective 2M + 2S. See Appendix-B. The ladder
algorithm then uses 2M + 2S per scalar bit.

4-Processor twisted Edwards (a = −1) unified addition in Ee. We
can split the computational task into 5 sequential steps among 4 processors. The
unified addition can then be performed with an effective 2M + 1D algorithm.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← Y1 −X1 R2 ← Y2 −X2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 2 R5 ← R1 · R2 R6 ← R3 · R4 R7 ← T1 · T2 R8 ← Z1 · Z2

1D 3 idle idle R7 ← kR7 R8 ← 2R8

4 R1 ← R6 − R5 R2 ← R8 − R7 R3 ← R8 + R7 R4 ← R6 + R5

1M 5 X3 ← R1 ·R2 Y3 ← R3 · R4 T3 ← R1 ·R4 Z3 ← R2 · R3

Following the assumption from the 2-processor case we have the cost estimate
(2M+1D)×1.2 = 2.4M+1.2D per scalar bit. If S = M and D ≈ 0 then twisted
Edwards (a = −1) curves are approximately 66.7% faster than Montgomery
curves. If S = 0.8M and D = 0.25M then twisted Edwards (a = −1) curves
are approximately 33.3% faster. If S = 0.8M and D = M then twisted Edwards
(a = −1) curves are approximately 5.9% faster.

Assuming D ≈ 0, we estimate that a “256-bit, sliding window, 4-NAF” scalar
multiplication on twisted Edwards (a = −1) curves will require approximately
602M for each of 4 processors, depending on the analysis in [5, Section 5].

Consider the field multiplication operation kR7 in Step 3. The finite field
arithmetic can be implemented building on integer arithmetic. Treating field
elements k as a 4n-bit integer and R7 as an integer, we fix k1, k2, k3, k4 ∈

[

0, 2n−
1
]

such that k = k0 + 2nk1 + 22nk2 + 23nk3. Now, kR7 can be obtained as
k0R7+2n(k1R7)+22n(k2R7)+23n(k3R7) by computing kiR7 in parallel. The rest
of the computation for obtaining kR7 can be practically negligible (depending on
the application). Here, the 3 additions to obtain kR7 and R8 ← 2R8 can be put
in a new parallel step. Furthermore if #K is a special prime allowing very fast
modular reduction (such as NIST primes) then the cost of casting the integer kR7

to K (i.e. the modular reduction) can also be practically negligible (depending
on the application). This method leads to a better utilization of processors and
can be used for decreasing D. Even if k is of the full size (i.e. D = M), this

technique fixes each ki to a quarter of the size of k (i.e. D is close to 0.25M
if schoolbook multiplication and fast reduction are being used). Alternatively,
fixing n to the word size of the underlying hardware (or maybe to the size of a
compiler-supported data type) can be advantageous in some applications. The
same method can be adapted to the 2-processor case.

The parallel implementation of Ee ← Ee + Ee is easier than the Montgomery
case because all processors perform similar tasks at each step. In addition, the
implementation does not require a special field squaring circuit to gain better
timings.

2×2-Processor Montgomery addition and doubling. If the doubling
operation is assigned to a team of two processors and the addition operation is
assigned to another team of two processors, the 2M+2S figure can be improved
to 2M+ 1S. See Appendix-B. Here, we make the assumption that the addition-
team and the doubling-team work in an unsynchronized fashion and perform the
synchronization at the end (of each round); we are not claiming that the imple-
mentation of this is easy. Even with this assumption twisted Edwards (a = −1)
curves can still be faster. For instance, if S = M and D ≈ 0 then twisted Ed-
wards (a = −1) curves are approximately 25% faster than Montgomery curves.

4.3 Fast Scalar Multiplication

In [11], Cohen, Miyaji, and Ono introduced the modified Jacobian coordinates
and studied other systems in the literature, namely affine, projective, Jacobian,
and Chudnovsky Jacobian coordinates. To gain better timings they proposed a
technique of carefully mixing these coordinates. We follow a similar approach.
Note, the notations E and Ee follow the notation introduced in [11].

On twisted Edwards curves, the speed of scalar multiplications which involve
point doublings can be increased by mixing Ee with E . The following technique
replaces (slower) doublings in Ee with (faster) doublings in E . In the execution
of a scalar multiplication:

(i) If a point doubling is followed by another point doubling, use E ← 2E .
(ii) If a point doubling is followed by a point addition, use

1. Ee ← 2E for the point doubling step; followed by,
2. E ← Ee + Ee for the point addition step.

E ← 2E is performed using 3M + 4S + 1D doubling algorithm in [1]. The
details of the other operations are given below.
Ee ← 2E using (7):

(i) In Section 3 it was noted that passing from (X : Y : Z) to (X : Y : T : Z) (i.e.
passing from E to Ee) can be performed in 3M+1S. From this, it might seem
at the first glance that computing Ee ← 2E will more costly than expected.
However, the doubling algorithm for (7) does not use the input T1 and so it
can be used for Ee ← 2E without modification.

(ii) Theorem 1 implies that Z1 and Z3 are always nonzero if the base point is of
odd order. Alternatively, careful selection of a and d also guarantees that Z1

and Z3 are always nonzero regardless of the order of the base point, see [1].

E ← Ee + Ee based on (either) (5) or (6):

(i) Observe that one field multiplication can be saved by not computing T3.
This can be regarded as a remedy to the extra field multiplication which
appears in Ee ← 2E while computing T3.

(ii) If (6) is used (without computing T3), scalar multiplication is independent of
d. Indeed E ← 2E (see [1]) and Ee ← 2E (see Section 3.3) are also independent
of d. Formulae (6) save time if D is large. In addition, Corollary 1 implies
that Z1, Z2 and Z3 are always nonzero if the base point is of odd order.

(iii) If (5) is used (without computing T3), the curve constant d will be involved
in the calculations. Using the concept of readdition discussed in Section 3.4,
one can also achieve similar performance in comparison to the case of (6).
In addition, Theorem 1 implies that Z1, Z2 and Z3 are always nonzero if
the base point is of odd order. Alternatively, careful selection of a and d also
guarantees that Z1, Z2 and Z3 are always nonzero regardless of the order of
the base point, see [1].

In Table 1, a comparison is made for the speeds that can be achieved under
different S/M and D/M scenarios. These estimates are based on the analysis
in [5, Section 5]. To gain the best speed, we assume that (a = −1). To make
the cost estimation easier (without sacrificing the accuracy), we can consider the
cost of Ee ← 2E as 3M+4S by pushing the extra multiplication to the operation
count of E ← Ee + Ee. In this case, the relevant costs for various additions based
on the formulae (6) are as follows. Addition: 8M; readdition: 8M; readdition
with Z2 = 1: 7M; mixed addition (i.e. addition with Z2 = 1 reasonably denoted
by E ← Ee +Ae): 7M. As a special case, we also include cost estimates for the
Montgomery ladder [23] which require 5M + 4S + 1D per scalar bit. The rows
are sorted with respect to the column (.8, 0) in descending order. The headers
(e.g. (.8, .5)) of columns 2 to 7 fix the ratios S/M and D/M, respectively. (Of
course, D/M = 0 should be regarded as D/M ≈ 0 when it appears.)

Table 1. Cost estimates (M) for fast scalar multiplication, 256-bit. (The Montgomery
ladder algorithm for Montgomery curves and “sliding window, 4-NAF” method for
Edwards, inverted Edwards, and mixed twisted Edwards coordinates).

System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)

Montgomery Ladder, [23] 2560 2355 2432 2227 2304 2099
Edwards, [5] 2351 2139 2326 2115 2301 2090
Inverted Edwards, [6] 2552 2341 2402 2191 2251 2040
Twisted Edwards (a = −1), mixed 2152 1951 2152 1951 2152 1951

It is also convenient to consider Ee ← 2E followed by E ← Ee +Ee as a single
composite operation as E ← 2E + Ee where Ee is the base point. See [14] for a
similar approach in affine Weierstrass coordinates.

4.4 Fast Scalar Multiplication in Parallel Environments

It is natural to ask whether the speed of the protected scalar multiplication
discussed in Section 4.2 can be increased by using a fast dedicated doubling
algorithm. Unfortunately mixing Ee with E does not seem to be helpful in parallel
environments for increasing the speed. Nevertheless, Ee ← 2Ee can be performed
with an effective 1M + 1S algorithm, as follows.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 idle idle idle R1 ← X1 + Y1

1S 2 R2 ← X2

1
R3 ← Y 2

1
R4 ← Z2

1
R5 ← R2

1

3 R6 ← R2 + R3 R7 ← R2 − R3 R4 ← 2R4 idle
4 idle R1 ← R4 + R7 idle R2 ← R6 − R5

1M 5 X3 ← R1 · R2 Y3 ← R6 · R7 T3 ← R2 · R6 Z3 ← R1 · R7

This is essentially the same algorithm as in Section 3.3. It is easy to deduce
that the 2-processor point doubling needs an effective 2M + 2S. Point addition
Ee ← Ee + Ee can be performed with an effective 2M algorithm, as follows.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← Y1 −X1 R2 ← Y2 + X2 R3 ← Y1 + X1 R4 ← Y2 −X2

1M 2 R5 ← R1 · R2 R6 ← R3 · R4 R7 ← Z1 · T2 R8 ← T1 · Z2

3 idle idle R7 ← 2R7 R8 ← 2R8

4 R1 ← R8 + R7 R2 ← R6 − R5 R3 ← R6 + R5 R4 ← R8 − R7

1M 5 X3 ← R1 ·R2 Y3 ← R3 · R4 T3 ← R1 · R4 Z3 ← R2 · R3

This is essentially the same algorithm as in Section 3.2. It is easy to deduce
that the 2-processor point doubling needs an effective 4M. One may prefer using
the parallel version of the addition formulae (1) which comes at the expense of
multiplication by d. See the discussions about readdition in Section 3.4 and
partitioning k in Section 4.2. Assuming S = 0.8M and D ≈ 0, we estimate that
“256-bit, sliding window, 4-NAF” scalar multiplication using Ee will require
approximately 552M for each of 4 processors, depending on the analysis in [5,
Section 5].

4.5 Other Applications

Point addition intensive operations bring out the full power of the new addition
algorithms. Therefore, we will consider the batch signature verification algorithm
in this section.

There is a vast literature on the optimization of special exponentiation tech-
niques. A general references is [10]. An example to the case of scalar multipli-
cation is computing

∑

niPi with fixed base point(s) or fixed scalar(s). In [5,
Section 7], cost estimations for selected applications about

∑

niPi are provided
for several curve models. The expected increases in speed for twisted Edwards
curves can be deduced from [5] by simply substituting the new operation counts.
For instance, the batch signature verification technique in [24] attributed to Bos-
Coster is summarized in [5, Section 5] for one variant of the ElGamal signature
system. The cost estimates for this operation are given in Table 2 in comparison
to Edwards coordinates and inverted Edwards coordinates.

Table 2. Cost estimates (M) for batched verification of 100 ElGamal signatures, 256-
bit.

System (1,1) (.8, 1) (1, .5) (.8, .5) (1, 0) (.8, 0)

Edwards, [5] 302 297 289 284 276 271
Inverted Edwards, [6] 276 271 264 259 251 246
Twisted Edwards (a = −1), Ee 201 201 201 201 201 201

5 Conclusion

In this work, a new point representation Ee is introduced for twisted Edwards
curves. We derive efficient and highly parallel group operations and discuss al-
ternative ways of preventing exceptional cases. We then provide performance
estimates and comparisons for different implementation scenarios.

Defeating SPA Attacks. We provide two fast unified addition algorithms
which cost 9M + 2D and 8M + 1D. The latter case is at least 22% faster than
all the other unified addition methods stated in the literature. These formulae
are even 17.5% faster than our preliminary result in [17].

Defeating SPA Attacks in Parallel Environments. We provide an effective
2M + 1D unified point addition algorithm on a 4-processor environment. We
further showed that twisted Edwards (a = −1) curves can be faster up to 66.7%
than Montgomery curves in this parallel environment.

Fast Scalar Multiplication. We first handle single-scalar multiplication. We
explain how to perform fast scalar multiplication by mixing Ee with twisted
Edwards coordinates E , improving the current relevant literature bounds by ap-
proximately 4%-18%. We then point out that multi-scalar multiplications profit
even more from the faster point additions in Ee.

Fast Scalar Multiplication in Parallel Environments. We also point to the
parallel versions of fast scalar multiplication offering a speed increase by a factor
of 3.54 (using 4 processors) over the optimized sequential case.

In conclusion, we have pushed the recent speed limits of Elliptic Curve Cryp-
tography forward in a wide range of applications. Building on our observations
we recommend using Ee (and mixing Ee with E when useful) for speeding up the
scalar multiplication in several different settings.

Acknowledgement

The authors thank Tanja Lange and anonymous referees for very useful com-
ments and suggestions.

References

1. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: AFRICACRYPT 2008. Volume 5023 of LNCS., Springer (2008) 389–
405

2. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-
curve single-scalar multiplication. In: INDOCRYPT 2007. Volume 4859 of LNCS.,
Springer (2007) 167–182

3. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves.
Cryptology ePrint Archive, Report 2008/016 (2008) http://eprint.iacr.org/.

4. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007) http://www.

hyperelliptic.org/EFD.
5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:

ASIACRYPT 2007. Volume 4833 of LNCS., Springer (2007) 29–50
6. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: AAECC-17. Volume

4851 of LNCS., Springer (2007) 20–27
7. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.

In: AAECC-15. Volume 2643 of LNCS., Springer (2003) 34–42
8. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: PKC

2002. Volume 2274 of LNCS., Springer (2002) 335–345
9. Brier, E., Joye, M.: Fast point multiplication on elliptic curves through isogenies.

In: AAECC-15. Volume 2643 of LNCS., Springer (2003) 43–50
10. Cohen, H., Frey, G., eds.: Handbook of Elliptic and Hyperelliptic Curve Cryptog-

raphy. CRC Press (2005)
11. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed

coordinates. In: ASIACRYPT’98. Volume 1514 of LNCS., Springer (1998) 51–65
12. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny de-

compositions. In: PKC 2006. Volume 3958 of LNCS., Springer (2006) 191–206
13. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the AMS 44(3)

(2007) 393–422
14. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and

improved Weil pairing evaluation. In: CT-RSA 2003. Volume 2612 of LNCS.,
Springer (2003) 343–354

15. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.P.: Parallel scalar multiplication
on general elliptic curves over Fp hedged against non-differential side-channel at-
tacks. Cryptology ePrint Archive, Report 2002/007 (2002) http://eprint.iacr.

org/.
16. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces. Cryp-

tology ePrint Archive, Report 2008/133 (2008) http://eprint.iacr.org/.
17. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster group operations on elliptic

curves. Cryptology ePrint Archive, Report 2007/441 (2007) http://eprint.iacr.
org/.

18. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side
channel attacks. In: PKC 2002. Volume 2274 of LNCS., Springer (2002) 280–296

19. Izu, T., Takagi, T.: Exceptional procedure attack on elliptic curve cryptosystems.
In: PKC 2003. Volume 2567 of LNCS., Springer (2003) 224–239

20. Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In:
CHES 2001. Volume 2162 of LNCS., Springer (2001) 402–410

21. Joye, M., Yen, S.M.: The Montgomery powering ladder. In: CHES 2002. Volume
2523 of LNCS., Springer (2003) 291–302

22. Liardet, P.Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: CHES 2001. Volume 2162 of LNCS., Springer (2001) 391–401

23. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177) (1987) 243–264

24. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: EUROCRYPT’94. (1994) 389–399

A Proof of Lemma 1

Proof. Note that the points at infinity are of even order, see [1]. Assume that
P = (x1, y1) is of odd order. Thus, P is not one of the points at infinity. Assume
that Q ∈ Sx ∪ Sy − {P}. If Q were one of the points at infinity it would have
even order and the claim follows. Note also that P 6= Q and P 6= −Q since
P,−P /∈ Sx∪Sy−{P}. Instead of a further case by case analysis on Sx∪Sy−{P},
we will prove the lemma with a general approach. The proof has two parts.

In the first part we will prove that all points in Sx are of even order. Assume
that Q = (x2, y2) is an element of Sx. By Theorem 2, ax1x2 + y1y2 = 0.

Suppose that x1 = 0. Since P is of odd order P 6= (0,−1) and consequently
P = (0, 1). By Theorem 2, Q = (±1/

√
a, 0). Since 4(±1/

√
a, 0) = (0, 1), Q is of

even order as desired.
Assume from now on that x1 6= 0. We can write x2 = −y1y2/(ax1) since x1 is

nonzero. Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore,
M is not one of the points at infinity. We can assume that N is not one of the
points at infinity; for otherwise Q is of even order as desired. Using the relation
x2 = −y1y2/(ax1) and formula (3) for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2

=
2(−y1y2/(ax1))y2

y2
2 + a(−y1y2/(ax1))2

= − 2x1y1

y2
1 + ax2

1

= −x(M).

The denominators y2
1 + ax2

1 and y2
2 + ax2

2 must be nonzero since M and N are
not points at infinity. By the curve definition we have

y = ±
√

(1− ax2)/(1− dx2).

So y(M) = ±y(N) since |x(M)| = |x(N)|.
y(M) = −y(N) implies that M − N = (0,−1), a point of order 2. Then

2(M −N) = 2(2P − 2Q) = 4(P −Q) = (0, 1). So P −Q is a point of order 4.
y(M) = y(N) implies that M + N = (0, 1), the identity. Then M + N =

2P + 2Q = 2(P + Q) = (0, 1). So P + Q is a point of order 2 since P 6= −Q.
In conclusion, we have P ± Q of even order for all situations. Since P is of

odd order, Q ∈ Sx must be of even order.
In the second part of the proof we will prove that all points in Sy−{P} are of

even order. Assume that Q = (x2, y2) is an element of Sy−{P}. By Theorem 2,
x1y2 − y1x2 = 0.

Suppose that x1 = 0. Since P is of odd order P 6= (0,−1) and consequently
P = (0, 1). By Theorem 2, Q = (0,−1). Then Q is of even order as desired.

Assume from now on that x1 6= 0. We can write y2 = y1x2/x1 since x1 is
nonzero. Let M = 2P and N = 2Q. Since P is of odd order, so is M . Therefore,
M is not one of the points at infinity. We can assume that N is not one of the
points at infinity; for otherwise Q is of even order as desired. Using the relation
y2 = y1x2/x1 and formula (3) for computing x3 we get

x(N) =
2x2y2

y2
2 + ax2

2

=
2x2(y1x2/x1)

(y1x2/x1)2 + ax2
2

=
2x1y1

y2
1 + ax2

1

= x(M).

The denominators y2
1 +ax2

1 and y2
2 +ax2

2 must be nonzero since M and N are not
points at infinity. By the curve definition y(M) = ±y(N) since |x(M)| = |x(N)|.

y(M) = −y(N) implies that M + N = (0,−1), a point of order 2. Then
2(M + N) = 2(2P + 2Q) = 4(P + Q) = (0, 1). So P + Q is a point of order 4.

y(M) = y(N) implies that M − N = (0, 1), the identity. Then M − N =
2P − 2Q = 2(P −Q) = (0, 1). So P −Q is a point of order 2 since P 6= Q.

In conclusion, we have P ± Q of even order for all situations. Since P is of
odd order, Q ∈ Sy − {P} must be of even order.

In summary, all points in Sx ∪Sy −{P} are of even order provided that P is
of odd order. ⊓⊔

B Parallel algorithms

This appendix contains parallel algorithms for Montgomery addition and dou-
bling discussed in Section 4.2.

2-processor Montgomery differential-addition-and-doubling. Effec-
tive 3M + 2S, assumption Z1 = 1, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2

1 R1 ← X2 + Z2 R2 ← X2 − Z2

2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 3 R5 ← R2

1
R6 ← R2

2

4 R7 ← R5 − R6 idle
1M 5 R1 ← R1 · R4 R2 ← R2 · R3

6 R3 ← R1 + R2 R4 ← R1 − R2

1S 7 X5 ← R2

3
R2 ← R2

4

1M 8 R8 ← a24R7 X4 ← R5 · R6

9 R8 ← R6 + R8 idle

1M 10 Z4 ← R7 ·R8 Z5 ← X1 · R2

4-processor Montgomery differential-addition-and-doubling. Effec-
tive 2M + 2S, adapted from [4, mladd-1987-m].

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← X2 + Z2 R2 ← X2 − Z2 R3 ← X3 + Z3 R4 ← X3 − Z3

1S 2 R5 ← R2

1
R6 ← R2

2
idle idle

3 R7 ← R5 − R6 idle idle idle

1M 4 R1 ← R1 · R4 R2 ← R2 · R3 R8 ← a24R7 idle
5 R3 ← R1 + R2 R4 ← R1 − R2 R8 ← R6 + R8 idle

1S 6 X5 ← R2

3
R2 ← R2

4
idle idle

1M 7 Z5 ← X1 ·R2 X4 ← R5 · R6 Z4 ← R7 · R8 idle

2×2-processor Montgomery differential-addition and Montgomery
doubling. Effective 2M + 1S. Using the notation from [4].

2-processor Montgomery Addition 2-processor Montgomery Doubling

Cost Step Processor 1 Processor 2

1 R0 ← X2 − Z2 R1 ← X3 + Z3

2 R2 ← X2 + Z2 R3 ← X3 − Z3

1M 3 R0 ← R0 · R1 R2 ← R2 · R3

4 R1 ← R0 + R2 R3 ← R0 − R2

1S 5 R0 ← R2

1
R2 ← R2

3

1M 6 X5 ← Z1 ·R0 Z5 ← X1 · R2

Cost Step Processor 1 Processor 2

1 R4 ← X2 + Z2 R5 ← X2 − Z2

1S 2 R4 ← R2

4
R5 ← R2

5

3 R6 ← R4 − R5 idle
1D 4 R7 ← a24R6 idle

5 R7 ← R5 + R7 idle

1M 6 X4 ← R4 · R5 Z4 ← R6 · R7

The effective cost of addition is 2M+ 1S (even if Z1 = 1). The effective cost
of doubling is 1M+1S+1D. Since 2M+1S ≥ 1M+1S+1D the overall effective
cost is 2M + 1S depending on the assumption in Section 4.2.

