
How to Fill Up Merkle-Damg̊ard Hash Functions

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. Many of the popular Merkle-Damg̊ard hash functions have
turned out to be not collision-resistant (CR). The problem is that we no
longer know if these hash functions are even second-preimage-resistant
(SPR) or one-way (OW), without the underlying compression functions
being CR. We remedy this situation by introducing the “split padding”
into a current Merkle-Damg̊ard hash function H. The patched hash func-
tion H̄ resolves the problem in the following ways: (i) H̄ is SPR if the
underlying compression function h satisfies an “SPR-like” property, and
(ii) H̄ is OW if h satisfies an “OW-like” property. The assumptions we
make about h are provided with simple definitions and clear relations
to other security notions. In particular, they belong to the class whose
existence is ensured by that of OW functions, revealing an evident sep-
aration from the strong CR requirement. Furthermore, we get the full
benefit from the patch at almost no expense: The new scheme requires
no change in the internals of a hash function, runs as efficiently as the
original, and as usual inherits CR from h. Thus the patch has significant
effects on systems and applications whose security relies heavily on the
SPR or OW property of Merkle-Damg̊ard hash functions.

Keywords. hash function, Merkle-Damg̊ard, padding, second-preimage
resistance, one-wayness.

1 Introduction

Most of the modern cryptographic hash functions follow a design principle called
the Merkle-Damg̊ard construction. A main feature of such a hash function is that
its collision resistance (CR) is guaranteed by that of its underlying compression
function [21, 8], yet unfortunately popular hash functions MD5 [28] and SHA-
1 [24] are now shown to be not CR [37, 38], hence losing the CR of their respective
compression functions. These attacks have a profound impact on current systems
using hash functions, not to mention those applications whose security is entirely
based on the CR property of their hash-function components.

The loss of CR also exerts a strong influence on schemes whose security de-
pends on the second-preimage resistance (SPR) or one-wayness (OW) of Merkle-
Damg̊ard hash functions. This is due to the fact that the SPR or OW security
of such a hash function is hitherto ensured only by its CR (Recall that SPR is
immediately implied by CR [23] and that OW is also implied by CR as long as

the hash function is “uniform” [36] or “sufficiently compressing” [31]). Now that
the popular hash functions are not CR, we lose our proof-based assurance of the
SPR and OW properties for these hash functions. To summarize:

We have no guarantee whatsoever of the SPR or OW prop-
erty for a Merkle-Damg̊ard hash function without CR by its
underlying compression function.

This is the main problem we explore in the paper. We come up with a solution
by first making a slight modification to the design of current hash functions.
The change is fully compatible with a standard Merkle-Damg̊ard interface. We
then show that the patched hash functions indeed accomplish SPR and OW,
assuming weaker-than-CR properties of the underlying compression functions.
Obtaining Upper-Bound Results for SPR and OW. A more direct way
to overcome our problem in hand is to analyze exactly what sorts of properties
the underlying compression function must possess in order to ensure the SPR
and OW security of the Merkle-Damg̊ard construction. [26, 10] takes this ap-
proach and identifies complexity assumptions about the underlying compression
function, which assure the SPR or OW property of the whole hash function.
However, they do not consider the non-randomness involved in the padding or
length-encoding bits.

Rather, we treat the problem of padding and length-encoding bits in detail.1

The importance of these bits are already pointed out by [18, 4]. We then come
up with simple formulations of the complexity assumptions about the compres-
sion function, showing that these assumptions are indeed weaker than the CR
requirement.
Need for SPR and OW Hash Functions. CR, SPR and OW are the three
classical requirements for security of keyless hash functions (e.g., [32, 23]). We
already know that the notion of CR plays an important role in designing cryp-
tographic schemes. However, there are situations in which CR is not necessarily
required but SPR or OW is essential to the security of systems. For example,
adversaries might be unable to control input data to the hash function, say by
protocol specification or by the fact that inputs are encrypted under a secret key
before hashing.

A CR hash function may not be best suited to above scenarios due to its
large hash size. Recall that for n-bit security the hash size of a CR hash function
needs to be (at least) 2n bits. Suppose we want to use an SPR hash function
with n-bit security. If the SPR security of hash functions were guaranteed only by
their CR, then we would have needed to use a 2n-bit hash function, whereas we
could just use an n-bit hash function if the SPR security is directly guaranteed
(not via its CR).
Our Results. We apply a patch to the Merkle-Damg̊ard construction so that the
SPR and OW properties are now guaranteed by certain reasonable and simple
assumptions about the compression function.
1 On the other hand, we assume that messages are distributed uniformly at random,

which may not hold true in some of the practical applications, as pointed out by [3].

Split Padding. This is the patch. The new scheme works exactly the same as
the original hash function except for the very end; the split-padding method
alters processing of the last two blocks of a message. Message expansion is
minimal, requiring at most one extra block (and such a case is rare). The new
scheme is compatible with fixed-IV (initialization vector) usage and Merkle-
Damg̊ard strengthening. It can also handle a message in stream by delaying
processing and buffering the two most recent blocks of the message.

CR Preservation. There is “nothing to lose” by applying the patch. Namely,
we show that the CR preservation property of the original Merkle-Damg̊ard
construction is still in action with our new scheme. This motivates us to apply
the patch to the systems whose hash functions are still CR (e.g., SHA-256).

SPR Guarantee. This is one of the main features of our new mode of operation.
The entire hash function can be proven SPR based on the assumption that
the underlying compression function satisfies a property we call “cs-SPR”
(chosen-suffix SPR).

OW Guarantee. This is the other main feature of the new construction. We
show that the OW security of the entire hash function is ensured by the “cs-
OW” (chosen-suffix OW) property of the underlying compression function.

Justification for cs-SPR and cs-OW. We give the rationale behind our choice of
these assumptions by demonstrating their relationships with several known
versions of SPR and OW properties. In particular, we show that these as-
sumptions are strictly weaker than the strong CR requirement, by proving
that they belong to the class whose existence is guaranteed by that of an
OW function.

Without Random Oracles. We avoid use of random oracles in our proofs of
security. The proofs of the SPR and OW properties are conducted in the
standard model, following the concrete-security-reduction methodology. For
the proof of CR preservation, we adopt the “human-ignorance” approach
developed by [29].

Organization of the Paper. In Sect. 2 we review previous work related to the
topic. Section 3 provides necessary definitions for the security of hash functions.
In Sect. 4 we give a description of our patch “split padding.” The proofs for
the CR, SPR and OW properties of our scheme are given in Sect. 5, 6 and 7,
respectively. We analyze the assumption cs-SPR in Sect. 8, followed by a simi-
lar analysis of cs-OW in Sect. 9. Section 10 presents certain application of our
scheme.

2 Related Work

Merkle-Damg̊ard Construction. [2] points out that the SPR or OW as-
sumption about a compression function alone is not sufficient for the SPR or
OW property of its Merkle-Damg̊ard iteration. [19] observes that the use of a
fixed IV precludes the trivial “truncation” or “free-start” SPR attack and that
Merkle-Damg̊ard strengthening (i.e., length encoding in the final block) appears
to defeat “long-message” SPR attacks. Then later it is shown that birthday-type

SPR attacks are still possible on the Merkle-Damg̊ard construction [9, 17], dis-
proving the effectiveness of Merkle-Damg̊ard strengthening against long-message
SPR attacks.
Keyed (Randomized) Hash Functions. Hash functions in theory are often
in the dedicated-key setting [6]. [31] describes seven security notions in such a
setting: Coll, Sec, eSec, aSec, Pre, ePre and aPre. ROX [2] is a powerful mode of
operation that preserves all the seven properties of the underlying compression
function. Since aSec and aPre correspond with SPR and OW in the keyless
setting, ROX can be used with its keys fixed, thereby as a keyless hash function.
Unfortunate aspects of ROX are that it requires major modifications to the
design of current hash functions and that its security is based on the use of
random oracles.

BCM [3] achieves Coll, Sec and Pre properties with its proof of Sec security
conducted in the standard model (That of Pre is in the random oracle model).
However, aSec property is not achieved, and hence BCM is not suited to our
keyless setting (BCM construction yields a keyed, Sec-secure hash function, and
the keys cannot be fixed because it does not assure aSec).

There exist a number of domain-extension constructions for eSec(=TCR,
UOWHF). Prominent one is the Randomized Hashing [13]. The Randomized
Hashing has a close connection with our split padding, cf. Sect. 10.
SPR and OW Attacks on Specific Hash Algorithms. MD4 [27] is now
shown to be not OW [18]. The attack first finds “pseudo-preimages” for the com-
pression function and then extends them to the entire hash function. [4] studies
the SPR and OW properties of the Snefru, being already aware of the importance
of padding scheme to these security notions.
Other Weaknesses of Merkle-Damg̊ard Construction. It has been pointed
out that there exist a number of properties that the Merkle-Damg̊ard construc-
tion does not achieve. These include multi-collisions [15], herding attacks [16],
indifferentiability [7] and balance [5]. It is certainly not the purpose of our con-
struction to achieve these goals. Rather, we focus on the classical three notions
of CR, SPR and OW.

3 Definitions

Notation. Given a finite bit string x ∈ {0, 1}∗ we define |x| as the bit length of x.
The notation x1‖x2 represents the concatenation of two strings x1, x2 ∈ {0, 1}∗.
We write d·e for the ceiling function. By x

$← X we indicate the operation of
selecting an element uniformly at random from the set X and assigning its value
to variable x. We write 0n for the bit string 00 · · · 0 (n times).

Given a function f : X → Y , we say that a pair (x, x′) ∈ X ×X is colliding
with respect to f if f(x) = f(x′) and x 6= x′. We write x ./f x′, or simply x ./ x′,
to indicate the fact that x and x′ are colliding. Similarly, given a keyed function
fk : X → Y we write (k, x) ./f (k′, x′) when fk(x) = fk′(x′) and (k, x) 6= (k′, x′).

An adversary A is a probabilistic algorithm that takes inputs. An adversary
A may often be a pair of such algorithms, as A = (A1, A2). We write y ← A(x)

Algorithm MD -strengthening (y)

101 Set η ← d(|y|+ 1)/(m− n)e
102 Divide y = y[1]

∥∥ · · ·
∥∥ y[η − 1]

∥∥ y[η]

so that
∣∣y[1]

∣∣ = · · · =
∣∣y[η − 1]

∣∣ = m− n and 0 ≤
∣∣y[η]

∣∣ ≤ m− n− 1

103 If
∣∣y[η]

∣∣ ≤ m− n− σ − 1 then z ← y‖10m−n−σ−1−|y[η]|‖ 〈|y|〉 EndIf

104 If
∣∣y[η]

∣∣ ≥ m− n− σ then z ← y‖10m−n−1−|y[η]|‖0m−n−σ‖ 〈|y|〉 EndIf

105 Output z

Algorithm MD -iteration (z) // Accepts only z with |z| being a multiple of m− n
201 Set ζ ← |z|/(m− n)

202 Divide z = z[1]
∥∥ · · ·

∥∥ z[ζ] so that
∣∣z[1]

∣∣ = · · · =
∣∣z[ζ]

∣∣ = m− n
203 Set v[0]← IV ; For i = 1, . . . , ζ do v[i]← h

(
z[i]

∥∥ v[i− 1]
)

EndFor; Output v[ζ]

Fig. 1. Definitions of functions MD -strengthening and MD -iteration

to mean that adversary A outputs a value upon its input x, the output value
being assigned to variable y.
Merkle-Damg̊ard Construction. Throughout the paper we fix a compression
function h : {0, 1}m → {0, 1}n with m > n. We also fix a value IV ∈ {0, 1}n. We
choose a length-encoding function 〈 · 〉, which takes an integer as its input and
returns a σ-bit representation of the input value (A typical value of σ is 64).
This restricts message lengths to a maximum of 2σ − 1 bits. Hence, the domain
of the hash function should be written as {0, 1}≤2σ−1 formally, but for simplicity
we write {0, 1}∗ to indicate the message space. Now the Merkle-Damg̊ard hash
function H : {0, 1}∗ → {0, 1}n is defined as

H(x) def= MD -iteration
(
MD -strengthening (x)

)
,

where the functions MD -strengthening and MD -iteration are as described in
Fig. 1.2 We adopt the convention that on empty input (i.e., null string) function
MD -iteration returns the value IV .

Let z and z′ be two strings whose lengths are multiples of m−n bits. Divide
them into (m− n)-bit blocks as z = z[1]

∥∥ · · ·
∥∥ z[ζ] and z′ = z′[1]

∥∥ · · ·
∥∥ z′[ζ ′].

Suppose MD -iteration (z) = MD -iteration (z′) and z 6= z′. We define

index (z, z′) def=

{
ζ if ζ 6= ζ ′,
i if ζ = ζ ′,

where i is defined to be the largest integer in {1, 2, . . . , ζ} such that following
(i), (ii) and (iii) hold: (i) MD -iteration

(
z[1]

∥∥ · · ·
∥∥ z[i]) = MD -iteration

(
z′[1]

∥∥
· · ·

∥∥ z′[i]
)
, (ii) z[j] = z′[j] for all j ≥ i + 1, (iii) Either z[i] 6= z′[i] or

MD -iteration
(
z[1]

∥∥ · · · ∥∥ z[i− 1]
) 6= MD -iteration

(
z′[1]

∥∥ · · · ∥∥ z′[i− 1]
)
.

2 For a technical reason we deliberately define the iteration as h
(
z[i]

∥∥ v[i − 1]
)

at
line 203 rather than as h

(
v[i− 1]

∥∥ z[i]).

Table 1. Complexity assumptions about keyless compression function
h : {0, 1}m → {0, 1}n

(Alias) Game

fp-CR (c-SPR [13]) x̃
$← {0, 1}µ, (a, x′)← A(x̃), x̃‖a ?

./ x′

cs-SPR (a, St)← A1(·), x̃ $← {0, 1}µ, x′ ← A2(x̃, St), x̃‖a ?
./ x′

SPR (weak CR) x
$← {0, 1}m, x′ ← A(x), x

?
./ x′

cs-OW (a, St)← A1(·), x̃ $← {0, 1}µ, v ← h(x̃‖a), x′ ← A2(v, St), v ?= h(x′)

ks-OW (partial OW [23])

a
$← {0, 1}m−µ, x̃

$← {0, 1}µ, v ← h(x̃‖a), x′ ← A(a, v), v ?= h(x′)

OW (preimage resistance) x
$← {0, 1}m, v ← h(x), x′ ← A(v), v ?= h(x′)

Complexity Assumptions about Keyless Compression Functions. Ta-
ble 1 lists six notions of security for the compression function h : {0, 1}m →
{0, 1}n. Here we have a fixed security parameter 1 ≤ µ ≤ m. A typical value
of µ is µ = n/2 or µ = n. Of the six notions, the two most important ones
in the current work are cs-SPR and cs-OW, because these are the assumptions
that we make about the underlying compression function h. Others are fp-CR
(forced-prefix CR, cf. [35]), SPR, ks-OW (known-suffix OW) and OW. These
four appear in the list only for the purpose of analyzing the nature of cs-SPR
and cs-OW in Sect. 8 and 9, respectively.

The notion of cs-SPR is a variant of SPR where a suffix is chosen by adver-
saries. Informally, the game of cs-SPR for the compression function h : {0, 1}m →
{0, 1}n proceeds as follows: First a suffix a of a given length is chosen by an ad-
versary, and then a challenge x̃ of a given length is randomly drawn and shown
to the adversary. The goal of the adversary is to find a second preimage x′ 6= x̃‖a
such that h(x̃‖a) = h(x′). Here we emphasize that the adversary is required to
commit on the value a before observing the challenge x̃.

Security Goals for Keyless Hash Functions. Our SPR and OW goals for
a hash function H : {0, 1}∗ → {0, 1}n is formalized in Table 2. Note that an
adversary can choose the challenge length λ ≥ µ at the beginning of each game.
Also note that the adversary’s response x′ may be of length different from λ.

Table 2. Security goals for keyless hash function H : {0, 1}∗ → {0, 1}n

Game

SPR (λ, St)← A1(·), x $← {0, 1}λ, x′ ← A2(x, St), x
?
./ x′

OW (λ, St)← A1(·), x $← {0, 1}λ, v ← H(x), x′ ← A2(v, St), v ?= H(x′)

Security Notions for Keyed Function Family. We utilize four notions, Coll,
eColl (enhanced Coll), TCR (target collision resistance) and eTCR (enhanced

Table 3. Security notions for keyed function family ϕk : {0, 1}m → {0, 1}n

(Alias) Game

Coll k
$← K, (x, x′)← A(k), (k, x)

?
./ (k, x′)

eColl k
$← K, (x, k′, x′)← A(k), (k, x)

?
./ (k′, x′)

TCR (eSec, UOWHF) (x, St)← A1(·), k $← K, x′ ← A2(k, St), (k, x)
?
./ (k, x′)

eTCR (x,St)← A1(·), k $← K, (k′, x′)← A2(k, St), (k, x)
?
./ (k′, x′)

TCR) for analyzing cs-SPR in Sect. 8. See Table 3. The notion of eColl appears
to be new.

Advantage Functions and Adversarial Resources. For a CR-like or SPR-
like goal, we define the advantage function of an adversary A as Advgoal

f (A) def=

Pr
[?
./ holds

]
, where f is the target function (h, H, etc.). Similarly, we define

Advgoal
f (A) def= Pr

[
?= holds

]
for an OW-like goal. The probabilities are over

all coins defined in game and used by A. We fix a model of computation and
measure the time complexity of adversaries. The time complexity of an adver-
sary is the time for execution of its overlying game plus its code size. We let
time (h) denote the time complexity necessary for one computation of h. Define
Advgoal

f (t, `) def= maxA Advgoal
f (A), where max runs over all adversaries A, with

its time complexity being at most t, with λ, |St | and |x′| each being at most `
blocks. A “block” is m−n bits. ` may be omitted from the notation if irrelevant
in the context.

4 How to Insert Split Padding

Our new hash function H̄ operates exactly the same as the original hash H
except for the last two blocks of messages. More precisely, the new hash function
is defined as

H̄(x) def= H
(
split -padding (x)

)
,

with a plain Merkle-Damg̊ard hash functionH : {0, 1}∗ → {0, 1}n. The definition
of split -padding is given in Fig. 2 along with a pictorial representation in Fig. 3.

The basic idea of the “split padding” method is to make sure that every block
input to the compression function h has at least µ bits of a message,3 rather than
being entirely padding bits or length-encoding bits. Indeed, when combined with
split -padding , the function MD -strengthening never invokes line 104 of Fig. 1.

For this mechanism to work, we need to impose a condition σ+1+2µ ≤ m−n
on h : {0, 1}m → {0, 1}n. As long as this condition is fulfilled, the algorithm
split -padding is well-defined. Also observe that no message bits are shared across
the blocks. We will come back to this issue after proving the following basic result.

3 Of course, here we are assuming that the message is at least µ bits long to begin
with.

Algorithm split -padding (x)

301 Set ξ ← d(|x|+ 1)/(m− n)e
302 Divide x = x[1]

∥∥ · · ·
∥∥ x[ξ − 1]

∥∥ x[ξ]

so that
∣∣x[1]

∣∣ = · · · =
∣∣x[ξ − 1]

∣∣ = m− n and 0 ≤
∣∣x[ξ]

∣∣ ≤ m− n− 1

303 If µ ≤
∣∣x[ξ]

∣∣ ≤ m− n− σ − 2 then pad -plain EndIf

304 If
∣∣x[ξ]

∣∣ ≤ µ− 1 then pad -with -borrow EndIf

305 If
∣∣x[ξ]

∣∣ ≥ m− n− σ − 1 then pad -with -carry EndIf

306 Output y

310 Subroutine pad -plain

311 Put y ← x‖0

320 Subroutine pad -with -borrow

321 If ξ ≥ 2 then divide x[ξ − 1] = x̃[ξ − 1]
∥∥ brw

so that |brw | = µ and
∣∣x̃[ξ − 1]

∣∣ = m− n− µ
322 Set x̃[ξ]← brw ‖x[ξ]

323 Put y ← x[1]
∥∥ · · ·

∥∥ x[ξ − 2]
∥∥ x̃[ξ − 1]

∥∥ 10µ−1
∥∥ x̃[ξ]

∥∥ 1 EndIf

324 If ξ = 1 then put y ← x[1]
∥∥ 1 EndIf

330 Subroutine pad -with -carry

331 Divide x[ξ] = x̃[ξ]
∥∥ cry so that |cry | = µ and

∣∣x̃[ξ]
∣∣ =

∣∣x[ξ]
∣∣− µ

332 Set x̃[ξ + 1]← cry

333 Put y ← x[1]
∥∥ · · ·

∥∥ x[ξ − 1]
∥∥ x̃[ξ]

∥∥ 10m−n−|x̃[ξ]|−1
∥∥ x̃[ξ + 1]

∥∥ 1

Fig. 2. Description of “split padding” algorithm

Proposition 1. The function split -padding is one-to-one (i.e., injective).

Proof. Let x, x′ ∈ {0, 1}∗. We want to prove that the equality split -padding (x) =
split -padding (x′) implies x = x′. So suppose we have x and x′ such that the
condition split -padding (x) = split -padding (x′) holds. Set y ← split -padding (x)
and y′ ← split -padding (x′). Divide y = w‖b and y′ = w′‖b′ so that |b| = |b′| = 1.
The equality y = y′ tells us that b = b′ and w = w′.

Case A: b = b′ = 0. In this case we know that both y and y′ come from
pad -plain . Hence, we must have x = w and x′ = w′, which yields x = x′.

Case B: b = b′ = 1. We observe that in this case both y and y′ originate from
either pad -with -borrow or pad -with -carry . We divide the case according to
the size |y| = |y′|.
Case B1: |y| = |y′| ≤ m− n. Note that pad -with -carry always produces

more than or equal to two blocks of output, which implies that both y
and y′ must have been processed through pad -with -borrow in this case.
Consequently, we get x = w, x′ = w′ and x = x′.

Case B2: |y| = |y′| > m− n. Put η ← d(|y| + 1)/(m − n)e. We must
have η ≥ 2. Divide y = y[1]

∥∥ · · ·
∥∥ y[η − 1]

∥∥ y[η] and y′ = y′[1]
∥∥

v[ζ]

10∗

x[ξ+1]

0 〈|y|〉

IV h v[ζ]

10∗ 1 〈|y|〉 ̃

x[ξ]

10∗ 1 〈|y|〉 x[ξ] ̃

x[1]

h h

x[ξ−1]

x[ξ−1] ̃x[1]

IV h h h

10∗

IV h

x[1]

h

x[ξ−1] x[ξ] ̃

h

10∗

h

v[ζ]

Fig. 3. Split padding: “plain” (top), “borrow” (middle) and “carry” (bot-
tom), combined with MD -strengthening . Note that the last 10∗‖ 〈|y|〉 comes
from MD -strengthening , not from split -padding . 10∗ means 10 · · · 0 with an ap-
propriate number of zeros.

· · · ∥∥ y′[η − 1]
∥∥ y′[η], so that

∣∣y[1]
∣∣ = · · · =

∣∣y[η − 1]
∣∣ =

∣∣y′[1]
∣∣ = · · · =∣∣y′[η − 1]

∣∣ = m − n. Recall that pad -with -borrow sets the last block to
a length between µ+ 1 and 2µ bits, whereas pad -with -carry always sets
the last block to a length of µ + 1 bits. Now we further divide the case
according to the value

∣∣y[η]
∣∣.

Case B2a:
∣∣y[η]

∣∣ =
∣∣y′[η]

∣∣ ≥ µ+ 2. This case assures that both y
and y′ originate from pad -with -borrow . It means that we can write
y[η− 1] = ỹ[η− 1]

∥∥ 10µ−1 and y′[η− 1] = ỹ′[η− 1]
∥∥ 10µ−1. We can

also write y[η] = ỹ[η]
∥∥ 1 and y′[η] = ỹ′[η]

∥∥ 1. Therefore, we obtain

x = y[1]
∥∥ · · · ∥∥ y[η − 2]

∥∥ ỹ[η − 1]
∥∥ ỹ[η],

x′ = y′[1]
∥∥ · · ·

∥∥ y′[η − 2]
∥∥ ỹ′[η − 1]

∥∥ ỹ′[η],

which immediately implies that x = x′.
Case B2b:

∣∣y[η]
∣∣ =

∣∣y′[η]
∣∣ = µ+ 1. There are multiple possibilities

in this case: y and y′ may come from either pad -with -borrow or
pad -with -carry . To identify the case, we further divide y[η − 1] =
ỹ[η−1]‖10α and y′[η−1] = ỹ′[η−1]‖10α for some integer α. Observe
that pad -with -borrow always sets α = µ−1, whereas pad -with -carry
sets α ≥ µ. Hence, by looking at the value α we see that either
(i) both y and y′ are from pad -with -borrow , or (ii) both y and y′ are
from pad -with -carry . Write y[η] = ỹ[η]

∥∥ 1 and y′[η] = ỹ′[η]
∥∥ 1. We

see that

x = y[1]
∥∥ · · ·

∥∥ y[η − 2]
∥∥ ỹ[η − 1]

∥∥ ỹ[η],

x′ = y′[1]
∥∥ · · · ∥∥ y′[η − 2]

∥∥ ỹ′[η − 1]
∥∥ ỹ′[η],

which gives us the desired equality x = x′.

Thus, we have shown that split -padding (x) = split -padding (x′) always im-
plies x = x′. This proves the injectivity of the function split -padding . ut

On the Constraint σ + 1 + 2µ ≤ m− n. We need to impose this constraint
on the underlying compression function h. Thanks to the constraint, every block
ends up containing at least µ bits of a message after the split -padding procedure.

The constraint is necessary for handling the last block properly. Recall that
the subroutine pad -with -borrow produces the last block with a length at most
µ+ µ− 1 + 1 = 2µ bits. The subroutine pad -with -carry produces the last block
with a length always equal to µ + 1 bits. The constraint guarantees that the
last block of either type, padded with MD -strengthening , fits neatly in a single
block. The subroutine pad -plain by definition handles only the case when the
last block fits in one block.

The constraint also guarantees that the second last block contains at least
µ bits of the message. This holds true for pad -plain , pad -with -borrow and
pad -with -carry .

The constraint is not problematic as long as we are dealing with MD5 or
SHA-1 with µ = n/2 or n = µ. It puts an obstacle in the way of using SHA-256
with σ = 64 and µ = 256. In such a case we are limited to setting the value of
µ only up to µ ≤ 223.

5 CR of Merkle-Damg̊ard with Split Padding

We follow the “human-ignorance” approach developed by [29] for formalizing
the notion of CR.

Proposition 2. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n. If
there exists an explicitly-given adversary that finds a pair of colliding messages
for H̄ with a probability ε, spending time complexity at most t, each message
being at most ` blocks, then there exists an explicitly-given adversary that finds
a collision for h with a probability ε, spending time complexity at most t′ ≈
t+ 2` · time (h).

Proof. This statement immediately follows from the injectivity of split -padding
and the well-known CR reduction of the plain Merkle-Damg̊ard iteration [21,
8]. ut

6 SPR of Merkle-Damg̊ard with Split Padding

In this section we prove that the patched hash function H̄ is SPR assuming that
the underlying compression function h is cs-SPR. After proving our result, we
also discuss the birthday bound implied by the reduction.

Adversary B

410 Run A = (A1, A2) and obtain a bit length (λ,St)← A1(·) // λ ≥ µ
411 Generate a random message x

$← {0, 1}λ
412 Put z ← MD -strengthening

(
split -padding (x)

)

413 Divide z = z[1]
∥∥ z[2]

∥∥ · · ·
∥∥ z[ζ] so that

∣∣z[1]
∣∣ =

∣∣z[2]
∣∣ = · · · =

∣∣z[ζ]
∣∣ = m− n

414 Choose an index i
$← {1, 2, . . . , ζ}

415 Compute v[i− 1]← MD -iteration
(
z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[i− 1]
)

416 Divide z[i] = α‖β so that |α| = µ and |β| = m− n− µ
420 Submit β‖v[i− 1] as a committed suffix and receive a challenge x̃ ∈ {0, 1}µ
421 Put w ← (MD -strengthening ◦ split -padding)−1

(
z[1]

∥∥ · · ·
· · ·
∥∥ z[i− 1]

∥∥ x̃
∥∥ β

∥∥ z[i+ 1]
∥∥ · · ·

∥∥ z[ζ])

430 Feed w and St to A2 and obtain a second preimage x′ ← A2(w, St)

431 Put z′ ← MD -strengthening
(
split -padding (x′)

)

432 Divide z′ = z′[1]
∥∥ · · ·

∥∥ z′[ζ′] so that
∣∣z′[1]

∣∣ = · · · =
∣∣z′[ζ′]

∣∣ = m− n
433 If ζ 6= ζ′ then v′[ζ′ − 1]← MD -iteration

(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[ζ′ − 1]
)

434 x∗ ← z′[ζ′]
∥∥ v′[ζ′ − 1] EndIf

435 If ζ = ζ′ then v′[i− 1]← MD -iteration
(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[i− 1]
)

436 x∗ ← z′[i]
∥∥ v′[i− 1] EndIf

440 Output x∗

Fig. 4. Definition of adversary B attacking h : {0, 1}m → {0, 1}n in the cs-
SPR sense

Theorem 1. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n.
Then H̄ is SPR if h is cs-SPR. More concretely, we have

Advspr
H̄

(t, `) ≤ (`+ 1) ·Advcs-spr
h (t′),

where t′ ≈ t+ 2` · time (h). Note that the security parameter µ is implicit in the
statement.

Proof. Let A = (A1, A2) be an adversary attacking the hash function H̄ :
{0, 1}∗ → {0, 1}n in the SPR sense. Assume that A has time complexity at
most t and only handles strings whose lengths are at most ` blocks. We shall
construct an adversary B that uses A1 and A2 as black-boxes and that attacks
the underlying compression function h in the cs-SPR sense. The definition of B
is given in Fig. 4. The basic idea is that B simulates an SPR game for A with
B’s challenge embedded into a randomly chosen block. Then B “hopes” that A
finds a second preimage colliding at that block.

Let us first check if B simulates an SPR game for A correctly. In order to
do this, we only need to verify that the distribution of simulated challenges w
at line 421 is uniformly random on the set {0, 1}λ. The only difference between
this w and the x ∈ {0, 1}λ at line 411 is that the α in the i-th block is replaced

with the challenge x̃. Because of the split padding, all the bits of α ∈ {0, 1}µ
come from the random message x. Since x̃ is random and independent from x,
we see that w is indeed drawn uniformly at random from the set {0, 1}λ. The
point here is that B can choose any block, as every block contains at least µ bits
of a message owing to the split padding.

We next evaluate the success probability of B. We see that B succeeds when-
ever A succeeds, provided that at the same time B correctly guesses the index i
(Here we need (i) injectivity of split -padding , (ii) injectivity of MD -strengthening ,
and (iii) the length encoding in MD -strengthening). The choice of index i does
not affect the overall distribution of w ∈ {0, 1}λ; the distribution is the same
as w $← {0, 1}λ, being independently random from i. Moreover, the value i is
completely hidden from A. Therefore, the choice of i is independent from the
transcript of A producing x′. Putting u← MD -strengthening

(
split -padding (w)

)
we get:

Advcs-spr
h (B) ≥ Pr

[
w ./H̄ x′ and i = index (u, z′)

]

= Pr
[
w ./ x′

]× Pr
[
i = index (u, z′)

∣∣ w ./ x′
]

= Pr
[
A succeeds

]× (1/ζ) ≥ 1/(`+ 1) ·Advspr
H̄

(A).

Lastly, we compute the time complexity of adversary B. It is about equal to
the time complexity of A plus two executions of MD -iteration at lines 415, 433
and 435, each of which costs at most ` · time (h). This proves the theorem. ut

Remarks on the Birthday Bound. We note that our bound for SPR is of
quadratic degradation in ` (a linear term in the coefficient of the advantage
function and another one in time complexity). This means that the security
guarantee becomes vacuous when ` ≈ 2n/2 (with µ = n; recall that with t ≈
2n/2 · time (h) the advantage increases to about 2−n/2, cf. [23]). In fact, the
long-message SPR attacks described in [9, 17] are still applicable to the patched
construction. It also implies that our reduction essentially gives a tight bound.

This is neither regression to the plain Merkle-Damg̊ard construction nor se-
vere limitation in practice. In the original Merkle-Damg̊ard construction, the
SPR of a hash function is assured up to the birthday bound based on the strong
CR assumption about the underlying compression function rather than cs-SPR.
The birthday bound by CR is at t ≈ 2n/2 · time (h) irrespective of the message
length `. Thus, our result provides a stronger bound than the one originally as-
sured by CR. Also, in practice a typical value of σ restricts message lengths to
less than 2n/2 blocks, so speaking of the security beyond ` ≈ 2n/2 often becomes
moot.

Moreover, many of the provably secure SPR (TCR) constructions, including
Randomized Hashing [13] and Higher-Order UOWHF [14], are susceptible to the
long-message SPR attacks, hence giving security only up to the birthday bound.
It is true that there exist some constructions that accomplish SPR beyond the
birthday bound, such as Wide-Pipe [20] and ROX [2], but the security of these
constructions relies on the use of random oracles.

It seems a non-trivial task for us to construct a mode of operation that
achieves the full SPR security without random oracles: The “dithering” and
“checksum” require major modifications to the current Merkle-Damg̊ard con-
struction, and these techniques are shown to be not effective in precluding long-
message attacks [1, 11].

7 OW of Merkle-Damg̊ard with Split Padding

In this section we prove that the Merkle-Damg̊ard construction combined with
split padding is OW provided that the underlying compression function is cs-
OW. The result contrasts sharply with the one for SPR of the previous section
in that we have a security reduction without the birthday bound.

Theorem 2. Let H̄ : {0, 1}∗ → {0, 1}n be the Merkle-Damg̊ard hash function
with split padding constructed of a compression function h : {0, 1}m → {0, 1}n.
Then H̄ is OW if h is cs-OW. More concretely, we have

Advow
H̄ (t, `) ≤ Advcs-ow

h (t′),

where t′ ≈ t+ 2` · time (h). Note that the security parameter µ is implicit in the
statement.

Proof. Let A = (A1, A2) be an adversary trying to invert the hash function
H̄ : {0, 1}∗ → {0, 1}n in the OW sense. Assume that A has time complexity at
most t and only handles strings whose lengths are at most ` blocks. We shall
construct an adversary B that uses A1 and A2 as black-boxes and that tries to
invert the underlying compression function h in the cs-OW sense. The definition
of B is given in Fig. 5. A significant difference from the SPR case is that B
simulates an OW game for A with its challenge embedded always into the last
block.

We first check if B simulates an OW game for A correctly. For this, we need to
verify that the distribution of the challenge v given at line 520 indeed coincides
with the distribution v ← H̄(x), x $← {0, 1}λ. By definition of cs-OW oracle,
the value v at line 520 is computed as v ← h(x̃‖β‖v[ζ − 1]) with x̃

$← {0, 1}µ.
Now note that all the bits of α at line 515 come from the random message
x ∈ {0, 1}λ and appear in no other blocks, owing to the split padding. Since
the randomness of x̃ is independent from that of x, replacing α with x̃ does not
affect the distribution of v. Thus we see that B indeed simulates the correct
distribution of v.

It remains to evaluate the success probability of B. We observe that B suc-
ceeds whenever A succeeds in inversion, so Advcs-ow

h (B) ≥ Advow
H̄ (A) holds. The

time complexity of B is about that of A plus two executions of MD -iteration at
lines 514 and 533. This proves the theorem. ut

Tightness of the Bound. Unlike the case of SPR, this time the degradation is
only linear in ` (i.e., we do not have the coefficient `+1 in front of the advantage

Adversary B

510 Run A = (A1, A2) and obtain a bit length (λ,St)← A1(·) // λ ≥ µ
511 Generate a random message x

$← {0, 1}λ
512 Put z ← MD -strengthening

(
split -padding (x)

)

513 Divide z = z[1]
∥∥ z[2]

∥∥ · · ·
∥∥ z[ζ] so that

∣∣z[1]
∣∣ =

∣∣z[2]
∣∣ = · · · =

∣∣z[ζ]
∣∣ = m− n

514 Compute v[ζ − 1]← MD -iteration
(
z[1]

∥∥ z[2]
∥∥ · · ·

∥∥ z[ζ − 1]
)

515 Divide z[ζ] = α‖β so that |α| = µ and |β| = m− n− µ
520 Submit β‖v[ζ − 1] as a committed suffix and receive a challenge v ∈ {0, 1}n
530 Feed v to A2 and obtain a preimage x′ ← A2(v, St)

531 Put z′ ← MD -strengthening
(
split -padding (x′)

)

532 Divide z′ = z′[1]
∥∥ · · ·

∥∥ z′[ζ′] so that
∣∣z′[1]

∣∣ = · · · =
∣∣z′[ζ′]

∣∣ = m− n
533 Compute v′[ζ′ − 1]← MD -iteration

(
z′[1]

∥∥ z′[2]
∥∥ · · ·

∥∥ z′[ζ′ − 1]
)

534 Set x∗ ← z′[ζ′]
∥∥ v′[ζ′ − 1]

540 Output x∗

Fig. 5. Definition of adversary B attacking h : {0, 1}m → {0, 1}n in the cs-
OW sense

function).4 This means that we still have some security left even when ` ≈ 2n/2

(with µ = n) and that long-message birthday attacks do not apply to the OW
case.

Our bound for OW is “essentially” tight, except for the `-degradation in time
complexity. To see this, consider an inverter A (in the OW sense) attacking H̄,
who outputs λ = µ at the beginning of each game and receives a challenge
v ∈ {0, 1}n. Then the challenge is computed as v ← h(x̃‖a), x̃ $← {0, 1}µ with the
suffix a = 010∗‖ 〈|µ|〉 ‖IV . This is “essentially” a cs-OW game on h, except that
the suffix a ∈ {0, 1}m−µ is not completely “chosen” by A but rather “known”
to A. We shall discuss more on the gap between cs-OW and ks-OW in Sect. 9.

8 Analysis of cs-SPR

The purpose of this section is to reveal the nature of cs-SPR. It is clear that CR
implies cs-SPR5 but not vice versa, so cs-SPR is a strictly weaker requirement
than CR. Here we do want to say more; that is, we claim that cs-SPR is an
assumption which is inherently weaker than CR, by showing:

A cs-SPR function exists if an OW function exists.

This is a complexity-theoretic result. It is known that the existence of Coll
functions implies that of OW functions [12], but not vice versa—[34] shows that
4 [26, 10] obtains an OW result based on the OW assumption about h and the “output

regularity” of h. The result, however, has a coefficient of ` in front of the advantage
function (associated with the regularity).

5 More formally, it should read “fp-CR implies cs-SPR.”

⇒

⇒

⇒

ks-OW SPR ↑
↑

Coll

cs-SPR

eTCR TCR

eColl ↑

fp-CR

cs-OW OW

�
⇒

�
� ⇒

⇒

↑ ⇒ ↑ ⇒

Fig. 6. A ⇒ B indicates “A-secure implies B-secure,” while A → B indi-
cates “A-existence implies B-existence.” Dotted boxes indicate black-box
separation from the Coll requirement.

there exists no black-box construction of Coll functions from OW functions. This
is a strong evidence of separation between the Coll property and the OW, and
we show that cs-SPR belongs to the latter class.

Our claim is based on the results [25, 30] which prove that the existence
of an OW function implies that of a TCR function family.6 The existence of
a TCR function family is equivalent to that of an SPR function [33], so we
actually present explicit black-box construction of a cs-SPR function from an
SPR function, thereby showing the existence of a cs-SPR function based on
that of an OW function. For better understanding of cs-SPR, we also point
out a symmetry between cs-SPR and eTCR; roughly speaking, cs-SPR can be
regarded as an unkeyed version of eTCR. The diagram on the left in Fig. 6
summarizes the relationships among these various notions.

Proposition 3. A cs-SPR function exists if an SPR function exists.

Proof. Let f : {0, 1}µ → {0, 1}ν be an SPR function. Define g : {0, 1}m →
{0, 1}ν+m−µ as g(x̃‖a) def= f(x̃)‖a for x̃ ∈ {0, 1}µ and a ∈ {0, 1}m−µ. Then it can
be directly verified that Advcs-spr

g (t) ≤ Advspr
f (t′) where t′ ≈ t. ut

Proposition 4. A cs-SPR function exists if and only if an eTCR function fam-
ily exists.

Proof. Let f : {0, 1}m → {0, 1}n be a cs-SPR function with a security parameter
µ < m. Define a family of functions ϕk : {0, 1}m−µ → {0, 1}n with k ∈ {0, 1}µ
as ϕk(a) def= f(k‖a). Then it is easy to see that Advetcr

ϕ (t) ≤ Advcs-spr
f (t′) where

t′ ≈ t. Conversely, let ϕk : {0, 1}m−µ → {0, 1}n be an eTCR function family
with k ∈ {0, 1}µ. Define f : {0, 1}m → {0, 1}n as f(x̃‖a) def= ϕx̃(a). Then we see
that Advcs-spr

f (t) ≤ Advetcr
ϕ (t′) where t′ ≈ t. ut

The notion of cs-SPR provides a bridge between SPR and CR, depending
on the value µ. This can be viewed as an unkeyed version of the continuum
developed in [22]. Also, the notion of cs-SPR contrasts sharply with that of fp-
CR, as there is a clear distinction between the two: The notion of fp-CR is open
to generic birthday attacks, whereas that of cs-SPR is not.
6 These results are based on polynomially-bounded reductions. [25] proves the exis-

tence based on that of an OW permutation, while [30] on that of an OW function.

9 Analysis of cs-OW

There are obvious implications: cs-OW-secure ⇒ ks-OW-secure ⇒ OW-secure.
Thus our assumption cs-OW is the strongest of these three notions. We show
that cs-OW is, however, not “too far” from OW, by proving (see the diagram
on the right in Fig. 6):

A cs-OW function exists if an OW function exists.

Unlike the case of cs-SPR, we have a direct black-box construction this time:

Proposition 5. A cs-OW function exists if an OW function exists.

Proof. Let f : {0, 1}µ → {0, 1}ν be an OW function. Define g : {0, 1}m →
{0, 1}ν+m−µ as g(x̃‖a) def= f(x̃)‖a for x̃ ∈ {0, 1}µ and a ∈ {0, 1}m−µ. Then it can
be directly verified that Advcs-ow

g (t) ≤ Advow
f (t′) where t′ ≈ t. ut

10 Application to Randomized Hashing

In closing the paper we point out that our split padding is compatible with the
Randomized Hashing [13]. Recall that the Randomized Hashing first mixes a
message with a randomly generated mask and then hashes the data using the
Merkle-Damg̊ard construction. A problem arises when line 104 of the algorithm
MD -strengthening in Fig. 1 is invoked, because it would then result in an insuffi-
cient amount of randomness in the last block. The Randomized Hashing suggests
using “double padding” for dealing with this problem. Our split padding offers
an alternative to this method, assuring at least µ bits of randomness in the very
last invocation to the compression function.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In Smart, N.P.,
ed.: EUROCRYPT 2008. vol. 4965 of LNCS, Springer, Heidelberg (2008) 270–288

2. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving
iterated hashing: ROX. In Kurosawa, K., ed.: ASIACRYPT 2007. vol. 4833 of
LNCS, Springer, Heidelberg (2007) 130–146

3. Andreeva, E., Preneel, B.: A three-property-secure hash function. In: Avanzi, R.,
Keliher, L., Sica, F. (eds.) SAC 2008. Workshop Records, pp. 208–224 (2008)

4. Biham, E.: New techniques for cryptanalysis of hash functions and improved at-
tacks on Snefru. In Nyberg, K., ed.: FSE 2008. vol. 5086 of LNCS, Springer,
Heidelberg (2008) 444–461

5. Bellare, M., Kohno, T.: Hash function balance and its impact on birthday at-
tacks. In Cachin, C., Camenisch, J., eds.: EUROCRYPT 2004. vol. 3027 of LNCS,
Springer, Heidelberg (2004) 401–418

6. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A.,
eds.: ICALP 2007. vol. 4596 of LNCS, Springer, Heidelberg (2007) 399–410

7. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In Shoup, V., ed.: CRYPTO 2005. vol. 3621 of LNCS,
Springer, Heidelberg (2005) 430–448

8. Damg̊ard, I.: A design principle for hash functions. In Brassard, G., ed.: CRYPTO
1989. vol. 435 of LNCS, Springer, Heidelberg (1990) 416–427

9. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University (1999)

10. Dodis, Y., Puniya, P.: Getting the best out of existing hash functions; or what if
we are stuck with SHA? In Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung,
M., eds.: ACNS 2008. vol. 5037 of LNCS, Springer, Heidelberg (2008) 156–173

11. Gauravaram, P., Kelsey, J.: Linear-XOR and additive checksums don’t protect
Damg̊ard-Merkle hashes from generic attacks. In Malkin, T., ed.: CT-RSA 2008.
vol. 4964 of LNCS, Springer, Heidelberg (2008) 36–51

12. Goldreich, O.: The Foundations of Cryptography. vol. 2. Cambridge University
Press (2004)

13. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing.
In Dwork, C., ed.: CRYPTO 2006. vol. 4117 of LNCS, Springer, Heidelberg (2006)
41–59

14. Hong, D., Preneel, B., Lee, S.: Higher order universal one-way hash functions. In
Lee, P.J., ed.: ASIACRYPT 2004. vol. 3329 of LNCS, Springer, Heidelberg (2004)
201–213

15. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In Franklin, M.K., ed.: CRYPTO 2004. vol. 3152 of LNCS, Springer,
Heidelberg (2004) 306–316

16. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In
Vaudenay, S., ed.: EUROCRYPT 2006. vol. 4004 of LNCS, Springer, Heidelberg
(2006) 183–200

17. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In Cramer, R., ed.: EUROCRYPT 2005. vol. 3494 of LNCS, Springer,
Heidelberg (2005) 474–490

18. Leurent, G.: MD4 is not one-way. In Nyberg, K., ed.: FSE 2008. vol. 5086 of
LNCS, Springer, Heidelberg (2008) 412–428

19. Lai, X., Massey, J.L.: Hash function based on block ciphers. In Rueppel, R.A.,
ed.: EUROCRYPT 1992. vol. 658 of LNCS, Springer, Heidelberg (1993) 55–70

20. Lucks, S.: A failure-friendly design principle for hash functions. In Roy, B.K., ed.:
ASIACRYPT 2005. vol. 3788 of LNCS, Springer, Heidelberg (2005) 474–494

21. Merkle, R.C.: One way hash functions and DES. In Brassard, G., ed.: CRYPTO
1989. vol. 435 of LNCS, Springer, Heidelberg (1990) 428–446

22. Mironov, I.: Hash functions: From Merkle-Damg̊ard to Shoup. In Pfitzmann, B.,
ed.: EUROCRYPT 2001. vol. 2045 of LNCS, Springer, Heidelberg (2001) 166–181

23. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

24. NIST: Secure Hash Standard. FIPS 180-1 (1995)
25. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic

applications. In: ACM 21st STOC, pp. 33–43. ACM (1989)
26. Puniya, P.: New Design Criteria for Hash Functions and Block Ciphers. PhD

thesis, New York University (2007)
27. Rivest, R.L.: The MD4 message digest algorithm. In Menezes, A., Vanstone, S.A.,

eds.: CRYPTO 1990. vol. 537 of LNCS, Springer, Heidelberg (1991) 303–311
28. Rivest, R.L.: The MD5 Message-Digest Algorithm. RFC 1321. IETF (1992)

29. Rogaway, P.: Formalizing human ignorance: Collision-resistant hashing without
the keys. In Nguyen, P.Q., ed.: VIETCRYPT 2006. vol. 4341 of LNCS, Springer,
Heidelberg (2006) 211–228

30. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: ACM 22nd STOC, pp. 387–394. ACM (1990)

31. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In Roy, B.K., Meier, W., eds.: FSE 2004. vol. 3017 of
LNCS, Springer, Heidelberg (2004) 371–388

32. Schneier, B.: Applied Cryptography. 2nd edn. John Wiley & Sons (1996)
33. Shoup, V.: A composition theorem for universal one-way hash functions. In Pre-

neel, B., ed.: EUROCRYPT 2000. vol. 1807 of LNCS, Springer, Heidelberg (2000)
445–452

34. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Nyberg, K., ed.: EUROCRYPT 1998. vol. 1403
of LNCS, Springer, Heidelberg (1998) 334–345

35. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In Naor, M., ed.: EUROCRYPT
2007. vol. 4515 of LNCS, Springer, Heidelberg (2007) 1–22

36. Stinson, D.R.: Some observations on the theory of cryptographic hash functions.
Des. Codes Cryptography 38(2) (2006) 259–277

37. Wang, X., Yu, H.: How to break MD5 and other hash functions. In Cramer, R.,
ed.: EUROCRYPT 2005. vol. 3494 of LNCS, Springer, Heidelberg (2005) 19–35

38. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In Shoup, V.,
ed.: CRYPTO 2005. vol. 3621 of LNCS, Springer, Heidelberg (2005) 17–36

